| author | paulson <lp15@cam.ac.uk> | 
| Wed, 17 Jul 2019 16:32:06 +0100 | |
| changeset 70367 | 81b65ddac59f | 
| parent 70347 | e5cd5471c18a | 
| child 70817 | dd675800469d | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 60758 | 10 | section \<open>Rings\<close> | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 69661 | 13 | imports Groups Set Fun | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 70145 | 16 | subsection \<open>Semirings and rings\<close> | 
| 17 | ||
| 22390 | 18 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 70347 | 19 | assumes distrib_right [algebra_simps]: "(a + b) * c = a * c + b * c" | 
| 20 | assumes distrib_left [algebra_simps]: "a * (b + c) = a * b + a * c" | |
| 25152 | 21 | begin | 
| 22 | ||
| 63325 | 23 | text \<open>For the \<open>combine_numerals\<close> simproc\<close> | 
| 24 | lemma combine_common_factor: "a * e + (b * e + c) = (a + b) * e + c" | |
| 25 | by (simp add: distrib_right ac_simps) | |
| 25152 | 26 | |
| 27 | end | |
| 14504 | 28 | |
| 22390 | 29 | class mult_zero = times + zero + | 
| 25062 | 30 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 31 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 58195 | 32 | begin | 
| 33 | ||
| 63325 | 34 | lemma mult_not_zero: "a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0" | 
| 58195 | 35 | by auto | 
| 36 | ||
| 37 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 38 | |
| 58198 | 39 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 40 | ||
| 29904 | 41 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 42 | begin | 
| 14504 | 43 | |
| 25186 | 44 | subclass semiring_0 | 
| 28823 | 45 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | fix a :: 'a | 
| 63588 | 47 | have "0 * a + 0 * a = 0 * a + 0" | 
| 48 | by (simp add: distrib_right [symmetric]) | |
| 49 | then show "0 * a = 0" | |
| 50 | by (simp only: add_left_cancel) | |
| 51 | have "a * 0 + a * 0 = a * 0 + 0" | |
| 52 | by (simp add: distrib_left [symmetric]) | |
| 53 | then show "a * 0 = 0" | |
| 54 | by (simp only: add_left_cancel) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 55 | qed | 
| 14940 | 56 | |
| 25186 | 57 | end | 
| 25152 | 58 | |
| 22390 | 59 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 60 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 61 | begin | 
| 14504 | 62 | |
| 25152 | 63 | subclass semiring | 
| 28823 | 64 | proof | 
| 14738 | 65 | fix a b c :: 'a | 
| 63588 | 66 | show "(a + b) * c = a * c + b * c" | 
| 67 | by (simp add: distrib) | |
| 68 | have "a * (b + c) = (b + c) * a" | |
| 69 | by (simp add: ac_simps) | |
| 70 | also have "\<dots> = b * a + c * a" | |
| 71 | by (simp only: distrib) | |
| 72 | also have "\<dots> = a * b + a * c" | |
| 73 | by (simp add: ac_simps) | |
| 74 | finally show "a * (b + c) = a * b + a * c" | |
| 75 | by blast | |
| 14504 | 76 | qed | 
| 77 | ||
| 25152 | 78 | end | 
| 14504 | 79 | |
| 25152 | 80 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 81 | begin | |
| 82 | ||
| 27516 | 83 | subclass semiring_0 .. | 
| 25152 | 84 | |
| 85 | end | |
| 14504 | 86 | |
| 29904 | 87 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 88 | begin | 
| 14940 | 89 | |
| 27516 | 90 | subclass semiring_0_cancel .. | 
| 14940 | 91 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 92 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 93 | |
| 25186 | 94 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 95 | |
| 22390 | 96 | class zero_neq_one = zero + one + | 
| 25062 | 97 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 98 | begin | 
| 99 | ||
| 100 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 63325 | 101 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 102 | |
| 54225 | 103 | definition of_bool :: "bool \<Rightarrow> 'a" | 
| 63325 | 104 | where "of_bool p = (if p then 1 else 0)" | 
| 54225 | 105 | |
| 106 | lemma of_bool_eq [simp, code]: | |
| 107 | "of_bool False = 0" | |
| 108 | "of_bool True = 1" | |
| 109 | by (simp_all add: of_bool_def) | |
| 110 | ||
| 63325 | 111 | lemma of_bool_eq_iff: "of_bool p = of_bool q \<longleftrightarrow> p = q" | 
| 54225 | 112 | by (simp add: of_bool_def) | 
| 113 | ||
| 63325 | 114 | lemma split_of_bool [split]: "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)" | 
| 55187 | 115 | by (cases p) simp_all | 
| 116 | ||
| 63325 | 117 | lemma split_of_bool_asm: "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)" | 
| 55187 | 118 | by (cases p) simp_all | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 119 | |
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 120 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 121 | |
| 22390 | 122 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 123 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 124 | |
| 70144 | 125 | lemma of_bool_conj: | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 126 | "of_bool (P \<and> Q) = of_bool P * of_bool Q" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 127 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 128 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 129 | end | 
| 14504 | 130 | |
| 70145 | 131 | |
| 132 | subsection \<open>Abstract divisibility\<close> | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 133 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 134 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | |
| 63325 | 137 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) | 
| 138 | where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 139 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 140 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 141 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 142 | |
| 68251 | 143 | lemma dvdE [elim]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 144 | unfolding dvd_def by blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 145 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 148 | context comm_monoid_mult | 
| 25152 | 149 | begin | 
| 14738 | 150 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 151 | subclass dvd . | 
| 25152 | 152 | |
| 63325 | 153 | lemma dvd_refl [simp]: "a dvd a" | 
| 28559 | 154 | proof | 
| 155 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 156 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 157 | |
| 62349 
7c23469b5118
cleansed junk-producing interpretations for gcd/lcm on nat altogether
 haftmann parents: 
62347diff
changeset | 158 | lemma dvd_trans [trans]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 160 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 161 | proof - | 
| 63588 | 162 | from assms obtain v where "b = a * v" | 
| 70146 | 163 | by auto | 
| 63588 | 164 | moreover from assms obtain w where "c = b * w" | 
| 70146 | 165 | by auto | 
| 63588 | 166 | ultimately have "c = a * (v * w)" | 
| 167 | by (simp add: mult.assoc) | |
| 28559 | 168 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 170 | |
| 63325 | 171 | lemma subset_divisors_dvd: "{c. c dvd a} \<subseteq> {c. c dvd b} \<longleftrightarrow> a dvd b"
 | 
| 62366 | 172 | by (auto simp add: subset_iff intro: dvd_trans) | 
| 173 | ||
| 63325 | 174 | lemma strict_subset_divisors_dvd: "{c. c dvd a} \<subset> {c. c dvd b} \<longleftrightarrow> a dvd b \<and> \<not> b dvd a"
 | 
| 62366 | 175 | by (auto simp add: subset_iff intro: dvd_trans) | 
| 176 | ||
| 63325 | 177 | lemma one_dvd [simp]: "1 dvd a" | 
| 70146 | 178 | by (auto intro: dvdI) | 
| 179 | ||
| 180 | lemma dvd_mult [simp]: "a dvd (b * c)" if "a dvd c" | |
| 181 | using that by rule (auto intro: mult.left_commute dvdI) | |
| 182 | ||
| 183 | lemma dvd_mult2 [simp]: "a dvd (b * c)" if "a dvd b" | |
| 184 | using that dvd_mult [of a b c] by (simp add: ac_simps) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 185 | |
| 63325 | 186 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 187 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 188 | |
| 63325 | 189 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 190 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 191 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 192 | lemma mult_dvd_mono: | 
| 30042 | 193 | assumes "a dvd b" | 
| 194 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 195 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 196 | proof - | 
| 60758 | 197 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 198 | moreover from \<open>c dvd d\<close> obtain d' where "d = c * d'" .. | |
| 63588 | 199 | ultimately have "b * d = (a * c) * (b' * d')" | 
| 200 | by (simp add: ac_simps) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 201 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 202 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 203 | |
| 63325 | 204 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 205 | by (simp add: dvd_def mult.assoc) blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 206 | |
| 63325 | 207 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 208 | using dvd_mult_left [of b a c] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 209 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 210 | end | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 211 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 212 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 213 | begin | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 214 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 215 | subclass semiring_1 .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 216 | |
| 63325 | 217 | lemma dvd_0_left_iff [simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 70146 | 218 | by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 219 | |
| 63325 | 220 | lemma dvd_0_right [iff]: "a dvd 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 221 | proof | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 222 | show "0 = a * 0" by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 223 | qed | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 224 | |
| 63325 | 225 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 226 | by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 227 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 228 | lemma dvd_add [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 229 | assumes "a dvd b" and "a dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 230 | shows "a dvd (b + c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 231 | proof - | 
| 60758 | 232 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 233 | moreover from \<open>a dvd c\<close> obtain c' where "c = a * c'" .. | |
| 63588 | 234 | ultimately have "b + c = a * (b' + c')" | 
| 235 | by (simp add: distrib_left) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 236 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 237 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 238 | |
| 25152 | 239 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 240 | |
| 29904 | 241 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 242 | + zero_neq_one + monoid_mult | |
| 25267 | 243 | begin | 
| 14940 | 244 | |
| 27516 | 245 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 246 | |
| 27516 | 247 | subclass semiring_1 .. | 
| 25267 | 248 | |
| 249 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 250 | |
| 63325 | 251 | class comm_semiring_1_cancel = | 
| 252 | comm_semiring + cancel_comm_monoid_add + zero_neq_one + comm_monoid_mult + | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 253 | assumes right_diff_distrib' [algebra_simps]: "a * (b - c) = a * b - a * c" | 
| 25267 | 254 | begin | 
| 14738 | 255 | |
| 27516 | 256 | subclass semiring_1_cancel .. | 
| 257 | subclass comm_semiring_0_cancel .. | |
| 258 | subclass comm_semiring_1 .. | |
| 25267 | 259 | |
| 63325 | 260 | lemma left_diff_distrib' [algebra_simps]: "(b - c) * a = b * a - c * a" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 261 | by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 262 | |
| 63325 | 263 | lemma dvd_add_times_triv_left_iff [simp]: "a dvd c * a + b \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 264 | proof - | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 265 | have "a dvd a * c + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 266 | proof | 
| 63325 | 267 | assume ?Q | 
| 268 | then show ?P by simp | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 269 | next | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 270 | assume ?P | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 271 | then obtain d where "a * c + b = a * d" .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 272 | then have "a * c + b - a * c = a * d - a * c" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 273 | then have "b = a * d - a * c" by simp | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 274 | then have "b = a * (d - c)" by (simp add: algebra_simps) | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 275 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 276 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 277 | then show "a dvd c * a + b \<longleftrightarrow> a dvd b" by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 278 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 279 | |
| 63325 | 280 | lemma dvd_add_times_triv_right_iff [simp]: "a dvd b + c * a \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 281 | using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 282 | |
| 63325 | 283 | lemma dvd_add_triv_left_iff [simp]: "a dvd a + b \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 284 | using dvd_add_times_triv_left_iff [of a 1 b] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 285 | |
| 63325 | 286 | lemma dvd_add_triv_right_iff [simp]: "a dvd b + a \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 287 | using dvd_add_times_triv_right_iff [of a b 1] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 288 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 289 | lemma dvd_add_right_iff: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 290 | assumes "a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 291 | shows "a dvd b + c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 292 | proof | 
| 63325 | 293 | assume ?P | 
| 294 | then obtain d where "b + c = a * d" .. | |
| 60758 | 295 | moreover from \<open>a dvd b\<close> obtain e where "b = a * e" .. | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 296 | ultimately have "a * e + c = a * d" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 297 | then have "a * e + c - a * e = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 298 | then have "c = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 299 | then have "c = a * (d - e)" by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 300 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 301 | next | 
| 63325 | 302 | assume ?Q | 
| 303 | with assms show ?P by simp | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 304 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 305 | |
| 63325 | 306 | lemma dvd_add_left_iff: "a dvd c \<Longrightarrow> a dvd b + c \<longleftrightarrow> a dvd b" | 
| 307 | using dvd_add_right_iff [of a c b] by (simp add: ac_simps) | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 308 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 309 | end | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 310 | |
| 22390 | 311 | class ring = semiring + ab_group_add | 
| 25267 | 312 | begin | 
| 25152 | 313 | |
| 27516 | 314 | subclass semiring_0_cancel .. | 
| 25152 | 315 | |
| 60758 | 316 | text \<open>Distribution rules\<close> | 
| 25152 | 317 | |
| 318 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 63325 | 319 | by (rule minus_unique) (simp add: distrib_right [symmetric]) | 
| 25152 | 320 | |
| 321 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 63325 | 322 | by (rule minus_unique) (simp add: distrib_left [symmetric]) | 
| 25152 | 323 | |
| 63325 | 324 | text \<open>Extract signs from products\<close> | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 325 | lemmas mult_minus_left [simp] = minus_mult_left [symmetric] | 
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 326 | lemmas mult_minus_right [simp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 327 | |
| 25152 | 328 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 63325 | 329 | by simp | 
| 25152 | 330 | |
| 331 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 63325 | 332 | by simp | 
| 29667 | 333 | |
| 63325 | 334 | lemma right_diff_distrib [algebra_simps]: "a * (b - c) = a * b - a * c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 335 | using distrib_left [of a b "-c "] by simp | 
| 29667 | 336 | |
| 63325 | 337 | lemma left_diff_distrib [algebra_simps]: "(a - b) * c = a * c - b * c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 338 | using distrib_right [of a "- b" c] by simp | 
| 25152 | 339 | |
| 63325 | 340 | lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 341 | |
| 63325 | 342 | lemma eq_add_iff1: "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | 
| 343 | by (simp add: algebra_simps) | |
| 25230 | 344 | |
| 63325 | 345 | lemma eq_add_iff2: "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | 
| 346 | by (simp add: algebra_simps) | |
| 25230 | 347 | |
| 25152 | 348 | end | 
| 349 | ||
| 63325 | 350 | lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 351 | |
| 22390 | 352 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 353 | begin | 
| 14738 | 354 | |
| 27516 | 355 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 356 | subclass comm_semiring_0_cancel .. | 
| 25267 | 357 | |
| 63325 | 358 | lemma square_diff_square_factored: "x * x - y * y = (x + y) * (x - y)" | 
| 44350 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 359 | by (simp add: algebra_simps) | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 360 | |
| 25267 | 361 | end | 
| 14738 | 362 | |
| 22390 | 363 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 364 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 365 | |
| 27516 | 366 | subclass semiring_1_cancel .. | 
| 25267 | 367 | |
| 63325 | 368 | lemma square_diff_one_factored: "x * x - 1 = (x + 1) * (x - 1)" | 
| 44346 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 369 | by (simp add: algebra_simps) | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 370 | |
| 25267 | 371 | end | 
| 25152 | 372 | |
| 22390 | 373 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 25267 | 374 | begin | 
| 14738 | 375 | |
| 27516 | 376 | subclass ring_1 .. | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 377 | subclass comm_semiring_1_cancel | 
| 70146 | 378 | by standard (simp add: algebra_simps) | 
