| author | huffman | 
| Sat, 16 Sep 2006 23:46:38 +0200 | |
| changeset 20557 | 81dd3679f92c | 
| parent 20503 | 503ac4c5ef91 | 
| child 20588 | c847c56edf0c | 
| permissions | -rw-r--r-- | 
| 13462 | 1 | (* Title: HOL/List.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 923 | 4 | *) | 
| 5 | ||
| 13114 | 6 | header {* The datatype of finite lists *}
 | 
| 13122 | 7 | |
| 15131 | 8 | theory List | 
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 9 | imports PreList FunDef | 
| 15131 | 10 | begin | 
| 923 | 11 | |
| 13142 | 12 | datatype 'a list = | 
| 13366 | 13 |     Nil    ("[]")
 | 
| 14 | | Cons 'a "'a list" (infixr "#" 65) | |
| 923 | 15 | |
| 15392 | 16 | subsection{*Basic list processing functions*}
 | 
| 15302 | 17 | |
| 923 | 18 | consts | 
| 13366 | 19 | "@" :: "'a list => 'a list => 'a list" (infixr 65) | 
| 20 |   filter:: "('a => bool) => 'a list => 'a list"
 | |
| 21 | concat:: "'a list list => 'a list" | |
| 22 |   foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
 | |
| 23 |   foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
 | |
| 24 | hd:: "'a list => 'a" | |
| 25 | tl:: "'a list => 'a list" | |
| 26 | last:: "'a list => 'a" | |
| 27 | butlast :: "'a list => 'a list" | |
| 28 | set :: "'a list => 'a set" | |
| 29 |   list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
 | |
| 30 |   map :: "('a=>'b) => ('a list => 'b list)"
 | |
| 31 | nth :: "'a list => nat => 'a" (infixl "!" 100) | |
| 32 | list_update :: "'a list => nat => 'a => 'a list" | |
| 33 | take:: "nat => 'a list => 'a list" | |
| 34 | drop:: "nat => 'a list => 'a list" | |
| 35 |   takeWhile :: "('a => bool) => 'a list => 'a list"
 | |
| 36 |   dropWhile :: "('a => bool) => 'a list => 'a list"
 | |
| 37 | rev :: "'a list => 'a list" | |
| 38 |   zip :: "'a list => 'b list => ('a * 'b) list"
 | |
| 15425 | 39 |   upt :: "nat => nat => nat list" ("(1[_..</_'])")
 | 
| 13366 | 40 | remdups :: "'a list => 'a list" | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 41 | remove1 :: "'a => 'a list => 'a list" | 
| 13366 | 42 | null:: "'a list => bool" | 
| 43 | "distinct":: "'a list => bool" | |
| 44 | replicate :: "nat => 'a => 'a list" | |
| 15302 | 45 | rotate1 :: "'a list \<Rightarrow> 'a list" | 
| 46 | rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" | |
| 19390 | 47 | splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" | 
| 15302 | 48 | sublist :: "'a list => nat set => 'a list" | 
| 17086 | 49 | (* For efficiency *) | 
| 50 | mem :: "'a => 'a list => bool" (infixl 55) | |
| 51 | list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" | |
| 52 |   list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
 | |
| 53 |   list_all:: "('a => bool) => ('a list => bool)"
 | |
| 54 | itrev :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" | |
| 55 |   filtermap :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list"
 | |
| 56 |   map_filter :: "('a => 'b) => ('a => bool) => 'a list => 'b list"
 | |
| 15302 | 57 | |
| 19363 | 58 | abbreviation | 
| 59 |   upto:: "nat => nat => nat list"    ("(1[_../_])")
 | |
| 60 | "[i..j] == [i..<(Suc j)]" | |
| 19302 | 61 | |
| 923 | 62 | |
| 13146 | 63 | nonterminals lupdbinds lupdbind | 
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 64 | |
| 923 | 65 | syntax | 
| 13366 | 66 |   -- {* list Enumeration *}
 | 
| 67 |   "@list" :: "args => 'a list"    ("[(_)]")
 | |
| 923 | 68 | |
| 13366 | 69 |   -- {* Special syntax for filter *}
 | 
| 70 |   "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
 | |
| 923 | 71 | |
| 13366 | 72 |   -- {* list update *}
 | 
| 73 |   "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
 | |
| 74 |   "" :: "lupdbind => lupdbinds"    ("_")
 | |
| 75 |   "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
 | |
