author | wenzelm |
Tue, 04 Aug 2009 15:59:57 +0200 | |
changeset 32323 | 8185d3bfcbf1 |
parent 32153 | a0e57fb1b930 |
child 58889 | 5b7a9633cfa8 |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/Gfp.thy |
1474 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1992 University of Cambridge |
4 |
*) |
|
5 |
||
17456 | 6 |
header {* Greatest fixed points *} |
7 |
||
8 |
theory Gfp |
|
9 |
imports Lfp |
|
10 |
begin |
|
11 |
||
20140 | 12 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20140
diff
changeset
|
13 |
gfp :: "['a set=>'a set] => 'a set" where -- "greatest fixed point" |
17456 | 14 |
"gfp(f) == Union({u. u <= f(u)})" |
15 |
||
20140 | 16 |
(* gfp(f) is the least upper bound of {u. u <= f(u)} *) |
17 |
||
18 |
lemma gfp_upperbound: "[| A <= f(A) |] ==> A <= gfp(f)" |
|
19 |
unfolding gfp_def by blast |
|
20 |
||
21 |
lemma gfp_least: "[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A" |
|
22 |
unfolding gfp_def by blast |
|
23 |
||
24 |
lemma gfp_lemma2: "mono(f) ==> gfp(f) <= f(gfp(f))" |
|
25 |
by (rule gfp_least, rule subset_trans, assumption, erule monoD, |
|
26 |
rule gfp_upperbound, assumption) |
|
27 |
||
28 |
lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) <= gfp(f)" |
|
29 |
by (rule gfp_upperbound, frule monoD, rule gfp_lemma2, assumption+) |
|
30 |
||
31 |
lemma gfp_Tarski: "mono(f) ==> gfp(f) = f(gfp(f))" |
|
32 |
by (rule equalityI gfp_lemma2 gfp_lemma3 | assumption)+ |
|
33 |
||
34 |
||
35 |
(*** Coinduction rules for greatest fixed points ***) |
|
36 |
||
37 |
(*weak version*) |
|
38 |
lemma coinduct: "[| a: A; A <= f(A) |] ==> a : gfp(f)" |
|
39 |
by (blast dest: gfp_upperbound) |
|
40 |
||
41 |
lemma coinduct2_lemma: |
|
42 |
"[| A <= f(A) Un gfp(f); mono(f) |] ==> |
|
43 |
A Un gfp(f) <= f(A Un gfp(f))" |
|
44 |
apply (rule subset_trans) |
|
45 |
prefer 2 |
|
46 |
apply (erule mono_Un) |
|
47 |
apply (rule subst, erule gfp_Tarski) |
|
48 |
apply (erule Un_least) |
|
49 |
apply (rule Un_upper2) |
|
50 |
done |
|
51 |
||
52 |
(*strong version, thanks to Martin Coen*) |
|
53 |
lemma coinduct2: |
|
54 |
"[| a: A; A <= f(A) Un gfp(f); mono(f) |] ==> a : gfp(f)" |
|
55 |
apply (rule coinduct) |
|
56 |
prefer 2 |
|
57 |
apply (erule coinduct2_lemma, assumption) |
|
58 |
apply blast |
|
59 |
done |
|
60 |
||
61 |
(*** Even Stronger version of coinduct [by Martin Coen] |
|
62 |
- instead of the condition A <= f(A) |
|
63 |
consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***) |
|
64 |
||
65 |
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un A Un B)" |
|
66 |
by (rule monoI) (blast dest: monoD) |
|
67 |
||
68 |
lemma coinduct3_lemma: |
|
69 |
assumes prem: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))" |
|
70 |
and mono: "mono(f)" |
|
71 |
shows "lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))" |
|
72 |
apply (rule subset_trans) |
|
73 |
apply (rule mono [THEN coinduct3_mono_lemma, THEN lfp_lemma3]) |
|
74 |
apply (rule Un_least [THEN Un_least]) |
|
75 |
apply (rule subset_refl) |
|
76 |
apply (rule prem) |
|
77 |
apply (rule mono [THEN gfp_Tarski, THEN equalityD1, THEN subset_trans]) |
|
78 |
apply (rule mono [THEN monoD]) |
|
79 |
apply (subst mono [THEN coinduct3_mono_lemma, THEN lfp_Tarski]) |
|
80 |
apply (rule Un_upper2) |
|
81 |
done |
|
82 |
||
83 |
lemma coinduct3: |
|
84 |
assumes 1: "a:A" |
|
85 |
and 2: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))" |
|
86 |
and 3: "mono(f)" |
|
87 |
shows "a : gfp(f)" |
|
88 |
apply (rule coinduct) |
|
89 |
prefer 2 |
|
90 |
apply (rule coinduct3_lemma [OF 2 3]) |
|
91 |
apply (subst lfp_Tarski [OF coinduct3_mono_lemma, OF 3]) |
|
92 |
using 1 apply blast |
|
93 |
done |
|
94 |
||
95 |
||
96 |
subsection {* Definition forms of @{text "gfp_Tarski"}, to control unfolding *} |
|
97 |
||
98 |
lemma def_gfp_Tarski: "[| h==gfp(f); mono(f) |] ==> h = f(h)" |
|
99 |
apply unfold |
|
100 |
apply (erule gfp_Tarski) |
|
101 |
done |
|
102 |
||
103 |
lemma def_coinduct: "[| h==gfp(f); a:A; A <= f(A) |] ==> a: h" |
|
104 |
apply unfold |
|
105 |
apply (erule coinduct) |
|
106 |
apply assumption |
|
107 |
done |
|
108 |
||
109 |
lemma def_coinduct2: "[| h==gfp(f); a:A; A <= f(A) Un h; mono(f) |] ==> a: h" |
|
110 |
apply unfold |
|
111 |
apply (erule coinduct2) |
|
112 |
apply assumption |
|
113 |
apply assumption |
|
114 |
done |
|
115 |
||
116 |
lemma def_coinduct3: "[| h==gfp(f); a:A; A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h" |
|
117 |
apply unfold |
|
118 |
apply (erule coinduct3) |
|
119 |
apply assumption |
|
120 |
apply assumption |
|
121 |
done |
|
122 |
||
123 |
(*Monotonicity of gfp!*) |
|
124 |
lemma gfp_mono: "[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)" |
|
125 |
apply (rule gfp_upperbound) |
|
126 |
apply (rule subset_trans) |
|
127 |
apply (rule gfp_lemma2) |
|
128 |
apply assumption |
|
129 |
apply (erule meta_spec) |
|
130 |
done |
|
17456 | 131 |
|
0 | 132 |
end |