| 58647 | 379 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 380 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 381 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 382 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 383 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 384 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 385 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 386 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 387 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 388 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 389 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 390 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 391 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 392 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 393 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 394 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 395 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 396 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 397 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 398 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 399 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 400 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 401 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 402 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 403 | |
| 63325 | 404 | lemma dvd_diff [simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 405 | using dvd_add [of x y "- z"] by simp | 
| 29409 | 406 | |
| 25267 | 407 | end | 
| 25152 | 408 | |
| 70145 | 409 | |
| 410 | subsection \<open>Towards integral domains\<close> | |
| 411 | ||
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 412 | class semiring_no_zero_divisors = semiring_0 + | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 413 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 25230 | 414 | begin | 
| 415 | ||
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 416 | lemma divisors_zero: | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 417 | assumes "a * b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 418 | shows "a = 0 \<or> b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 419 | proof (rule classical) | 
| 63325 | 420 | assume "\<not> ?thesis" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 421 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 422 | with no_zero_divisors have "a * b \<noteq> 0" by blast | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 423 | with assms show ?thesis by simp | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 424 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 425 | |
| 63325 | 426 | lemma mult_eq_0_iff [simp]: "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | 
| 25230 | 427 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 428 | case False | 
| 429 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 25230 | 430 | then show ?thesis using no_zero_divisors by simp | 
| 431 | next | |
| 63325 | 432 | case True | 
| 433 | then show ?thesis by auto | |
| 25230 | 434 | qed | 
| 435 | ||
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 436 | end | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 437 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 438 | class semiring_1_no_zero_divisors = semiring_1 + semiring_no_zero_divisors | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 439 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 440 | class semiring_no_zero_divisors_cancel = semiring_no_zero_divisors + | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 441 | assumes mult_cancel_right [simp]: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 442 | and mult_cancel_left [simp]: "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 443 | begin | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 444 | |
| 63325 | 445 | lemma mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 446 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 447 | |
| 63325 | 448 | lemma mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 449 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 450 | |
| 25230 | 451 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 452 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 453 | class ring_no_zero_divisors = ring + semiring_no_zero_divisors | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 454 | begin | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 455 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 456 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 457 | proof | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 458 | fix a b c | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 459 | have "a * c = b * c \<longleftrightarrow> (a - b) * c = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 460 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 461 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 462 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 463 | finally show "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 464 | have "c * a = c * b \<longleftrightarrow> c * (a - b) = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 465 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 466 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 467 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 468 | finally show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 469 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 470 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 471 | end | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 472 | |
| 23544 | 473 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 474 | begin | 
| 475 | ||
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 476 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 477 | |
| 63325 | 478 | lemma square_eq_1_iff: "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 479 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 480 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 481 | by (simp add: algebra_simps) | 
| 63325 | 482 | then have "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 483 | by simp | 
| 63325 | 484 | then show ?thesis | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 485 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 486 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 487 | |
| 63325 | 488 | lemma mult_cancel_right1 [simp]: "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | 
| 489 | using mult_cancel_right [of 1 c b] by auto | |
| 26274 | 490 | |
| 63325 | 491 | lemma mult_cancel_right2 [simp]: "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | 
| 492 | using mult_cancel_right [of a c 1] by simp | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 493 | |
| 63325 | 494 | lemma mult_cancel_left1 [simp]: "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | 
| 495 | using mult_cancel_left [of c 1 b] by force | |
| 26274 | 496 | |
| 63325 | 497 | lemma mult_cancel_left2 [simp]: "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | 
| 498 | using mult_cancel_left [of c a 1] by simp | |
| 26274 | 499 | |
| 500 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 501 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 502 | class semidom = comm_semiring_1_cancel + semiring_no_zero_divisors | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 503 | begin | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 504 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 505 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 506 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 507 | end | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 508 | |
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 509 | class idom = comm_ring_1 + semiring_no_zero_divisors | 
| 25186 | 510 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 511 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 512 | subclass semidom .. | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 513 | |
| 27516 | 514 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 515 | |
| 70146 | 516 | lemma dvd_mult_cancel_right [simp]: | 
| 517 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 518 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 519 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 70146 | 520 | by (auto simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 521 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 70146 | 522 | by auto | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 523 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 524 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 525 | |
| 70146 | 526 | lemma dvd_mult_cancel_left [simp]: | 
| 527 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | |
| 528 | using dvd_mult_cancel_right [of a c b] by (simp add: ac_simps) | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 529 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 530 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> a = b \<or> a = - b" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 531 | proof | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 532 | assume "a * a = b * b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 533 | then have "(a - b) * (a + b) = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 534 | by (simp add: algebra_simps) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 535 | then show "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 536 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 537 | next | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 538 | assume "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 539 | then show "a * a = b * b" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 540 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 541 | |
| 25186 | 542 | end | 
| 25152 | 543 | |
| 64290 | 544 | class idom_abs_sgn = idom + abs + sgn + | 
| 545 | assumes sgn_mult_abs: "sgn a * \<bar>a\<bar> = a" | |
| 546 | and sgn_sgn [simp]: "sgn (sgn a) = sgn a" | |
| 547 | and abs_abs [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 548 | and abs_0 [simp]: "\<bar>0\<bar> = 0" | |
| 549 | and sgn_0 [simp]: "sgn 0 = 0" | |
| 550 | and sgn_1 [simp]: "sgn 1 = 1" | |
| 551 | and sgn_minus_1: "sgn (- 1) = - 1" | |
| 552 | and sgn_mult: "sgn (a * b) = sgn a * sgn b" | |
| 553 | begin | |
| 554 | ||
| 555 | lemma sgn_eq_0_iff: | |
| 556 | "sgn a = 0 \<longleftrightarrow> a = 0" | |
| 557 | proof - | |
| 558 |   { assume "sgn a = 0"
 | |
| 559 | then have "sgn a * \<bar>a\<bar> = 0" | |
| 560 | by simp | |
| 561 | then have "a = 0" | |
| 562 | by (simp add: sgn_mult_abs) | |
| 563 | } then show ?thesis | |
| 564 | by auto | |
| 565 | qed | |
| 566 | ||
| 567 | lemma abs_eq_0_iff: | |
| 568 | "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 569 | proof - | |
| 570 |   { assume "\<bar>a\<bar> = 0"
 | |
| 571 | then have "sgn a * \<bar>a\<bar> = 0" | |
| 572 | by simp | |
| 573 | then have "a = 0" | |
| 574 | by (simp add: sgn_mult_abs) | |
| 575 | } then show ?thesis | |
| 576 | by auto | |
| 577 | qed | |
| 578 | ||
| 579 | lemma abs_mult_sgn: | |
| 580 | "\<bar>a\<bar> * sgn a = a" | |
| 581 | using sgn_mult_abs [of a] by (simp add: ac_simps) | |
| 582 | ||
| 583 | lemma abs_1 [simp]: | |
| 584 | "\<bar>1\<bar> = 1" | |
| 585 | using sgn_mult_abs [of 1] by simp | |
| 586 | ||
| 587 | lemma sgn_abs [simp]: | |
| 588 | "\<bar>sgn a\<bar> = of_bool (a \<noteq> 0)" | |
| 589 | using sgn_mult_abs [of "sgn a"] mult_cancel_left [of "sgn a" "\<bar>sgn a\<bar>" 1] | |
| 590 | by (auto simp add: sgn_eq_0_iff) | |
| 591 | ||
| 592 | lemma abs_sgn [simp]: | |
| 593 | "sgn \<bar>a\<bar> = of_bool (a \<noteq> 0)" | |
| 594 | using sgn_mult_abs [of "\<bar>a\<bar>"] mult_cancel_right [of "sgn \<bar>a\<bar>" "\<bar>a\<bar>" 1] | |
| 595 | by (auto simp add: abs_eq_0_iff) | |
| 596 | ||
| 597 | lemma abs_mult: | |
| 598 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | |
| 599 | proof (cases "a = 0 \<or> b = 0") | |
| 600 | case True | |
| 601 | then show ?thesis | |
| 602 | by auto | |
| 603 | next | |
| 604 | case False | |
| 605 | then have *: "sgn (a * b) \<noteq> 0" | |
| 606 | by (simp add: sgn_eq_0_iff) | |
| 607 | from abs_mult_sgn [of "a * b"] abs_mult_sgn [of a] abs_mult_sgn [of b] | |
| 608 | have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * sgn a * \<bar>b\<bar> * sgn b" | |
| 609 | by (simp add: ac_simps) | |
| 610 | then have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * \<bar>b\<bar> * sgn (a * b)" | |
| 611 | by (simp add: sgn_mult ac_simps) | |
| 612 | with * show ?thesis | |
| 613 | by simp | |
| 614 | qed | |
| 615 | ||
| 616 | lemma sgn_minus [simp]: | |
| 617 | "sgn (- a) = - sgn a" | |
| 618 | proof - | |
| 619 | from sgn_minus_1 have "sgn (- 1 * a) = - 1 * sgn a" | |
| 620 | by (simp only: sgn_mult) | |
| 621 | then show ?thesis | |
| 622 | by simp | |
| 623 | qed | |
| 624 | ||
| 625 | lemma abs_minus [simp]: | |
| 626 | "\<bar>- a\<bar> = \<bar>a\<bar>" | |
| 627 | proof - | |
| 628 | have [simp]: "\<bar>- 1\<bar> = 1" | |
| 629 | using sgn_mult_abs [of "- 1"] by simp | |
| 630 | then have "\<bar>- 1 * a\<bar> = 1 * \<bar>a\<bar>" | |
| 631 | by (simp only: abs_mult) | |
| 632 | then show ?thesis | |
| 633 | by simp | |
| 634 | qed | |
| 635 | ||
| 636 | end | |
| 637 | ||
| 70145 | 638 | |
| 639 | subsection \<open>(Partial) Division\<close> | |
| 63950 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 640 | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 641 | class divide = | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 642 | fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 643 | |
| 69593 | 644 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close> | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 645 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 646 | context semiring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 647 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 648 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 649 | lemma [field_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 650 | shows distrib_left_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b + c) = a * b + a * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 651 | and distrib_right_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a + b) * c = a * c + b * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 652 | by (rule distrib_left distrib_right)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 653 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 654 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 655 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 656 | context ring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 657 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 658 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 659 | lemma [field_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 660 | shows left_diff_distrib_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a - b) * c = a * c - b * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 661 | and right_diff_distrib_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b - c) = a * b - a * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 662 | by (rule left_diff_distrib right_diff_distrib)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 663 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 664 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 665 | |
| 69593 | 666 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a::divide \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close> | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 667 | |
| 63950 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 668 | text \<open>Algebraic classes with division\<close> | 
| 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 669 | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 670 | class semidom_divide = semidom + divide + | 
| 64240 | 671 | assumes nonzero_mult_div_cancel_right [simp]: "b \<noteq> 0 \<Longrightarrow> (a * b) div b = a" | 
| 672 | assumes div_by_0 [simp]: "a div 0 = 0" | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 673 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 674 | |
| 64240 | 675 | lemma nonzero_mult_div_cancel_left [simp]: "a \<noteq> 0 \<Longrightarrow> (a * b) div a = b" | 
| 676 | using nonzero_mult_div_cancel_right [of a b] by (simp add: ac_simps) | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 677 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 678 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 679 | proof | 
| 63325 | 680 | show *: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" for a b c | 
| 681 | proof (cases "c = 0") | |
| 682 | case True | |
| 683 | then show ?thesis by simp | |
| 684 | next | |
| 685 | case False | |
| 63588 | 686 | have "a = b" if "a * c = b * c" | 
| 687 | proof - | |
| 688 | from that have "a * c div c = b * c div c" | |
| 63325 | 689 | by simp | 
| 63588 | 690 | with False show ?thesis | 
| 63325 | 691 | by simp | 
| 63588 | 692 | qed | 
| 63325 | 693 | then show ?thesis by auto | 
| 694 | qed | |
| 695 | show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" for a b c | |
| 696 | using * [of a c b] by (simp add: ac_simps) | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 697 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 698 | |
| 63325 | 699 | lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1" | 
| 64240 | 700 | using nonzero_mult_div_cancel_left [of a 1] by simp | 
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 701 | |
| 64240 | 702 | lemma div_0 [simp]: "0 div a = 0" | 
| 60570 | 703 | proof (cases "a = 0") | 
| 63325 | 704 | case True | 
| 705 | then show ?thesis by simp | |
| 60570 | 706 | next | 
| 63325 | 707 | case False | 
| 708 | then have "a * 0 div a = 0" | |
| 64240 | 709 | by (rule nonzero_mult_div_cancel_left) | 
| 60570 | 710 | then show ?thesis by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 711 | qed | 
| 60570 | 712 | |
| 64240 | 713 | lemma div_by_1 [simp]: "a div 1 = a" | 
| 714 | using nonzero_mult_div_cancel_left [of 1 a] by simp | |
| 60690 | 715 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 716 | lemma dvd_div_eq_0_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 717 | assumes "b dvd a" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 718 | shows "a div b = 0 \<longleftrightarrow> a = 0" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 719 | using assms by (elim dvdE, cases "b = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 720 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 721 | lemma dvd_div_eq_cancel: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 722 | "a div c = b div c \<Longrightarrow> c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 723 | by (elim dvdE, cases "c = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 724 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 725 | lemma dvd_div_eq_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 726 | "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a div c = b div c \<longleftrightarrow> a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 727 | by (elim dvdE, cases "c = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 728 | |