| 76 |   "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
 | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 77 | |
| 923 | 78 | translations | 
| 13366 | 79 | "[x, xs]" == "x#[xs]" | 
| 80 | "[x]" == "x#[]" | |
| 81 | "[x:xs . P]"== "filter (%x. P) xs" | |
| 923 | 82 | |
| 13366 | 83 | "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs" | 
| 84 | "xs[i:=x]" == "list_update xs i x" | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 85 | |
| 5427 | 86 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10832diff
changeset | 87 | syntax (xsymbols) | 
| 13366 | 88 |   "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
 | 
| 14565 | 89 | syntax (HTML output) | 
| 90 |   "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
 | |
| 3342 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 91 | |
| 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 92 | |
| 13142 | 93 | text {*
 | 
| 14589 | 94 |   Function @{text size} is overloaded for all datatypes. Users may
 | 
| 13366 | 95 |   refer to the list version as @{text length}. *}
 | 
| 13142 | 96 | |
| 19363 | 97 | abbreviation | 
| 98 | length :: "'a list => nat" | |
| 99 | "length == size" | |
| 15302 | 100 | |
| 5183 | 101 | primrec | 
| 15307 | 102 | "hd(x#xs) = x" | 
| 103 | ||
| 5183 | 104 | primrec | 
| 15307 | 105 | "tl([]) = []" | 
| 106 | "tl(x#xs) = xs" | |
| 107 | ||
| 5183 | 108 | primrec | 
| 15307 | 109 | "null([]) = True" | 
| 110 | "null(x#xs) = False" | |
| 111 | ||
| 8972 | 112 | primrec | 
| 15307 | 113 | "last(x#xs) = (if xs=[] then x else last xs)" | 
| 114 | ||
| 5183 | 115 | primrec | 
| 15307 | 116 | "butlast []= []" | 
| 117 | "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)" | |
| 118 | ||
| 5183 | 119 | primrec | 
| 15307 | 120 |   "set [] = {}"
 | 
| 121 | "set (x#xs) = insert x (set xs)" | |
| 122 | ||
| 5183 | 123 | primrec | 
| 15307 | 124 | "map f [] = []" | 
| 125 | "map f (x#xs) = f(x)#map f xs" | |
| 126 | ||
| 5183 | 127 | primrec | 
| 15307 | 128 | append_Nil:"[]@ys = ys" | 
| 129 | append_Cons: "(x#xs)@ys = x#(xs@ys)" | |
| 130 | ||
| 5183 | 131 | primrec | 
| 15307 | 132 | "rev([]) = []" | 
| 133 | "rev(x#xs) = rev(xs) @ [x]" | |
| 134 | ||
| 5183 | 135 | primrec | 
| 15307 | 136 | "filter P [] = []" | 
| 137 | "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)" | |
| 138 | ||
| 5183 | 139 | primrec | 
| 15307 | 140 | foldl_Nil:"foldl f a [] = a" | 
| 141 | foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs" | |
| 142 | ||
| 8000 | 143 | primrec | 
| 15307 | 144 | "foldr f [] a = a" | 
| 145 | "foldr f (x#xs) a = f x (foldr f xs a)" | |
| 146 | ||
| 5183 | 147 | primrec | 
| 15307 | 148 | "concat([]) = []" | 
| 149 | "concat(x#xs) = x @ concat(xs)" | |
| 150 | ||
| 5183 | 151 | primrec | 
| 15307 | 152 | drop_Nil:"drop n [] = []" | 
| 153 | drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)" | |
| 154 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 155 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 156 | ||
| 5183 | 157 | primrec | 
| 15307 | 158 | take_Nil:"take n [] = []" | 
| 159 | take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)" | |
| 160 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 161 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 162 | ||
| 13142 | 163 | primrec | 
| 15307 | 164 | nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)" | 
| 165 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 166 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 167 | ||
| 5183 | 168 | primrec | 
| 15307 | 169 | "[][i:=v] = []" | 
| 170 | "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])" | |
| 171 | ||
| 172 | primrec | |
| 173 | "takeWhile P [] = []" | |
| 174 | "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])" | |
| 175 | ||
| 5183 | 176 | primrec | 