| 69661 | 729 | lemma inj_on_mult: | 
| 730 | "inj_on ((*) a) A" if "a \<noteq> 0" | |
| 731 | proof (rule inj_onI) | |
| 732 | fix b c | |
| 733 | assume "a * b = a * c" | |
| 734 | then have "a * b div a = a * c div a" | |
| 735 | by (simp only:) | |
| 736 | with that show "b = c" | |
| 737 | by simp | |
| 738 | qed | |
| 739 | ||
| 60867 | 740 | end | 
| 741 | ||
| 742 | class idom_divide = idom + semidom_divide | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 743 | begin | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 744 | |
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 745 | lemma dvd_neg_div: | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 746 | assumes "b dvd a" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 747 | shows "- a div b = - (a div b)" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 748 | proof (cases "b = 0") | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 749 | case True | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 750 | then show ?thesis by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 751 | next | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 752 | case False | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 753 | from assms obtain c where "a = b * c" .. | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 754 | then have "- a div b = (b * - c) div b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 755 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 756 | from False also have "\<dots> = - c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 757 | by (rule nonzero_mult_div_cancel_left) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 758 | with False \<open>a = b * c\<close> show ?thesis | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 759 | by simp | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 760 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 761 | |
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 762 | lemma dvd_div_neg: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 763 | assumes "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 764 | shows "a div - b = - (a div b)" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 765 | proof (cases "b = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 766 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 767 | then show ?thesis by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 768 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 769 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 770 | then have "- b \<noteq> 0" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 771 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 772 | from assms obtain c where "a = b * c" .. | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 773 | then have "a div - b = (- b * - c) div - b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 774 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 775 | from \<open>- b \<noteq> 0\<close> also have "\<dots> = - c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 776 | by (rule nonzero_mult_div_cancel_left) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 777 | with False \<open>a = b * c\<close> show ?thesis | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 778 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 779 | qed | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 780 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 781 | end | 
| 60867 | 782 | |
| 783 | class algebraic_semidom = semidom_divide | |
| 784 | begin | |
| 785 | ||
| 786 | text \<open> | |
| 69593 | 787 | Class \<^class>\<open>algebraic_semidom\<close> enriches a integral domain | 
| 60867 | 788 | by notions from algebra, like units in a ring. | 
| 789 | It is a separate class to avoid spoiling fields with notions | |
| 790 | which are degenerated there. | |
| 791 | \<close> | |
| 792 | ||
| 60690 | 793 | lemma dvd_times_left_cancel_iff [simp]: | 
| 794 | assumes "a \<noteq> 0" | |
| 63588 | 795 | shows "a * b dvd a * c \<longleftrightarrow> b dvd c" | 
| 796 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 60690 | 797 | proof | 
| 63588 | 798 | assume ?lhs | 
| 63325 | 799 | then obtain d where "a * c = a * b * d" .. | 
| 60690 | 800 | with assms have "c = b * d" by (simp add: ac_simps) | 
| 63588 | 801 | then show ?rhs .. | 
| 60690 | 802 | next | 
| 63588 | 803 | assume ?rhs | 
| 63325 | 804 | then obtain d where "c = b * d" .. | 
| 60690 | 805 | then have "a * c = a * b * d" by (simp add: ac_simps) | 
| 63588 | 806 | then show ?lhs .. | 
| 60690 | 807 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 808 | |
| 60690 | 809 | lemma dvd_times_right_cancel_iff [simp]: | 
| 810 | assumes "a \<noteq> 0" | |
| 63588 | 811 | shows "b * a dvd c * a \<longleftrightarrow> b dvd c" | 
| 63325 | 812 | using dvd_times_left_cancel_iff [of a b c] assms by (simp add: ac_simps) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 813 | |
| 60690 | 814 | lemma div_dvd_iff_mult: | 
| 815 | assumes "b \<noteq> 0" and "b dvd a" | |
| 816 | shows "a div b dvd c \<longleftrightarrow> a dvd c * b" | |
| 817 | proof - | |
| 818 | from \<open>b dvd a\<close> obtain d where "a = b * d" .. | |
| 819 | with \<open>b \<noteq> 0\<close> show ?thesis by (simp add: ac_simps) | |
| 820 | qed | |
| 821 | ||
| 822 | lemma dvd_div_iff_mult: | |
| 823 | assumes "c \<noteq> 0" and "c dvd b" | |
| 824 | shows "a dvd b div c \<longleftrightarrow> a * c dvd b" | |
| 825 | proof - | |
| 826 | from \<open>c dvd b\<close> obtain d where "b = c * d" .. | |
| 827 | with \<open>c \<noteq> 0\<close> show ?thesis by (simp add: mult.commute [of a]) | |
| 828 | qed | |
| 829 | ||
| 60867 | 830 | lemma div_dvd_div [simp]: | 
| 831 | assumes "a dvd b" and "a dvd c" | |
| 832 | shows "b div a dvd c div a \<longleftrightarrow> b dvd c" | |
| 833 | proof (cases "a = 0") | |
| 63325 | 834 | case True | 
| 835 | with assms show ?thesis by simp | |
| 60867 | 836 | next | 
| 837 | case False | |
| 838 | moreover from assms obtain k l where "b = a * k" and "c = a * l" | |
| 70146 | 839 | by blast | 
| 60867 | 840 | ultimately show ?thesis by simp | 
| 841 | qed | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 842 | |
| 60867 | 843 | lemma div_add [simp]: | 
| 844 | assumes "c dvd a" and "c dvd b" | |
| 845 | shows "(a + b) div c = a div c + b div c" | |
| 846 | proof (cases "c = 0") | |
| 63325 | 847 | case True | 
| 848 | then show ?thesis by simp | |
| 60867 | 849 | next | 
| 850 | case False | |
| 851 | moreover from assms obtain k l where "a = c * k" and "b = c * l" | |
| 70146 | 852 | by blast | 
| 60867 | 853 | moreover have "c * k + c * l = c * (k + l)" | 
| 854 | by (simp add: algebra_simps) | |
| 855 | ultimately show ?thesis | |
| 856 | by simp | |
| 857 | qed | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 858 | |
| 60867 | 859 | lemma div_mult_div_if_dvd: | 
| 860 | assumes "b dvd a" and "d dvd c" | |
| 861 | shows "(a div b) * (c div d) = (a * c) div (b * d)" | |
| 862 | proof (cases "b = 0 \<or> c = 0") | |
| 63325 | 863 | case True | 
| 864 | with assms show ?thesis by auto | |
| 60867 | 865 | next | 
| 866 | case False | |
| 867 | moreover from assms obtain k l where "a = b * k" and "c = d * l" | |
| 70146 | 868 | by blast | 
| 60867 | 869 | moreover have "b * k * (d * l) div (b * d) = (b * d) * (k * l) div (b * d)" | 
| 870 | by (simp add: ac_simps) | |
| 871 | ultimately show ?thesis by simp | |
| 872 | qed | |
| 873 | ||
| 874 | lemma dvd_div_eq_mult: | |
| 875 | assumes "a \<noteq> 0" and "a dvd b" | |
| 876 | shows "b div a = c \<longleftrightarrow> b = c * a" | |
| 63588 | 877 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60867 | 878 | proof | 
| 63588 | 879 | assume ?rhs | 
| 880 | then show ?lhs by (simp add: assms) | |
| 60867 | 881 | next | 
| 63588 | 882 | assume ?lhs | 
| 60867 | 883 | then have "b div a * a = c * a" by simp | 
| 63325 | 884 | moreover from assms have "b div a * a = b" | 
| 70146 | 885 | by (auto simp add: ac_simps) | 
| 63588 | 886 | ultimately show ?rhs by simp | 
| 60867 | 887 | qed | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 888 | |
| 63325 | 889 | lemma dvd_div_mult_self [simp]: "a dvd b \<Longrightarrow> b div a * a = b" | 
| 70146 | 890 | by (cases "a = 0") (auto simp add: ac_simps) | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 891 | |
| 63325 | 892 | lemma dvd_mult_div_cancel [simp]: "a dvd b \<Longrightarrow> a * (b div a) = b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 893 | using dvd_div_mult_self [of a b] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 894 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 895 | lemma div_mult_swap: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 896 | assumes "c dvd b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 897 | shows "a * (b div c) = (a * b) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 898 | proof (cases "c = 0") | 
| 63325 | 899 | case True | 
| 900 | then show ?thesis by simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 901 | next | 
| 63325 | 902 | case False | 
| 903 | from assms obtain d where "b = c * d" .. | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 904 | moreover from False have "a * divide (d * c) c = ((a * d) * c) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 905 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 906 | ultimately show ?thesis by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 907 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 908 | |
| 63325 | 909 | lemma dvd_div_mult: "c dvd b \<Longrightarrow> b div c * a = (b * a) div c" | 
| 910 | using div_mult_swap [of c b a] by (simp add: ac_simps) | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 911 | |
| 60570 | 912 | lemma dvd_div_mult2_eq: | 
| 913 | assumes "b * c dvd a" | |
| 914 | shows "a div (b * c) = a div b div c" | |
| 63325 | 915 | proof - | 
| 916 | from assms obtain k where "a = b * c * k" .. | |
| 60570 | 917 | then show ?thesis | 
| 918 | by (cases "b = 0 \<or> c = 0") (auto, simp add: ac_simps) | |
| 919 | qed | |
| 920 | ||
| 60867 | 921 | lemma dvd_div_div_eq_mult: | 
| 922 | assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d" | |
| 63588 | 923 | shows "b div a = d div c \<longleftrightarrow> b * c = a * d" | 
| 924 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 60867 | 925 | proof - | 
| 926 | from assms have "a * c \<noteq> 0" by simp | |
| 63588 | 927 | then have "?lhs \<longleftrightarrow> b div a * (a * c) = d div c * (a * c)" | 
| 60867 | 928 | by simp | 
| 929 | also have "\<dots> \<longleftrightarrow> (a * (b div a)) * c = (c * (d div c)) * a" | |
| 930 | by (simp add: ac_simps) | |
| 931 | also have "\<dots> \<longleftrightarrow> (a * b div a) * c = (c * d div c) * a" | |
| 932 | using assms by (simp add: div_mult_swap) | |
| 63588 | 933 | also have "\<dots> \<longleftrightarrow> ?rhs" | 
| 60867 | 934 | using assms by (simp add: ac_simps) | 
| 935 | finally show ?thesis . | |
| 936 | qed | |
| 937 | ||
| 63359 | 938 | lemma dvd_mult_imp_div: | 
| 939 | assumes "a * c dvd b" | |
| 940 | shows "a dvd b div c" | |
| 941 | proof (cases "c = 0") | |
| 942 | case True then show ?thesis by simp | |
| 943 | next | |
| 944 | case False | |
| 945 | from \<open>a * c dvd b\<close> obtain d where "b = a * c * d" .. | |
| 63588 | 946 | with False show ?thesis | 
| 947 | by (simp add: mult.commute [of a] mult.assoc) | |
| 63359 | 948 | qed | 
| 949 | ||
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 950 | lemma div_div_eq_right: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 951 | assumes "c dvd b" "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 952 | shows "a div (b div c) = a div b * c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 953 | proof (cases "c = 0 \<or> b = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 954 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 955 | then show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 956 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 957 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 958 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 959 | from assms obtain r s where "b = c * r" and "a = c * r * s" | 
| 70146 | 960 | by blast | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 961 | moreover with False have "r \<noteq> 0" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 962 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 963 | ultimately show ?thesis using False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 964 | by simp (simp add: mult.commute [of _ r] mult.assoc mult.commute [of c]) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 965 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 966 | |
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 967 | lemma div_div_div_same: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 968 | assumes "d dvd b" "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 969 | shows "(a div d) div (b div d) = a div b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 970 | proof (cases "b = 0 \<or> d = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 971 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 972 | with assms show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 973 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 974 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 975 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 976 | from assms obtain r s | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 977 | where "a = d * r * s" and "b = d * r" | 
| 70146 | 978 | by blast | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 979 | with False show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 980 | by simp (simp add: ac_simps) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 981 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 982 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 983 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 984 | text \<open>Units: invertible elements in a ring\<close> | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 985 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 986 | abbreviation is_unit :: "'a \<Rightarrow> bool" | 
| 63325 | 987 | where "is_unit a \<equiv> a dvd 1" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 988 | |
| 63325 | 989 | lemma not_is_unit_0 [simp]: "\<not> is_unit 0" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 990 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 991 | |
| 63325 | 992 | lemma unit_imp_dvd [dest]: "is_unit b \<Longrightarrow> b dvd a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 993 | by (rule dvd_trans [of _ 1]) simp_all | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 994 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 995 | lemma unit_dvdE: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 996 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 997 | obtains c where "a \<noteq> 0" and "b = a * c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 998 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 999 | from assms have "a dvd b" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1000 | then obtain c where "b = a * c" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1001 | moreover from assms have "a \<noteq> 0" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1002 | ultimately show thesis using that by blast | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1003 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1004 | |
| 63325 | 1005 | lemma dvd_unit_imp_unit: "a dvd b \<Longrightarrow> is_unit b \<Longrightarrow> is_unit a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1006 | by (rule dvd_trans) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1007 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1008 | lemma unit_div_1_unit [simp, intro]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1009 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1010 | shows "is_unit (1 div a)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1011 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1012 | from assms have "1 = 1 div a * a" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1013 | then show "is_unit (1 div a)" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1014 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1015 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1016 | lemma is_unitE [elim?]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1017 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1018 | obtains b where "a \<noteq> 0" and "b \<noteq> 0" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1019 | and "is_unit b" and "1 div a = b" and "1 div b = a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1020 | and "a * b = 1" and "c div a = c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1021 | proof (rule that) | 
| 63040 | 1022 | define b where "b = 1 div a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1023 | then show "1 div a = b" by simp | 
| 63325 | 1024 | from assms b_def show "is_unit b" by simp | 
| 1025 | with assms show "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 1026 | from assms b_def show "a * b = 1" by simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1027 | then have "1 = a * b" .. | 
| 60758 | 1028 | with b_def \<open>b \<noteq> 0\<close> show "1 div b = a" by simp | 
| 63325 | 1029 | from assms have "a dvd c" .. | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1030 | then obtain d where "c = a * d" .. | 
| 60758 | 1031 | with \<open>a \<noteq> 0\<close> \<open>a * b = 1\<close> show "c div a = c * b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1032 | by (simp add: mult.assoc mult.left_commute [of a]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1033 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1034 | |
| 63325 | 1035 | lemma unit_prod [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a * b)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1036 | by (subst mult_1_left [of 1, symmetric]) (rule mult_dvd_mono) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1037 | |
| 63325 | 1038 | lemma is_unit_mult_iff: "is_unit (a * b) \<longleftrightarrow> is_unit a \<and> is_unit b" | 
| 62366 | 1039 | by (auto dest: dvd_mult_left dvd_mult_right) | 
| 1040 | ||
| 63325 | 1041 | lemma unit_div [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a div b)" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1042 | by (erule is_unitE [of b a]) (simp add: ac_simps unit_prod) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1043 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1044 | lemma mult_unit_dvd_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1045 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1046 | shows "a * b dvd c \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1047 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1048 | assume "a * b dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1049 | with assms show "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1050 | by (simp add: dvd_mult_left) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1051 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1052 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1053 | then obtain k where "c = a * k" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1054 | with assms have "c = (a * b) * (1 div b * k)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1055 | by (simp add: mult_ac) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1056 | then show "a * b dvd c" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1057 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1058 | |
| 63924 | 1059 | lemma mult_unit_dvd_iff': "is_unit a \<Longrightarrow> (a * b) dvd c \<longleftrightarrow> b dvd c" | 
| 1060 | using mult_unit_dvd_iff [of a b c] by (simp add: ac_simps) | |
| 1061 | ||
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1062 | lemma dvd_mult_unit_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1063 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1064 | shows "a dvd c * b \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1065 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1066 | assume "a dvd c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1067 | with assms have "c * b dvd c * (b * (1 div b))" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1068 | by (subst mult_assoc [symmetric]) simp | 
| 63325 | 1069 | also from assms have "b * (1 div b) = 1" | 
| 1070 | by (rule is_unitE) simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1071 | finally have "c * b dvd c" by simp | 
| 60758 | 1072 | with \<open>a dvd c * b\<close> show "a dvd c" by (rule dvd_trans) | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1073 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1074 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1075 | then show "a dvd c * b" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1076 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1077 | |
| 63924 | 1078 | lemma dvd_mult_unit_iff': "is_unit b \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd c" | 
| 1079 | using dvd_mult_unit_iff [of b a c] by (simp add: ac_simps) | |
| 1080 | ||
| 63325 | 1081 | lemma div_unit_dvd_iff: "is_unit b \<Longrightarrow> a div b dvd c \<longleftrightarrow> a dvd c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1082 | by (erule is_unitE [of _ a]) (auto simp add: mult_unit_dvd_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1083 | |
| 63325 | 1084 | lemma dvd_div_unit_iff: "is_unit b \<Longrightarrow> a dvd c div b \<longleftrightarrow> a dvd c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1085 | by (erule is_unitE [of _ c]) (simp add: dvd_mult_unit_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1086 | |
| 63924 | 1087 | lemmas unit_dvd_iff = mult_unit_dvd_iff mult_unit_dvd_iff' | 
| 1088 | dvd_mult_unit_iff dvd_mult_unit_iff' | |
| 1089 | div_unit_dvd_iff dvd_div_unit_iff (* FIXME consider named_theorems *) | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1090 | |
| 63325 | 1091 | lemma unit_mult_div_div [simp]: "is_unit a \<Longrightarrow> b * (1 div a) = b div a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1092 | by (erule is_unitE [of _ b]) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1093 | |
| 63325 | 1094 | lemma unit_div_mult_self [simp]: "is_unit a \<Longrightarrow> b div a * a = b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1095 | by (rule dvd_div_mult_self) auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1096 | |
| 63325 | 1097 | lemma unit_div_1_div_1 [simp]: "is_unit a \<Longrightarrow> 1 div (1 div a) = a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1098 | by (erule is_unitE) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1099 | |
| 63325 | 1100 | lemma unit_div_mult_swap: "is_unit c \<Longrightarrow> a * (b div c) = (a * b) div c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1101 | by (erule unit_dvdE [of _ b]) (simp add: mult.left_commute [of _ c]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1102 | |
| 63325 | 1103 | lemma unit_div_commute: "is_unit b \<Longrightarrow> (a div b) * c = (a * c) div b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1104 | using unit_div_mult_swap [of b c a] by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1105 | |
| 63325 | 1106 | lemma unit_eq_div1: "is_unit b \<Longrightarrow> a div b = c \<longleftrightarrow> a = c * b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1107 | by (auto elim: is_unitE) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1108 | |
| 63325 | 1109 | lemma unit_eq_div2: "is_unit b \<Longrightarrow> a = c div b \<longleftrightarrow> a * b = c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1110 | using unit_eq_div1 [of b c a] by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1111 | |
| 63325 | 1112 | lemma unit_mult_left_cancel: "is_unit a \<Longrightarrow> a * b = a * c \<longleftrightarrow> b = c" | 
| 1113 | using mult_cancel_left [of a b c] by auto | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1114 | |
| 63325 | 1115 | lemma unit_mult_right_cancel: "is_unit a \<Longrightarrow> b * a = c * a \<longleftrightarrow> b = c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1116 | using unit_mult_left_cancel [of a b c] by (auto simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1117 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1118 | lemma unit_div_cancel: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1119 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1120 | shows "b div a = c div a \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1121 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1122 | from assms have "is_unit (1 div a)" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1123 | then have "b * (1 div a) = c * (1 div a) \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1124 | by (rule unit_mult_right_cancel) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1125 | with assms show ?thesis by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1126 | qed | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1127 | |
| 60570 | 1128 | lemma is_unit_div_mult2_eq: | 
| 1129 | assumes "is_unit b" and "is_unit c" | |
| 1130 | shows "a div (b * c) = a div b div c" | |
| 1131 | proof - | |
| 63325 | 1132 | from assms have "is_unit (b * c)" | 
| 1133 | by (simp add: unit_prod) | |
| 60570 | 1134 | then have "b * c dvd a" | 
| 1135 | by (rule unit_imp_dvd) | |
| 1136 | then show ?thesis | |
| 1137 | by (rule dvd_div_mult2_eq) | |
| 1138 | qed | |
| 1139 | ||
| 64240 | 1140 | lemma is_unit_div_mult_cancel_left: | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1141 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1142 | shows "a div (a * b) = 1 div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1143 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1144 | from assms have "a div (a * b) = a div a div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1145 | by (simp add: mult_unit_dvd_iff dvd_div_mult2_eq) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1146 | with assms show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1147 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1148 | |
| 64240 | 1149 | lemma is_unit_div_mult_cancel_right: | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1150 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1151 | shows "a div (b * a) = 1 div b" | 
| 64240 | 1152 | using assms is_unit_div_mult_cancel_left [of a b] by (simp add: ac_simps) | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1153 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1154 | lemma unit_div_eq_0_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1155 | assumes "is_unit b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1156 | shows "a div b = 0 \<longleftrightarrow> a = 0" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1157 | by (rule dvd_div_eq_0_iff) (insert assms, auto) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1158 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1159 | lemma div_mult_unit2: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1160 | "is_unit c \<Longrightarrow> b dvd a \<Longrightarrow> a div (b * c) = a div b div c" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1161 | by (rule dvd_div_mult2_eq) (simp_all add: mult_unit_dvd_iff) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1162 | |
| 67051 | 1163 | |
| 1164 | text \<open>Coprimality\<close> | |
| 1165 | ||
| 1166 | definition coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 1167 | where "coprime a b \<longleftrightarrow> (\<forall>c. c dvd a \<longrightarrow> c dvd b \<longrightarrow> is_unit c)" | |
| 1168 | ||
| 1169 | lemma coprimeI: | |
| 1170 | assumes "\<And>c. c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> is_unit c" | |
| 1171 | shows "coprime a b" | |
| 1172 | using assms by (auto simp: coprime_def) | |
| 1173 | ||
| 1174 | lemma not_coprimeI: | |
| 1175 | assumes "c dvd a" and "c dvd b" and "\<not> is_unit c" | |
| 1176 | shows "\<not> coprime a b" | |
| 1177 | using assms by (auto simp: coprime_def) | |
| 1178 | ||
| 1179 | lemma coprime_common_divisor: | |
| 1180 | "is_unit c" if "coprime a b" and "c dvd a" and "c dvd b" | |
| 1181 | using that by (auto simp: coprime_def) | |
| 1182 | ||
| 1183 | lemma not_coprimeE: | |
| 1184 | assumes "\<not> coprime a b" | |
| 1185 | obtains c where "c dvd a" and "c dvd b" and "\<not> is_unit c" | |
| 1186 | using assms by (auto simp: coprime_def) | |
| 1187 | ||
| 1188 | lemma coprime_imp_coprime: | |
| 1189 | "coprime a b" if "coprime c d" | |
| 1190 | and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd c" | |
| 1191 | and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd d" | |
| 1192 | proof (rule coprimeI) | |
| 1193 | fix e | |
| 1194 | assume "e dvd a" and "e dvd b" | |
| 1195 | with that have "e dvd c" and "e dvd d" | |
| 1196 | by (auto intro: dvd_trans) | |
| 1197 | with \<open>coprime c d\<close> show "is_unit e" | |
| 1198 | by (rule coprime_common_divisor) | |
| 1199 | qed | |
| 1200 | ||
| 1201 | lemma coprime_divisors: | |
| 1202 | "coprime a b" if "a dvd c" "b dvd d" and "coprime c d" | |
| 1203 | using \<open>coprime c d\<close> proof (rule coprime_imp_coprime) | |
| 1204 | fix e | |
| 1205 | assume "e dvd a" then show "e dvd c" | |
| 1206 | using \<open>a dvd c\<close> by (rule dvd_trans) | |
| 1207 | assume "e dvd b" then show "e dvd d" | |
| 1208 | using \<open>b dvd d\<close> by (rule dvd_trans) | |
| 1209 | qed | |
| 1210 | ||
| 1211 | lemma coprime_self [simp]: | |
| 1212 | "coprime a a \<longleftrightarrow> is_unit a" (is "?P \<longleftrightarrow> ?Q") | |
| 1213 | proof | |
| 1214 | assume ?P | |
| 1215 | then show ?Q | |
| 1216 | by (rule coprime_common_divisor) simp_all | |
| 1217 | next | |
| 1218 | assume ?Q | |
| 1219 | show ?P | |
| 1220 | by (rule coprimeI) (erule dvd_unit_imp_unit, rule \<open>?Q\<close>) | |
| 1221 | qed | |
| 1222 | ||
| 1223 | lemma coprime_commute [ac_simps]: | |
| 1224 | "coprime b a \<longleftrightarrow> coprime a b" | |
| 1225 | unfolding coprime_def by auto | |
| 1226 | ||
| 1227 | lemma is_unit_left_imp_coprime: | |
| 1228 | "coprime a b" if "is_unit a" | |
| 1229 | proof (rule coprimeI) | |
| 1230 | fix c | |
| 1231 | assume "c dvd a" | |
| 1232 | with that show "is_unit c" | |
| 1233 | by (auto intro: dvd_unit_imp_unit) | |
| 1234 | qed | |
| 1235 | ||
| 1236 | lemma is_unit_right_imp_coprime: | |
| 1237 | "coprime a b" if "is_unit b" | |
| 1238 | using that is_unit_left_imp_coprime [of b a] by (simp add: ac_simps) | |
| 1239 | ||
| 1240 | lemma coprime_1_left [simp]: | |
| 1241 | "coprime 1 a" | |
| 1242 | by (rule coprimeI) | |
| 1243 | ||
| 1244 | lemma coprime_1_right [simp]: | |
| 1245 | "coprime a 1" | |
| 1246 | by (rule coprimeI) | |
| 1247 | ||
| 1248 | lemma coprime_0_left_iff [simp]: | |
| 1249 | "coprime 0 a \<longleftrightarrow> is_unit a" | |
| 1250 | by (auto intro: coprimeI dvd_unit_imp_unit coprime_common_divisor [of 0 a a]) | |
| 1251 | ||
| 1252 | lemma coprime_0_right_iff [simp]: | |
| 1253 | "coprime a 0 \<longleftrightarrow> is_unit a" | |
| 1254 | using coprime_0_left_iff [of a] by (simp add: ac_simps) | |
| 1255 | ||
| 1256 | lemma coprime_mult_self_left_iff [simp]: | |
| 1257 | "coprime (c * a) (c * b) \<longleftrightarrow> is_unit c \<and> coprime a b" | |
| 1258 | by (auto intro: coprime_common_divisor) | |
| 1259 | (rule coprimeI, auto intro: coprime_common_divisor simp add: dvd_mult_unit_iff')+ | |
| 1260 | ||
| 1261 | lemma coprime_mult_self_right_iff [simp]: | |
| 1262 | "coprime (a * c) (b * c) \<longleftrightarrow> is_unit c \<and> coprime a b" | |
| 1263 | using coprime_mult_self_left_iff [of c a b] by (simp add: ac_simps) | |
| 1264 | ||
| 67234 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1265 | lemma coprime_absorb_left: | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1266 | assumes "x dvd y" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1267 | shows "coprime x y \<longleftrightarrow> is_unit x" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1268 | using assms coprime_common_divisor is_unit_left_imp_coprime by auto | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1269 | |
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1270 | lemma coprime_absorb_right: | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1271 | assumes "y dvd x" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1272 | shows "coprime x y \<longleftrightarrow> is_unit y" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1273 | using assms coprime_common_divisor is_unit_right_imp_coprime by auto | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1274 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1275 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1276 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1277 | class unit_factor = | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1278 | fixes unit_factor :: "'a \<Rightarrow> 'a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1279 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1280 | class semidom_divide_unit_factor = semidom_divide + unit_factor + | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1281 | assumes unit_factor_0 [simp]: "unit_factor 0 = 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1282 | and is_unit_unit_factor: "a dvd 1 \<Longrightarrow> unit_factor a = a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1283 | and unit_factor_is_unit: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd 1" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1284 | and unit_factor_mult: "unit_factor (a * b) = unit_factor a * unit_factor b" | 
| 67226 | 1285 | \<comment> \<open>This fine-grained hierarchy will later on allow lean normalization of polynomials\<close> | 
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1286 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1287 | class normalization_semidom = algebraic_semidom + semidom_divide_unit_factor + | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1288 | fixes normalize :: "'a \<Rightarrow> 'a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1289 | assumes unit_factor_mult_normalize [simp]: "unit_factor a * normalize a = a" | 
| 63588 | 1290 | and normalize_0 [simp]: "normalize 0 = 0" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1291 | begin | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1292 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1293 | text \<open> | 
| 69593 | 1294 | Class \<^class>\<open>normalization_semidom\<close> cultivates the idea that each integral | 
| 63588 | 1295 | domain can be split into equivalence classes whose representants are | 
| 69593 | 1296 | associated, i.e. divide each other. \<^const>\<open>normalize\<close> specifies a canonical | 
| 63588 | 1297 | representant for each equivalence class. The rationale behind this is that | 
| 1298 | it is easier to reason about equality than equivalences, hence we prefer to | |
| 1299 | think about equality of normalized values rather than associated elements. | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1300 | \<close> | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1301 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1302 | declare unit_factor_is_unit [iff] | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1303 | |
| 63325 | 1304 | lemma unit_factor_dvd [simp]: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1305 | by (rule unit_imp_dvd) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1306 | |
| 63325 | 1307 | lemma unit_factor_self [simp]: "unit_factor a dvd a" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1308 | by (cases "a = 0") simp_all | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1309 | |
| 63325 | 1310 | lemma normalize_mult_unit_factor [simp]: "normalize a * unit_factor a = a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1311 | using unit_factor_mult_normalize [of a] by (simp add: ac_simps) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1312 | |
| 63325 | 1313 | lemma normalize_eq_0_iff [simp]: "normalize a = 0 \<longleftrightarrow> a = 0" | 
| 63588 | 1314 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1315 | proof | 
| 63588 | 1316 | assume ?lhs | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1317 | moreover have "unit_factor a * normalize a = a" by simp | 
| 63588 | 1318 | ultimately show ?rhs by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1319 | next | 
| 63588 | 1320 | assume ?rhs | 
| 1321 | then show ?lhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1322 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1323 | |
| 63325 | 1324 | lemma unit_factor_eq_0_iff [simp]: "unit_factor a = 0 \<longleftrightarrow> a = 0" | 
| 63588 | 1325 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1326 | proof | 
| 63588 | 1327 | assume ?lhs | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1328 | moreover have "unit_factor a * normalize a = a" by simp | 
| 63588 | 1329 | ultimately show ?rhs by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1330 | next | 
| 63588 | 1331 | assume ?rhs | 
| 1332 | then show ?lhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1333 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1334 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1335 | lemma div_unit_factor [simp]: "a div unit_factor a = normalize a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1336 | proof (cases "a = 0") | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1337 | case True | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1338 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1339 | next | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1340 | case False | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1341 | then have "unit_factor a \<noteq> 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1342 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1343 | with nonzero_mult_div_cancel_left | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1344 | have "unit_factor a * normalize a div unit_factor a = normalize a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1345 | by blast | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1346 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1347 | qed | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1348 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1349 | lemma normalize_div [simp]: "normalize a div a = 1 div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1350 | proof (cases "a = 0") | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1351 | case True | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1352 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1353 | next | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1354 | case False | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1355 | have "normalize a div a = normalize a div (unit_factor a * normalize a)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1356 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1357 | also have "\<dots> = 1 div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1358 | using False by (subst is_unit_div_mult_cancel_right) simp_all | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1359 | finally show ?thesis . | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1360 | qed | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1361 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1362 | lemma is_unit_normalize: | 
| 63325 | 1363 | assumes "is_unit a" | 
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1364 | shows "normalize a = 1" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1365 | proof - | 
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1366 | from assms have "unit_factor a = a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1367 | by (rule is_unit_unit_factor) | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1368 | moreover from assms have "a \<noteq> 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1369 | by auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1370 | moreover have "normalize a = a div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1371 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1372 | ultimately show ?thesis | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1373 | by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1374 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1375 | |
| 63325 | 1376 | lemma unit_factor_1 [simp]: "unit_factor 1 = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1377 | by (rule is_unit_unit_factor) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1378 | |
| 63325 | 1379 | lemma normalize_1 [simp]: "normalize 1 = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1380 | by (rule is_unit_normalize) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1381 | |
| 63325 | 1382 | lemma normalize_1_iff: "normalize a = 1 \<longleftrightarrow> is_unit a" | 
| 63588 | 1383 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1384 | proof | 
| 63588 | 1385 | assume ?rhs | 
| 1386 | then show ?lhs by (rule is_unit_normalize) | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1387 | next | 
| 63588 | 1388 | assume ?lhs | 
| 1389 | then have "unit_factor a * normalize a = unit_factor a * 1" | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1390 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1391 | then have "unit_factor a = a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1392 | by simp | 
| 63588 | 1393 | moreover | 
| 1394 | from \<open>?lhs\<close> have "a \<noteq> 0" by auto | |
| 1395 | then have "is_unit (unit_factor a)" by simp | |
| 1396 | ultimately show ?rhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1397 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1398 | |
| 63325 | 1399 | lemma div_normalize [simp]: "a div normalize a = unit_factor a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1400 | proof (cases "a = 0") | 
| 63325 | 1401 | case True | 
| 1402 | then show ?thesis by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1403 | next | 
| 63325 | 1404 | case False | 
| 1405 | then have "normalize a \<noteq> 0" by simp | |
| 64240 | 1406 | with nonzero_mult_div_cancel_right | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1407 | have "unit_factor a * normalize a div normalize a = unit_factor a" by blast | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1408 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1409 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1410 | |
| 63325 | 1411 | lemma mult_one_div_unit_factor [simp]: "a * (1 div unit_factor b) = a div unit_factor b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1412 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1413 | |
| 63947 | 1414 | lemma inv_unit_factor_eq_0_iff [simp]: | 
| 1415 | "1 div unit_factor a = 0 \<longleftrightarrow> a = 0" | |
| 1416 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1417 | proof | |
| 1418 | assume ?lhs | |
| 1419 | then have "a * (1 div unit_factor a) = a * 0" | |
| 1420 | by simp | |
| 1421 | then show ?rhs | |
| 1422 | by simp | |
| 1423 | next | |
| 1424 | assume ?rhs | |
| 1425 | then show ?lhs by simp | |
| 1426 | qed | |
| 1427 | ||
| 63325 | 1428 | lemma normalize_mult: "normalize (a * b) = normalize a * normalize b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1429 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1430 | case True | 
| 1431 | then show ?thesis by auto | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1432 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1433 | case False | 
| 63588 | 1434 | have "unit_factor (a * b) * normalize (a * b) = a * b" | 
| 1435 | by (rule unit_factor_mult_normalize) | |
| 63325 | 1436 | then have "normalize (a * b) = a * b div unit_factor (a * b)" | 
| 1437 | by simp | |
| 1438 | also have "\<dots> = a * b div unit_factor (b * a)" | |
| 1439 | by (simp add: ac_simps) | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1440 | also have "\<dots> = a * b div unit_factor b div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1441 | using False by (simp add: unit_factor_mult is_unit_div_mult2_eq [symmetric]) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1442 | also have "\<dots> = a * (b div unit_factor b) div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1443 | using False by (subst unit_div_mult_swap) simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1444 | also have "\<dots> = normalize a * normalize b" | 
| 63325 | 1445 | using False | 
| 1446 | by (simp add: mult.commute [of a] mult.commute [of "normalize a"] unit_div_mult_swap [symmetric]) | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1447 | finally show ?thesis . | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1448 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1449 | |
| 63325 | 1450 | lemma unit_factor_idem [simp]: "unit_factor (unit_factor a) = unit_factor a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1451 | by (cases "a = 0") (auto intro: is_unit_unit_factor) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1452 | |
| 63325 | 1453 | lemma normalize_unit_factor [simp]: "a \<noteq> 0 \<Longrightarrow> normalize (unit_factor a) = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1454 | by (rule is_unit_normalize) simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1455 | |
| 63325 | 1456 | lemma normalize_idem [simp]: "normalize (normalize a) = normalize a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1457 | proof (cases "a = 0") | 
| 63325 | 1458 | case True | 
| 1459 | then show ?thesis by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1460 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1461 | case False | 
| 63325 | 1462 | have "normalize a = normalize (unit_factor a * normalize a)" | 
| 1463 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1464 | also have "\<dots> = normalize (unit_factor a) * normalize (normalize a)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1465 | by (simp only: normalize_mult) | 
| 63325 | 1466 | finally show ?thesis | 
| 1467 | using False by simp_all | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1468 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1469 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1470 | lemma unit_factor_normalize [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1471 | assumes "a \<noteq> 0" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1472 | shows "unit_factor (normalize a) = 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1473 | proof - | 
| 63325 | 1474 | from assms have *: "normalize a \<noteq> 0" | 
| 1475 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1476 | have "unit_factor (normalize a) * normalize (normalize a) = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1477 | by (simp only: unit_factor_mult_normalize) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1478 | then have "unit_factor (normalize a) * normalize a = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1479 | by simp | 
| 63325 | 1480 | with * have "unit_factor (normalize a) * normalize a div normalize a = normalize a div normalize a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1481 | by simp | 
| 63325 | 1482 | with * show ?thesis | 
| 1483 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1484 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1485 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1486 | lemma dvd_unit_factor_div: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1487 | assumes "b dvd a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1488 | shows "unit_factor (a div b) = unit_factor a div unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1489 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1490 | from assms have "a = a div b * b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1491 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1492 | then have "unit_factor a = unit_factor (a div b * b)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1493 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1494 | then show ?thesis | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1495 | by (cases "b = 0") (simp_all add: unit_factor_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1496 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1497 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1498 | lemma dvd_normalize_div: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1499 | assumes "b dvd a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1500 | shows "normalize (a div b) = normalize a div normalize b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1501 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1502 | from assms have "a = a div b * b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1503 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1504 | then have "normalize a = normalize (a div b * b)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1505 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1506 | then show ?thesis | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1507 | by (cases "b = 0") (simp_all add: normalize_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1508 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1509 | |
| 63325 | 1510 | lemma normalize_dvd_iff [simp]: "normalize a dvd b \<longleftrightarrow> a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1511 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1512 | have "normalize a dvd b \<longleftrightarrow> unit_factor a * normalize a dvd b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1513 | using mult_unit_dvd_iff [of "unit_factor a" "normalize a" b] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1514 | by (cases "a = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1515 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1516 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1517 | |
| 63325 | 1518 | lemma dvd_normalize_iff [simp]: "a dvd normalize b \<longleftrightarrow> a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1519 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1520 | have "a dvd normalize b \<longleftrightarrow> a dvd normalize b * unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1521 | using dvd_mult_unit_iff [of "unit_factor b" a "normalize b"] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1522 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1523 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1524 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1525 | |
| 65811 | 1526 | lemma normalize_idem_imp_unit_factor_eq: | 
| 1527 | assumes "normalize a = a" | |
| 1528 | shows "unit_factor a = of_bool (a \<noteq> 0)" | |
| 1529 | proof (cases "a = 0") | |
| 1530 | case True | |
| 1531 | then show ?thesis | |
| 1532 | by simp | |
| 1533 | next | |
| 1534 | case False | |
| 1535 | then show ?thesis | |
| 1536 | using assms unit_factor_normalize [of a] by simp | |
| 1537 | qed | |
| 1538 | ||
| 1539 | lemma normalize_idem_imp_is_unit_iff: | |
| 1540 | assumes "normalize a = a" | |
| 1541 | shows "is_unit a \<longleftrightarrow> a = 1" | |
| 1542 | using assms by (cases "a = 0") (auto dest: is_unit_normalize) | |
| 1543 | ||
| 67051 | 1544 | lemma coprime_normalize_left_iff [simp]: | 
| 1545 | "coprime (normalize a) b \<longleftrightarrow> coprime a b" | |
| 1546 | by (rule; rule coprimeI) (auto intro: coprime_common_divisor) | |
| 1547 | ||
| 1548 | lemma coprime_normalize_right_iff [simp]: | |
| 1549 | "coprime a (normalize b) \<longleftrightarrow> coprime a b" | |
| 1550 | using coprime_normalize_left_iff [of b a] by (simp add: ac_simps) | |
| 1551 | ||
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1552 | text \<open> | 
| 63588 | 1553 | We avoid an explicit definition of associated elements but prefer explicit | 
| 69593 | 1554 | normalisation instead. In theory we could define an abbreviation like \<^prop>\<open>associated a b \<longleftrightarrow> normalize a = normalize b\<close> but this is counterproductive | 
| 63588 | 1555 | without suggestive infix syntax, which we do not want to sacrifice for this | 
| 1556 | purpose here. | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1557 | \<close> | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1558 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1559 | lemma associatedI: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1560 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1561 | shows "normalize a = normalize b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1562 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1563 | case True | 
| 1564 | with assms show ?thesis by auto | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1565 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1566 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1567 | from \<open>a dvd b\<close> obtain c where b: "b = a * c" .. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1568 | moreover from \<open>b dvd a\<close> obtain d where a: "a = b * d" .. | 
| 63325 | 1569 | ultimately have "b * 1 = b * (c * d)" | 
| 1570 | by (simp add: ac_simps) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1571 | with False have "1 = c * d" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1572 | unfolding mult_cancel_left by simp | 
| 63325 | 1573 | then have "is_unit c" and "is_unit d" | 
| 1574 | by auto | |
| 1575 | with a b show ?thesis | |
| 1576 | by (simp add: normalize_mult is_unit_normalize) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1577 | qed | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1578 | |
| 63325 | 1579 | lemma associatedD1: "normalize a = normalize b \<Longrightarrow> a dvd b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1580 | using dvd_normalize_iff [of _ b, symmetric] normalize_dvd_iff [of a _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1581 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1582 | |
| 63325 | 1583 | lemma associatedD2: "normalize a = normalize b \<Longrightarrow> b dvd a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1584 | using dvd_normalize_iff [of _ a, symmetric] normalize_dvd_iff [of b _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1585 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1586 | |
| 63325 | 1587 | lemma associated_unit: "normalize a = normalize b \<Longrightarrow> is_unit a \<Longrightarrow> is_unit b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1588 | using dvd_unit_imp_unit by (auto dest!: associatedD1 associatedD2) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1589 | |
| 63325 | 1590 | lemma associated_iff_dvd: "normalize a = normalize b \<longleftrightarrow> a dvd b \<and> b dvd a" | 
| 63588 | 1591 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1592 | proof | 
| 63588 | 1593 | assume ?rhs | 
| 1594 | then show ?lhs by (auto intro!: associatedI) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1595 | next | 
| 63588 | 1596 | assume ?lhs | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1597 | then have "unit_factor a * normalize a = unit_factor a * normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1598 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1599 | then have *: "normalize b * unit_factor a = a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1600 | by (simp add: ac_simps) | 
| 63588 | 1601 | show ?rhs | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1602 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1603 | case True | 
| 63588 | 1604 | with \<open>?lhs\<close> show ?thesis by auto | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1605 | next | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1606 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1607 | then have "b dvd normalize b * unit_factor a" and "normalize b * unit_factor a dvd b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1608 | by (simp_all add: mult_unit_dvd_iff dvd_mult_unit_iff) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1609 | with * show ?thesis by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1610 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1611 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1612 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1613 | lemma associated_eqI: | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1614 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1615 | assumes "normalize a = a" and "normalize b = b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1616 | shows "a = b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1617 | proof - | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1618 | from assms have "normalize a = normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1619 | unfolding associated_iff_dvd by simp | 
| 63588 | 1620 | with \<open>normalize a = a\<close> have "a = normalize b" | 
| 1621 | by simp | |
| 1622 | with \<open>normalize b = b\<close> show "a = b" | |
| 1623 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1624 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1625 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1626 | lemma normalize_unit_factor_eqI: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1627 | assumes "normalize a = normalize b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1628 | and "unit_factor a = unit_factor b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1629 | shows "a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1630 | proof - | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1631 | from assms have "unit_factor a * normalize a = unit_factor b * normalize b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1632 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1633 | then show ?thesis | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1634 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1635 | qed | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1636 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1637 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1638 | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1639 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1640 | text \<open>Syntactic division remainder operator\<close> | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1641 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1642 | class modulo = dvd + divide + | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1643 | fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70) | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1644 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1645 | text \<open>Arbitrary quotient and remainder partitions\<close> | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1646 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1647 | class semiring_modulo = comm_semiring_1_cancel + divide + modulo + | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1648 | assumes div_mult_mod_eq: "a div b * b + a mod b = a" | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1649 | begin | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1650 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1651 | lemma mod_div_decomp: | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1652 | fixes a b | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1653 | obtains q r where "q = a div b" and "r = a mod b" | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1654 | and "a = q * b + r" | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1655 | proof - | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1656 | from div_mult_mod_eq have "a = a div b * b + a mod b" by simp | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1657 | moreover have "a div b = a div b" .. | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1658 | moreover have "a mod b = a mod b" .. | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1659 | note that ultimately show thesis by blast | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1660 | qed | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1661 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1662 | lemma mult_div_mod_eq: "b * (a div b) + a mod b = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1663 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1664 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1665 | lemma mod_div_mult_eq: "a mod b + a div b * b = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1666 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1667 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1668 | lemma mod_mult_div_eq: "a mod b + b * (a div b) = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1669 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1670 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1671 | lemma minus_div_mult_eq_mod: "a - a div b * b = a mod b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1672 | by (rule add_implies_diff [symmetric]) (fact mod_div_mult_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1673 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1674 | lemma minus_mult_div_eq_mod: "a - b * (a div b) = a mod b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1675 | by (rule add_implies_diff [symmetric]) (fact mod_mult_div_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1676 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1677 | lemma minus_mod_eq_div_mult: "a - a mod b = a div b * b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1678 | by (rule add_implies_diff [symmetric]) (fact div_mult_mod_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1679 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1680 | lemma minus_mod_eq_mult_div: "a - a mod b = b * (a div b)" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1681 | by (rule add_implies_diff [symmetric]) (fact mult_div_mod_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1682 | |
| 68253 | 1683 | lemma [nitpick_unfold]: | 
| 1684 | "a mod b = a - a div b * b" | |
| 1685 | by (fact minus_div_mult_eq_mod [symmetric]) | |
| 1686 | ||
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1687 | end | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1688 | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1689 | |
| 70145 | 1690 | subsection \<open>Quotient and remainder in integral domains\<close> | 
| 66807 | 1691 | |
| 1692 | class semidom_modulo = algebraic_semidom + semiring_modulo | |
| 1693 | begin | |
| 1694 | ||
| 1695 | lemma mod_0 [simp]: "0 mod a = 0" | |
| 1696 | using div_mult_mod_eq [of 0 a] by simp | |
| 1697 | ||
| 1698 | lemma mod_by_0 [simp]: "a mod 0 = a" | |
| 1699 | using div_mult_mod_eq [of a 0] by simp | |
| 1700 | ||
| 1701 | lemma mod_by_1 [simp]: | |
| 1702 | "a mod 1 = 0" | |
| 1703 | proof - | |
| 1704 | from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp | |
| 1705 | then have "a + a mod 1 = a + 0" by simp | |
| 1706 | then show ?thesis by (rule add_left_imp_eq) | |
| 1707 | qed | |
| 1708 | ||
| 1709 | lemma mod_self [simp]: | |
| 1710 | "a mod a = 0" | |
| 1711 | using div_mult_mod_eq [of a a] by simp | |
| 1712 | ||
| 1713 | lemma dvd_imp_mod_0 [simp]: | |
| 67084 | 1714 | "b mod a = 0" if "a dvd b" | 
| 1715 | using that minus_div_mult_eq_mod [of b a] by simp | |
| 66807 | 1716 | |
| 68252 
8b284d24f434
automatic classical rule to derive a dvd b from b mod a = 0
 haftmann parents: 
68251diff
changeset | 1717 | lemma mod_0_imp_dvd [dest!]: | 
| 67084 | 1718 | "b dvd a" if "a mod b = 0" | 
| 66807 | 1719 | proof - | 
| 67084 | 1720 | have "b dvd (a div b) * b" by simp | 
| 66807 | 1721 | also have "(a div b) * b = a" | 
| 67084 | 1722 | using div_mult_mod_eq [of a b] by (simp add: that) | 
| 66807 | 1723 | finally show ?thesis . | 
| 1724 | qed | |
| 1725 | ||
| 1726 | lemma mod_eq_0_iff_dvd: | |
| 1727 | "a mod b = 0 \<longleftrightarrow> b dvd a" | |
| 1728 | by (auto intro: mod_0_imp_dvd) | |
| 1729 | ||
| 1730 | lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]: | |
| 1731 | "a dvd b \<longleftrightarrow> b mod a = 0" | |
| 1732 | by (simp add: mod_eq_0_iff_dvd) | |
| 1733 | ||
| 1734 | lemma dvd_mod_iff: | |
| 1735 | assumes "c dvd b" | |
| 1736 | shows "c dvd a mod b \<longleftrightarrow> c dvd a" | |
| 1737 | proof - | |
| 1738 | from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" | |
| 1739 | by (simp add: dvd_add_right_iff) | |
| 1740 | also have "(a div b) * b + a mod b = a" | |
| 1741 | using div_mult_mod_eq [of a b] by simp | |
| 1742 | finally show ?thesis . | |
| 1743 | qed | |
| 1744 | ||
| 1745 | lemma dvd_mod_imp_dvd: | |
| 1746 | assumes "c dvd a mod b" and "c dvd b" | |
| 1747 | shows "c dvd a" | |
| 1748 | using assms dvd_mod_iff [of c b a] by simp | |
| 1749 | ||
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1750 | lemma dvd_minus_mod [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1751 | "b dvd a - a mod b" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1752 | by (simp add: minus_mod_eq_div_mult) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1753 | |
| 66810 | 1754 | lemma cancel_div_mod_rules: | 
| 1755 | "((a div b) * b + a mod b) + c = a + c" | |
| 1756 | "(b * (a div b) + a mod b) + c = a + c" | |
| 1757 | by (simp_all add: div_mult_mod_eq mult_div_mod_eq) | |
| 1758 | ||
| 66807 | 1759 | end | 
| 1760 | ||
| 70145 | 1761 | class idom_modulo = idom + semidom_modulo | 
| 1762 | begin | |
| 1763 | ||
| 1764 | subclass idom_divide .. | |
| 1765 | ||
| 1766 | lemma div_diff [simp]: | |
| 1767 | "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c" | |
| 1768 | using div_add [of _ _ "- b"] by (simp add: dvd_neg_div) | |
| 1769 | ||
| 1770 | end | |
| 1771 | ||
| 1772 | ||
| 1773 | subsection \<open>Interlude: basic tool support for algebraic and arithmetic calculations\<close> | |
| 66810 | 1774 | |
| 1775 | named_theorems arith "arith facts -- only ground formulas" | |
| 69605 | 1776 | ML_file \<open>Tools/arith_data.ML\<close> | 
| 1777 | ||
| 1778 | ML_file \<open>~~/src/Provers/Arith/cancel_div_mod.ML\<close> | |
| 66810 | 1779 | |
| 1780 | ML \<open> | |
| 1781 | structure Cancel_Div_Mod_Ring = Cancel_Div_Mod | |
| 1782 | ( | |
| 69593 | 1783 | val div_name = \<^const_name>\<open>divide\<close>; | 
| 1784 | val mod_name = \<^const_name>\<open>modulo\<close>; | |
| 66810 | 1785 | val mk_binop = HOLogic.mk_binop; | 
| 1786 | val mk_sum = Arith_Data.mk_sum; | |
| 1787 | val dest_sum = Arith_Data.dest_sum; | |
| 1788 | ||
| 1789 |   val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
 | |
| 1790 | ||
| 1791 | val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac | |
| 1792 |     @{thms diff_conv_add_uminus add_0_left add_0_right ac_simps})
 | |
| 1793 | ) | |
| 1794 | \<close> | |
| 1795 | ||
| 1796 | simproc_setup cancel_div_mod_int ("(a::'a::semidom_modulo) + b") =
 | |
| 1797 | \<open>K Cancel_Div_Mod_Ring.proc\<close> | |
| 1798 | ||
| 70145 | 1799 | |
| 1800 | subsection \<open>Ordered semirings and rings\<close> | |
| 1801 | ||
| 1802 | text \<open> | |
| 1803 | The theory of partially ordered rings is taken from the books: | |
| 1804 | \<^item> \<^emph>\<open>Lattice Theory\<close> by Garret Birkhoff, American Mathematical Society, 1979 | |
| 1805 | \<^item> \<^emph>\<open>Partially Ordered Algebraic Systems\<close>, Pergamon Press, 1963 | |
| 1806 | ||
| 1807 | Most of the used notions can also be looked up in | |
| 1808 | \<^item> \<^url>\<open>http://www.mathworld.com\<close> by Eric Weisstein et. al. | |
| 1809 | \<^item> \<^emph>\<open>Algebra I\<close> by van der Waerden, Springer | |
| 1810 | \<close> | |
| 66807 | 1811 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1812 | class ordered_semiring = semiring + ordered_comm_monoid_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1813 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1814 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 1815 | begin | 
| 1816 | ||
| 63325 | 1817 | lemma mult_mono: "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 1818 | apply (erule (1) mult_right_mono [THEN order_trans]) | |
| 1819 | apply (erule (1) mult_left_mono) | |
| 1820 | done | |
| 25230 | 1821 | |
| 63325 | 1822 | lemma mult_mono': "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 63588 | 1823 | by (rule mult_mono) (fast intro: order_trans)+ | 
| 25230 | 1824 | |
| 1825 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1826 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1827 | class ordered_semiring_0 = semiring_0 + ordered_semiring | 
| 25267 | 1828 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1829 | |
| 63325 | 1830 | lemma mult_nonneg_nonneg [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 1831 | using mult_left_mono [of 0 b a] by simp | |
| 25230 | 1832 | |
| 1833 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 63325 | 1834 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1835 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1836 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 63325 | 1837 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1838 | |
| 63588 | 1839 | text \<open>Legacy -- use @{thm [source] mult_nonpos_nonneg}.\<close>
 | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1840 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 63588 | 1841 | by (drule mult_right_mono [of b 0]) auto | 
| 25230 | 1842 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1843 | lemma split_mult_neg_le: "(0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 63325 | 1844 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 1845 | |
| 1846 | end | |
| 1847 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1848 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1849 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1850 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1851 | subclass semiring_0_cancel .. | 
| 63588 | 1852 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1853 | subclass ordered_semiring_0 .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1854 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1855 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1856 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1857 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 1858 | begin | 
| 25230 | 1859 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1860 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1861 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1862 | subclass ordered_cancel_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1863 | |
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63359diff
changeset | 1864 | subclass ordered_ab_semigroup_monoid_add_imp_le .. | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63359diff
changeset | 1865 | |
| 63325 | 1866 | lemma mult_left_less_imp_less: "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | 
| 1867 | by (force simp add: mult_left_mono not_le [symmetric]) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1868 | |
| 63325 | 1869 | lemma mult_right_less_imp_less: "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | 
| 1870 | by (force simp add: mult_right_mono not_le [symmetric]) | |
| 23521 | 1871 | |
| 25186 | 1872 | end | 
| 25152 | 1873 | |
| 66937 | 1874 | class zero_less_one = order + zero + one + | 
| 1875 | assumes zero_less_one [simp]: "0 < 1" | |
| 1876 | ||
| 1877 | class linordered_semiring_1 = linordered_semiring + semiring_1 + zero_less_one | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1878 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1879 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1880 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1881 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1882 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1883 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1884 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1885 | by (simp add: add_mono mult_left_mono) | 
| 63325 | 1886 | with assms show ?thesis | 
| 1887 | unfolding distrib_right[symmetric] by simp | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1888 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1889 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1890 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1891 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1892 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 1893 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 1894 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 1895 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 1896 | |
| 27516 | 1897 | subclass semiring_0_cancel .. | 
| 14940 | 1898 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1899 | subclass linordered_semiring | 
| 28823 | 1900 | proof | 
| 23550 | 1901 | fix a b c :: 'a | 
| 63588 | 1902 | assume *: "a \<le> b" "0 \<le> c" | 
| 1903 | then show "c * a \<le> c * b" | |
| 25186 | 1904 | unfolding le_less | 
| 1905 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 63588 | 1906 | from * show "a * c \<le> b * c" | 
| 25152 | 1907 | unfolding le_less | 
| 25186 | 1908 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 1909 | qed | 
| 1910 | ||
| 63325 | 1911 | lemma mult_left_le_imp_le: "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | 
| 1912 | by (auto simp add: mult_strict_left_mono _not_less [symmetric]) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1913 | |
| 63325 | 1914 | lemma mult_right_le_imp_le: "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | 
| 1915 | by (auto simp add: mult_strict_right_mono not_less [symmetric]) | |
| 25230 | 1916 | |
| 56544 | 1917 | lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 63325 | 1918 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1919 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1920 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 63325 | 1921 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1922 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1923 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 63325 | 1924 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1925 | |
| 63588 | 1926 | text \<open>Legacy -- use @{thm [source] mult_neg_pos}.\<close>
 | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1927 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 63588 | 1928 | by (drule mult_strict_right_mono [of b 0]) auto | 
| 25230 | 1929 | |
| 63325 | 1930 | lemma zero_less_mult_pos: "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | 
| 1931 | apply (cases "b \<le> 0") | |
| 1932 | apply (auto simp add: le_less not_less) | |
| 1933 | apply (drule_tac mult_pos_neg [of a b]) | |
| 1934 | apply (auto dest: less_not_sym) | |
| 1935 | done | |
| 25230 | 1936 | |
| 63325 | 1937 | lemma zero_less_mult_pos2: "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | 
| 1938 | apply (cases "b \<le> 0") | |
| 1939 | apply (auto simp add: le_less not_less) | |
| 1940 | apply (drule_tac mult_pos_neg2 [of a b]) | |
| 1941 | apply (auto dest: less_not_sym) | |
| 1942 | done | |
| 1943 | ||
| 1944 | text \<open>Strict monotonicity in both arguments\<close> | |
| 26193 | 1945 | lemma mult_strict_mono: | 
| 1946 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 1947 | shows "a * c < b * d" | |
| 63325 | 1948 | using assms | 
| 1949 | apply (cases "c = 0") | |
| 63588 | 1950 | apply simp | 
| 26193 | 1951 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 63588 | 1952 | apply (auto simp add: le_less) | 
| 63325 | 1953 | apply (erule (1) mult_strict_left_mono) | 
| 26193 | 1954 | done | 
| 1955 | ||
| 63325 | 1956 | text \<open>This weaker variant has more natural premises\<close> | 
| 26193 | 1957 | lemma mult_strict_mono': | 
| 1958 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 1959 | shows "a * c < b * d" | |
| 63325 | 1960 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 1961 | |
| 1962 | lemma mult_less_le_imp_less: | |
| 1963 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 1964 | shows "a * c < b * d" | |
| 63325 | 1965 | using assms | 
| 1966 | apply (subgoal_tac "a * c < b * c") | |
| 63588 | 1967 | apply (erule less_le_trans) | 
| 1968 | apply (erule mult_left_mono) | |
| 1969 | apply simp | |
| 63325 | 1970 | apply (erule (1) mult_strict_right_mono) | 
| 26193 | 1971 | done | 
| 1972 | ||
| 1973 | lemma mult_le_less_imp_less: | |
| 1974 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 1975 | shows "a * c < b * d" | |
| 63325 | 1976 | using assms | 
| 1977 | apply (subgoal_tac "a * c \<le> b * c") | |
| 63588 | 1978 | apply (erule le_less_trans) | 
| 1979 | apply (erule mult_strict_left_mono) | |
| 1980 | apply simp | |
| 63325 | 1981 | apply (erule (1) mult_right_mono) | 
| 26193 | 1982 | done | 
| 1983 | ||
| 25230 | 1984 | end | 
| 1985 | ||
| 66937 | 1986 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 + zero_less_one | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1987 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1988 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1989 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1990 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1991 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1992 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1993 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1994 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1995 | from assms have "u * x + v * y < u * a + v * a" | 
| 63325 | 1996 | by (cases "u = 0") (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 1997 | with assms show ?thesis | |
| 1998 | unfolding distrib_right[symmetric] by simp | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1999 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2000 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2001 | end | 
| 33319 | 2002 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2003 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2004 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 2005 | begin | 
| 25152 | 2006 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2007 | subclass ordered_semiring | 
| 28823 | 2008 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 2009 | fix a b c :: 'a | 
| 23550 | 2010 | assume "a \<le> b" "0 \<le> c" | 
| 63325 | 2011 | then show "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 2012 | then show "a * c \<le> b * c" by (simp only: mult.commute) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 2013 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2014 | |
| 25267 | 2015 | end | 
| 2016 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2017 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 2018 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2019 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2020 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2021 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2022 | subclass ordered_cancel_semiring .. | 
| 25267 | 2023 | |
| 2024 | end | |
| 2025 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2026 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2027 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 2028 | begin | 
| 2029 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 2030 | subclass linordered_semiring_strict | 
| 28823 | 2031 | proof | 
| 23550 | 2032 | fix a b c :: 'a | 
| 2033 | assume "a < b" "0 < c" | |
| 63588 | 2034 | then show "c * a < c * b" | 
| 2035 | by (rule comm_mult_strict_left_mono) | |
| 2036 | then show "a * c < b * c" | |
| 2037 | by (simp only: mult.commute) | |
| 23550 | 2038 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 2039 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2040 | subclass ordered_cancel_comm_semiring | 
| 28823 | 2041 | proof | 
| 23550 | 2042 | fix a b c :: 'a | 
| 2043 | assume "a \<le> b" "0 \<le> c" | |
| 63325 | 2044 | then show "c * a \<le> c * b" | 
| 25186 | 2045 | unfolding le_less | 
| 26193 | 2046 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 2047 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 2048 | |
| 25267 | 2049 | end | 
| 25230 | 2050 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2051 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 2052 | begin | 
| 25230 | 2053 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2054 | subclass ordered_ab_group_add .. | 
| 14270 | 2055 | |
| 63325 | 2056 | lemma less_add_iff1: "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | 
| 2057 | by (simp add: algebra_simps) | |
| 25230 | 2058 | |
| 63325 | 2059 | lemma less_add_iff2: "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | 
| 2060 | by (simp add: algebra_simps) | |
| 25230 | 2061 | |
| 63325 | 2062 | lemma le_add_iff1: "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | 
| 2063 | by (simp add: algebra_simps) | |
| 25230 | 2064 | |
| 63325 | 2065 | lemma le_add_iff2: "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | 
| 2066 | by (simp add: algebra_simps) | |
| 25230 | 2067 | |
| 63325 | 2068 | lemma mult_left_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2069 | apply (drule mult_left_mono [of _ _ "- c"]) | 
| 35216 | 2070 | apply simp_all | 
| 25230 | 2071 | done | 
| 2072 | ||
| 63325 | 2073 | lemma mult_right_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2074 | apply (drule mult_right_mono [of _ _ "- c"]) | 
| 35216 | 2075 | apply simp_all | 
| 25230 | 2076 | done | 
| 2077 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2078 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 63325 | 2079 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 2080 | |
| 63325 | 2081 | lemma split_mult_pos_le: "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | 
| 2082 | by (auto simp add: mult_nonpos_nonpos) | |
| 25186 | 2083 | |
| 2084 | end | |
| 14270 | 2085 | |
| 64290 | 2086 | class abs_if = minus + uminus + ord + zero + abs + | 
| 2087 | assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 2088 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2089 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2090 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2091 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2092 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2093 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2094 | subclass ordered_ab_group_add_abs | 
| 28823 | 2095 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2096 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2097 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 63325 | 2098 | by (auto simp add: abs_if not_le not_less algebra_simps | 
| 2099 | simp del: add.commute dest: add_neg_neg add_nonneg_nonneg) | |
| 63588 | 2100 | qed (auto simp: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2101 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2102 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 63325 | 2103 | using linear [of 0 a] by (auto simp add: mult_nonpos_nonpos) | 
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2104 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2105 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2106 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2107 | |
| 61944 | 2108 | proposition abs_eq_iff: "\<bar>x\<bar> = \<bar>y\<bar> \<longleftrightarrow> x = y \<or> x = -y" | 
| 62390 | 2109 | by (auto simp add: abs_if split: if_split_asm) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 2110 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2111 | lemma abs_eq_iff': | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2112 | "\<bar>a\<bar> = b \<longleftrightarrow> b \<ge> 0 \<and> (a = b \<or> a = - b)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2113 | by (cases "a \<ge> 0") auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2114 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2115 | lemma eq_abs_iff': | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2116 | "a = \<bar>b\<bar> \<longleftrightarrow> a \<ge> 0 \<and> (b = a \<or> b = - a)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2117 | using abs_eq_iff' [of b a] by auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2118 | |
| 63325 | 2119 | lemma sum_squares_ge_zero: "0 \<le> x * x + y * y" | 
| 62347 | 2120 | by (intro add_nonneg_nonneg zero_le_square) | 
| 2121 | ||
| 63325 | 2122 | lemma not_sum_squares_lt_zero: "\<not> x * x + y * y < 0" | 
| 62347 | 2123 | by (simp add: not_less sum_squares_ge_zero) | 
| 2124 | ||
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2125 | end | 
| 23521 | 2126 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 2127 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2128 | + ordered_ab_group_add + abs_if | 
| 25230 | 2129 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 2130 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2131 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2132 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2133 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 63325 | 2134 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2135 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2136 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 63325 | 2137 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2138 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2139 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 63325 | 2140 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 2141 | |
| 25917 | 2142 | subclass ring_no_zero_divisors | 
| 28823 | 2143 | proof | 
| 25917 | 2144 | fix a b | 
| 63325 | 2145 | assume "a \<noteq> 0" | 
| 63588 | 2146 | then have a: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | 
| 63325 | 2147 | assume "b \<noteq> 0" | 
| 63588 | 2148 | then have b: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | 
| 25917 | 2149 | have "a * b < 0 \<or> 0 < a * b" | 
| 2150 | proof (cases "a < 0") | |
| 63588 | 2151 | case True | 
| 63325 | 2152 | show ?thesis | 
| 2153 | proof (cases "b < 0") | |
| 2154 | case True | |
| 63588 | 2155 | with \<open>a < 0\<close> show ?thesis by (auto dest: mult_neg_neg) | 
| 25917 | 2156 | next | 
| 63325 | 2157 | case False | 
| 63588 | 2158 | with b have "0 < b" by auto | 
| 2159 | with \<open>a < 0\<close> show ?thesis by (auto dest: mult_strict_right_mono) | |
| 25917 | 2160 | qed | 
| 2161 | next | |
| 63325 | 2162 | case False | 
| 63588 | 2163 | with a have "0 < a" by auto | 
| 63325 | 2164 | show ?thesis | 
| 2165 | proof (cases "b < 0") | |
| 2166 | case True | |
| 63588 | 2167 | with \<open>0 < a\<close> show ?thesis | 
| 63325 | 2168 | by (auto dest: mult_strict_right_mono_neg) | 
| 25917 | 2169 | next | 
| 63325 | 2170 | case False | 
| 63588 | 2171 | with b have "0 < b" by auto | 
| 2172 | with \<open>0 < a\<close> show ?thesis by auto | |
| 25917 | 2173 | qed | 
| 2174 | qed | |
| 63325 | 2175 | then show "a * b \<noteq> 0" | 
| 2176 | by (simp add: neq_iff) | |
| 25917 | 2177 | qed | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2178 | |
| 70347 | 2179 | lemma zero_less_mult_iff [sign_simps]: "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 2180 | by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases]) | 
| 56544 | 2181 | (auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2) | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 2182 | |
| 70347 | 2183 | lemma zero_le_mult_iff [sign_simps]: "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 2184 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2185 | |
| 70347 | 2186 | lemma mult_less_0_iff [sign_simps]: "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 63325 | 2187 | using zero_less_mult_iff [of "- a" b] by auto | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2188 | |
| 70347 | 2189 | lemma mult_le_0_iff [sign_simps]: "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 63325 | 2190 | using zero_le_mult_iff [of "- a" b] by auto | 
| 25917 | 2191 | |
| 63325 | 2192 | text \<open> | 
| 69593 | 2193 | Cancellation laws for \<^term>\<open>c * a < c * b\<close> and \<^term>\<open>a * c < b * c\<close>, | 
| 63325 | 2194 | also with the relations \<open>\<le>\<close> and equality. | 
| 2195 | \<close> | |
| 26193 | 2196 | |
| 63325 | 2197 | text \<open> | 
| 2198 | These ``disjunction'' versions produce two cases when the comparison is | |
| 2199 | an assumption, but effectively four when the comparison is a goal. | |
| 2200 | \<close> | |
| 26193 | 2201 | |
| 63325 | 2202 | lemma mult_less_cancel_right_disj: "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | 
| 26193 | 2203 | apply (cases "c = 0") | 
| 63588 | 2204 | apply (auto simp add: neq_iff mult_strict_right_mono mult_strict_right_mono_neg) | 
| 2205 | apply (auto simp add: not_less not_le [symmetric, of "a*c"] not_le [symmetric, of a]) | |
| 2206 | apply (erule_tac [!] notE) | |
| 2207 | apply (auto simp add: less_imp_le mult_right_mono mult_right_mono_neg) | |
| 26193 | 2208 | done | 
| 2209 | ||
| 63325 | 2210 | lemma mult_less_cancel_left_disj: "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | 
| 26193 | 2211 | apply (cases "c = 0") | 
| 63588 | 2212 | apply (auto simp add: neq_iff mult_strict_left_mono mult_strict_left_mono_neg) | 
| 2213 | apply (auto simp add: not_less not_le [symmetric, of "c * a"] not_le [symmetric, of a]) | |
| 2214 | apply (erule_tac [!] notE) | |
| 2215 | apply (auto simp add: less_imp_le mult_left_mono mult_left_mono_neg) | |
| 26193 | 2216 | done | 
| 2217 | ||
| 63325 | 2218 | text \<open> | 
| 2219 | The ``conjunction of implication'' lemmas produce two cases when the | |
| 2220 | comparison is a goal, but give four when the comparison is an assumption. | |
| 2221 | \<close> | |
| 26193 | 2222 | |
| 63325 | 2223 | lemma mult_less_cancel_right: "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | 
| 26193 | 2224 | using mult_less_cancel_right_disj [of a c b] by auto | 
| 2225 | ||
| 63325 | 2226 | lemma mult_less_cancel_left: "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | 
| 26193 | 2227 | using mult_less_cancel_left_disj [of c a b] by auto | 
| 2228 | ||
| 63325 | 2229 | lemma mult_le_cancel_right: "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 2230 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | |
| 26193 | 2231 | |
| 63325 | 2232 | lemma mult_le_cancel_left: "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 2233 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | |
| 26193 | 2234 | |
| 63325 | 2235 | lemma mult_le_cancel_left_pos: "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 2236 | by (auto simp: mult_le_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2237 | |
| 63325 | 2238 | lemma mult_le_cancel_left_neg: "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 2239 | by (auto simp: mult_le_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2240 | |
| 63325 | 2241 | lemma mult_less_cancel_left_pos: "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 2242 | by (auto simp: mult_less_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2243 | |
| 63325 | 2244 | lemma mult_less_cancel_left_neg: "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 2245 | by (auto simp: mult_less_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2246 | |
| 25917 | 2247 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2248 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2249 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2250 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2251 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2252 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2253 | mult_neg_pos mult_neg_neg | 
| 25230 | 2254 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2255 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 2256 | begin | 
| 25230 | 2257 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2258 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2259 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 2260 | |
| 25267 | 2261 | end | 
| 25230 | 2262 | |
| 67689 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2263 | class linordered_nonzero_semiring = ordered_comm_semiring + monoid_mult + linorder + zero_less_one + | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2264 | assumes add_mono1: "a < b \<Longrightarrow> a + 1 < b + 1" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2265 | begin | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2266 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2267 | subclass zero_neq_one | 
| 63325 | 2268 | by standard (insert zero_less_one, blast) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2269 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2270 | subclass comm_semiring_1 | 
| 63325 | 2271 | by standard (rule mult_1_left) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2272 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2273 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 63325 | 2274 | by (rule zero_less_one [THEN less_imp_le]) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2275 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2276 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | 
| 63325 | 2277 | by (simp add: not_le) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2278 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2279 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | 
| 63325 | 2280 | by (simp add: not_less) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2281 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2282 | lemma mult_left_le: "c \<le> 1 \<Longrightarrow> 0 \<le> a \<Longrightarrow> a * c \<le> a" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2283 | using mult_left_mono[of c 1 a] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2284 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2285 | lemma mult_le_one: "a \<le> 1 \<Longrightarrow> 0 \<le> b \<Longrightarrow> b \<le> 1 \<Longrightarrow> a * b \<le> 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2286 | using mult_mono[of a 1 b 1] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2287 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2288 | lemma zero_less_two: "0 < 1 + 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2289 | using add_pos_pos[OF zero_less_one zero_less_one] . | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2290 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2291 | end | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2292 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2293 | class linordered_semidom = semidom + linordered_comm_semiring_strict + zero_less_one + | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2294 | assumes le_add_diff_inverse2 [simp]: "b \<le> a \<Longrightarrow> a - b + b = a" | 
| 25230 | 2295 | begin | 
| 2296 | ||
| 67689 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2297 | subclass linordered_nonzero_semiring | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2298 | proof | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2299 | show "a + 1 < b + 1" if "a < b" for a b | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2300 | proof (rule ccontr, simp add: not_less) | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2301 | assume "b \<le> a" | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2302 | with that show False | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2303 | by (simp add: ) | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2304 | qed | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2305 | qed | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2306 | |
| 60758 | 2307 | text \<open>Addition is the inverse of subtraction.\<close> | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2308 | |
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2309 | lemma le_add_diff_inverse [simp]: "b \<le> a \<Longrightarrow> b + (a - b) = a" | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2310 | by (frule le_add_diff_inverse2) (simp add: add.commute) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2311 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2312 | lemma add_diff_inverse: "\<not> a < b \<Longrightarrow> b + (a - b) = a" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2313 | by simp | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2314 | |
| 63325 | 2315 | lemma add_le_imp_le_diff: "i + k \<le> n \<Longrightarrow> i \<le> n - k" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2316 | apply (subst add_le_cancel_right [where c=k, symmetric]) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2317 | apply (frule le_add_diff_inverse2) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2318 | apply (simp only: add.assoc [symmetric]) | 
| 63588 | 2319 | using add_implies_diff | 
| 2320 | apply fastforce | |
| 63325 | 2321 | done | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2322 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2323 | lemma add_le_add_imp_diff_le: | 
| 63325 | 2324 | assumes 1: "i + k \<le> n" | 
| 2325 | and 2: "n \<le> j + k" | |
| 2326 | shows "i + k \<le> n \<Longrightarrow> n \<le> j + k \<Longrightarrow> n - k \<le> j" | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2327 | proof - | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2328 | have "n - (i + k) + (i + k) = n" | 
| 63325 | 2329 | using 1 by simp | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2330 | moreover have "n - k = n - k - i + i" | 
| 63325 | 2331 | using 1 by (simp add: add_le_imp_le_diff) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2332 | ultimately show ?thesis | 
| 63325 | 2333 | using 2 | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2334 | apply (simp add: add.assoc [symmetric]) | 
| 63325 | 2335 | apply (rule add_le_imp_le_diff [of _ k "j + k", simplified add_diff_cancel_right']) | 
| 2336 | apply (simp add: add.commute diff_diff_add) | |
| 2337 | done | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2338 | qed | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2339 | |
| 63325 | 2340 | lemma less_1_mult: "1 < m \<Longrightarrow> 1 < n \<Longrightarrow> 1 < m * n" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2341 | using mult_strict_mono [of 1 m 1 n] by (simp add: less_trans [OF zero_less_one]) | 
| 59000 | 2342 | |
| 25230 | 2343 | end | 
| 2344 | ||
| 66937 | 2345 | class linordered_idom = comm_ring_1 + linordered_comm_semiring_strict + | 
| 2346 | ordered_ab_group_add + abs_if + sgn + | |
| 64290 | 2347 | assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)" | 
| 25917 | 2348 | begin | 
| 2349 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 2350 | subclass linordered_ring_strict .. | 
| 66937 | 2351 | |
| 2352 | subclass linordered_semiring_1_strict | |
| 2353 | proof | |
| 2354 | have "0 \<le> 1 * 1" | |
| 2355 | by (fact zero_le_square) | |
| 2356 | then show "0 < 1" | |
| 2357 | by (simp add: le_less) | |
| 2358 | qed | |
| 2359 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2360 | subclass ordered_comm_ring .. | 
| 27516 | 2361 | subclass idom .. | 
| 25917 | 2362 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2363 | subclass linordered_semidom | 
| 66937 | 2364 | by standard simp | 
| 25917 | 2365 | |
| 64290 | 2366 | subclass idom_abs_sgn | 
| 2367 | by standard | |
| 2368 | (auto simp add: sgn_if abs_if zero_less_mult_iff) | |
| 2369 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2370 | lemma linorder_neqE_linordered_idom: | 
| 63325 | 2371 | assumes "x \<noteq> y" | 
| 2372 | obtains "x < y" | "y < x" | |
| 26193 | 2373 | using assms by (rule neqE) | 
| 2374 | ||
| 63588 | 2375 | text \<open>These cancellation simp rules also produce two cases when the comparison is a goal.\<close> | 
| 26274 | 2376 | |
| 63325 | 2377 | lemma mult_le_cancel_right1: "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | 
| 2378 | using mult_le_cancel_right [of 1 c b] by simp | |
| 26274 | 2379 | |
| 63325 | 2380 | lemma mult_le_cancel_right2: "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | 
| 2381 | using mult_le_cancel_right [of a c 1] by simp | |
| 26274 | 2382 | |
| 63325 | 2383 | lemma mult_le_cancel_left1: "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | 
| 2384 | using mult_le_cancel_left [of c 1 b] by simp | |
| 26274 | 2385 | |
| 63325 | 2386 | lemma mult_le_cancel_left2: "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | 
| 2387 | using mult_le_cancel_left [of c a 1] by simp | |
| 26274 | 2388 | |
| 63325 | 2389 | lemma mult_less_cancel_right1: "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | 
| 2390 | using mult_less_cancel_right [of 1 c b] by simp | |
| 26274 | 2391 | |
| 63325 | 2392 | lemma mult_less_cancel_right2: "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | 
| 2393 | using mult_less_cancel_right [of a c 1] by simp | |
| 26274 | 2394 | |
| 63325 | 2395 | lemma mult_less_cancel_left1: "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | 
| 2396 | using mult_less_cancel_left [of c 1 b] by simp | |
| 26274 | 2397 | |
| 63325 | 2398 | lemma mult_less_cancel_left2: "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | 
| 2399 | using mult_less_cancel_left [of c a 1] by simp | |
| 26274 | 2400 | |
| 63325 | 2401 | lemma sgn_0_0: "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 64290 | 2402 | by (fact sgn_eq_0_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2403 | |
| 63325 | 2404 | lemma sgn_1_pos: "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 2405 | unfolding sgn_if by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2406 | |
| 63325 | 2407 | lemma sgn_1_neg: "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 2408 | unfolding sgn_if by auto | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2409 | |
| 63325 | 2410 | lemma sgn_pos [simp]: "0 < a \<Longrightarrow> sgn a = 1" | 
| 2411 | by (simp only: sgn_1_pos) | |
| 29940 | 2412 | |
| 63325 | 2413 | lemma sgn_neg [simp]: "a < 0 \<Longrightarrow> sgn a = - 1" | 
| 2414 | by (simp only: sgn_1_neg) | |
| 29940 | 2415 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2416 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 63325 | 2417 | unfolding sgn_if abs_if by auto | 
| 29700 | 2418 | |
| 63325 | 2419 | lemma sgn_greater [simp]: "0 < sgn a \<longleftrightarrow> 0 < a" | 
| 29940 | 2420 | unfolding sgn_if by auto | 
| 2421 | ||
| 63325 | 2422 | lemma sgn_less [simp]: "sgn a < 0 \<longleftrightarrow> a < 0" | 
| 29940 | 2423 | unfolding sgn_if by auto | 
| 2424 | ||
| 64239 | 2425 | lemma abs_sgn_eq_1 [simp]: | 
| 2426 | "a \<noteq> 0 \<Longrightarrow> \<bar>sgn a\<bar> = 1" | |
| 64290 | 2427 | by simp | 
| 64239 | 2428 | |
| 63325 | 2429 | lemma abs_sgn_eq: "\<bar>sgn a\<bar> = (if a = 0 then 0 else 1)" | 
| 62347 | 2430 | by (simp add: sgn_if) | 
| 2431 | ||
| 64713 | 2432 | lemma sgn_mult_self_eq [simp]: | 
| 2433 | "sgn a * sgn a = of_bool (a \<noteq> 0)" | |
| 2434 | by (cases "a > 0") simp_all | |
| 2435 | ||
| 2436 | lemma abs_mult_self_eq [simp]: | |
| 2437 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | |
| 2438 | by (cases "a > 0") simp_all | |
| 2439 | ||
| 2440 | lemma same_sgn_sgn_add: | |
| 2441 | "sgn (a + b) = sgn a" if "sgn b = sgn a" | |
| 2442 | proof (cases a 0 rule: linorder_cases) | |
| 2443 | case equal | |
| 2444 | with that show ?thesis | |
| 2445 | by simp | |
| 2446 | next | |
| 2447 | case less | |
| 2448 | with that have "b < 0" | |
| 2449 | by (simp add: sgn_1_neg) | |
| 2450 | with \<open>a < 0\<close> have "a + b < 0" | |
| 2451 | by (rule add_neg_neg) | |
| 2452 | with \<open>a < 0\<close> show ?thesis | |
| 2453 | by simp | |
| 2454 | next | |
| 2455 | case greater | |
| 2456 | with that have "b > 0" | |
| 2457 | by (simp add: sgn_1_pos) | |
| 2458 | with \<open>a > 0\<close> have "a + b > 0" | |
| 2459 | by (rule add_pos_pos) | |
| 2460 | with \<open>a > 0\<close> show ?thesis | |
| 2461 | by simp | |
| 2462 | qed | |
| 2463 | ||
| 2464 | lemma same_sgn_abs_add: | |
| 2465 | "\<bar>a + b\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" if "sgn b = sgn a" | |
| 2466 | proof - | |
| 2467 | have "a + b = sgn a * \<bar>a\<bar> + sgn b * \<bar>b\<bar>" | |
| 2468 | by (simp add: sgn_mult_abs) | |
| 2469 | also have "\<dots> = sgn a * (\<bar>a\<bar> + \<bar>b\<bar>)" | |
| 2470 | using that by (simp add: algebra_simps) | |
| 2471 | finally show ?thesis | |
| 2472 | by (auto simp add: abs_mult) | |
| 2473 | qed | |
| 2474 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2475 | lemma sgn_not_eq_imp: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2476 | "sgn a = - sgn b" if "sgn b \<noteq> sgn a" and "sgn a \<noteq> 0" and "sgn b \<noteq> 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2477 | using that by (cases "a < 0") (auto simp add: sgn_0_0 sgn_1_pos sgn_1_neg) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2478 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2479 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 2480 | by (simp add: abs_if) | 
| 2481 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2482 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 2483 | by (simp add: abs_if) | 
| 29653 | 2484 | |
| 63325 | 2485 | lemma dvd_if_abs_eq: "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 2486 | by (subst abs_dvd_iff [symmetric]) simp | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 2487 | |
| 63325 | 2488 | text \<open> | 
| 2489 | The following lemmas can be proven in more general structures, but | |
| 2490 |   are dangerous as simp rules in absence of @{thm neg_equal_zero},
 | |
| 2491 |   @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}.
 | |
| 2492 | \<close> | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2493 | |
| 63325 | 2494 | lemma equation_minus_iff_1 [simp, no_atp]: "1 = - a \<longleftrightarrow> a = - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2495 | by (fact equation_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2496 | |
| 63325 | 2497 | lemma minus_equation_iff_1 [simp, no_atp]: "- a = 1 \<longleftrightarrow> a = - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2498 | by (subst minus_equation_iff, auto) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2499 | |
| 63325 | 2500 | lemma le_minus_iff_1 [simp, no_atp]: "1 \<le> - b \<longleftrightarrow> b \<le> - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2501 | by (fact le_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2502 | |
| 63325 | 2503 | lemma minus_le_iff_1 [simp, no_atp]: "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2504 | by (fact minus_le_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2505 | |
| 63325 | 2506 | lemma less_minus_iff_1 [simp, no_atp]: "1 < - b \<longleftrightarrow> b < - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2507 | by (fact less_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2508 | |
| 63325 | 2509 | lemma minus_less_iff_1 [simp, no_atp]: "- a < 1 \<longleftrightarrow> - 1 < a" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2510 | by (fact minus_less_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2511 | |
| 66793 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2512 | lemma add_less_zeroD: | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2513 | shows "x+y < 0 \<Longrightarrow> x<0 \<or> y<0" | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2514 | by (auto simp: not_less intro: le_less_trans [of _ "x+y"]) | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2515 | |
| 25917 | 2516 | end | 
| 25230 | 2517 | |
| 60758 | 2518 | text \<open>Reasoning about inequalities with division\<close> | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2519 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2520 | context linordered_semidom | 
| 25193 | 2521 | begin | 
| 2522 | ||
| 2523 | lemma less_add_one: "a < a + 1" | |
| 14293 | 2524 | proof - | 
| 25193 | 2525 | have "a + 0 < a + 1" | 
| 23482 | 2526 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 63325 | 2527 | then show ?thesis by simp | 
| 14293 | 2528 | qed | 
| 2529 | ||
| 25193 | 2530 | end | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 2531 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2532 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2533 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2534 | |
| 63325 | 2535 | lemma mult_right_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 2536 | by (rule mult_left_le) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2537 | |
| 63325 | 2538 | lemma mult_left_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2539 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2540 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2541 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2542 | |
| 60758 | 2543 | text \<open>Absolute Value\<close> | 
| 14293 | 2544 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2545 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2546 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2547 | |
| 63325 | 2548 | lemma mult_sgn_abs: "sgn x * \<bar>x\<bar> = x" | 
| 64290 | 2549 | by (fact sgn_mult_abs) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2550 | |
| 64290 | 2551 | lemma abs_one: "\<bar>1\<bar> = 1" | 
| 2552 | by (fact abs_1) | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2553 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2554 | end | 
| 24491 | 2555 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2556 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2557 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2558 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2559 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2560 | context linordered_idom | 
| 30961 | 2561 | begin | 
| 2562 | ||
| 63325 | 2563 | subclass ordered_ring_abs | 
| 63588 | 2564 | by standard (auto simp: abs_if not_less mult_less_0_iff) | 
| 30961 | 2565 | |
| 67051 | 2566 | lemma abs_mult_self: "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 2567 | by (fact abs_mult_self_eq) | |
| 30961 | 2568 | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2569 | lemma abs_mult_less: | 
| 63325 | 2570 | assumes ac: "\<bar>a\<bar> < c" | 
| 2571 | and bd: "\<bar>b\<bar> < d" | |
| 2572 | shows "\<bar>a\<bar> * \<bar>b\<bar> < c * d" | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2573 | proof - | 
| 63325 | 2574 | from ac have "0 < c" | 
| 2575 | by (blast intro: le_less_trans abs_ge_zero) | |
| 2576 | with bd show ?thesis by (simp add: ac mult_strict_mono) | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2577 | qed | 
| 14293 | 2578 | |
| 63325 | 2579 | lemma abs_less_iff: "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2580 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 2581 | |
| 63325 | 2582 | lemma abs_mult_pos: "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2583 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2584 | |
| 63325 | 2585 | lemma abs_diff_less_iff: "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" | 
| 51520 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2586 | by (auto simp add: diff_less_eq ac_simps abs_less_iff) | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2587 | |
| 63325 | 2588 | lemma abs_diff_le_iff: "\<bar>x - a\<bar> \<le> r \<longleftrightarrow> a - r \<le> x \<and> x \<le> a + r" | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2589 | by (auto simp add: diff_le_eq ac_simps abs_le_iff) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2590 | |
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2591 | lemma abs_add_one_gt_zero: "0 < 1 + \<bar>x\<bar>" | 
| 63325 | 2592 | by (auto simp: abs_if not_less intro: zero_less_one add_strict_increasing less_trans) | 
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2593 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2594 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2595 | |
| 70145 | 2596 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2597 | subsection \<open>Dioids\<close> | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2598 | |
| 63325 | 2599 | text \<open> | 
| 2600 | Dioids are the alternative extensions of semirings, a semiring can | |
| 2601 | either be a ring or a dioid but never both. | |
| 2602 | \<close> | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2603 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2604 | class dioid = semiring_1 + canonically_ordered_monoid_add | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2605 | begin | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2606 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2607 | subclass ordered_semiring | 
| 63325 | 2608 | by standard (auto simp: le_iff_add distrib_left distrib_right) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2609 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2610 | end | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2611 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2612 | |
| 59557 | 2613 | hide_fact (open) comm_mult_left_mono comm_mult_strict_left_mono distrib | 
| 2614 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2615 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2616 | code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 2617 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2618 | end |