| 15307 | 177 | "dropWhile P [] = []" | 
| 178 | "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)" | |
| 179 | ||
| 5183 | 180 | primrec | 
| 15307 | 181 | "zip xs [] = []" | 
| 182 | zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)" | |
| 183 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 184 |        theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
 | |
| 185 | ||
| 5427 | 186 | primrec | 
| 15425 | 187 | upt_0: "[i..<0] = []" | 
| 188 | upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])" | |
| 15307 | 189 | |
| 5183 | 190 | primrec | 
| 15307 | 191 | "distinct [] = True" | 
| 192 | "distinct (x#xs) = (x ~: set xs \<and> distinct xs)" | |
| 193 | ||
| 5183 | 194 | primrec | 
| 15307 | 195 | "remdups [] = []" | 
| 196 | "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)" | |
| 197 | ||
| 5183 | 198 | primrec | 
| 15307 | 199 | "remove1 x [] = []" | 
| 200 | "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)" | |
| 201 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 202 | primrec | 
| 15307 | 203 | replicate_0: "replicate 0 x = []" | 
| 204 | replicate_Suc: "replicate (Suc n) x = x # replicate n x" | |
| 205 | ||
| 8115 | 206 | defs | 
| 15302 | 207 | rotate1_def: "rotate1 xs == (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])" | 
| 208 | rotate_def: "rotate n == rotate1 ^ n" | |
| 209 | ||
| 210 | list_all2_def: | |
| 211 | "list_all2 P xs ys == | |
| 212 | length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)" | |
| 213 | ||
| 214 | sublist_def: | |
| 15425 | 215 | "sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..<size xs]))" | 
| 5281 | 216 | |
| 17086 | 217 | primrec | 
| 19390 | 218 | "splice [] ys = ys" | 
| 219 | "splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))" | |
| 220 |   -- {*Warning: simpset does not contain the second eqn but a derived one. *}
 | |
| 221 | ||
| 222 | primrec | |
| 17086 | 223 | "x mem [] = False" | 
| 224 | "x mem (y#ys) = (if y=x then True else x mem ys)" | |
| 225 | ||
| 226 | primrec | |
| 227 | "list_inter [] bs = []" | |
| 228 | "list_inter (a#as) bs = | |
| 229 | (if a \<in> set bs then a#(list_inter as bs) else list_inter as bs)" | |
| 230 | ||
| 231 | primrec | |
| 232 | "list_all P [] = True" | |
| 233 | "list_all P (x#xs) = (P(x) \<and> list_all P xs)" | |
| 234 | ||
| 235 | primrec | |
| 236 | "list_ex P [] = False" | |
| 237 | "list_ex P (x#xs) = (P x \<or> list_ex P xs)" | |
| 238 | ||
| 239 | primrec | |
| 240 | "filtermap f [] = []" | |
| 241 | "filtermap f (x#xs) = | |
| 242 | (case f x of None \<Rightarrow> filtermap f xs | |
| 243 | | Some y \<Rightarrow> y # (filtermap f xs))" | |
| 244 | ||
| 245 | primrec | |
| 246 | "map_filter f P [] = []" | |
| 247 | "map_filter f P (x#xs) = (if P x then f x # map_filter f P xs else | |
| 248 | map_filter f P xs)" | |
| 249 | ||
| 250 | primrec | |
| 251 | "itrev [] ys = ys" | |
| 252 | "itrev (x#xs) ys = itrev xs (x#ys)" | |
| 253 | ||
| 13114 | 254 | |
| 13142 | 255 | lemma not_Cons_self [simp]: "xs \<noteq> x # xs" | 
| 13145 | 256 | by (induct xs) auto | 
| 13114 | 257 | |
| 13142 | 258 | lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] | 
| 13114 | 259 | |
| 13142 | 260 | lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" | 
| 13145 | 261 | by (induct xs) auto | 
| 13114 | 262 | |
| 13142 | 263 | lemma length_induct: | 
| 13145 | 264 | "(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs" | 
| 17589 | 265 | by (rule measure_induct [of length]) iprover | 
| 13114 | 266 | |
| 267 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 268 | subsubsection {* @{text null} *}
 | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 269 | |
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 270 | lemma null_empty: "null xs = (xs = [])" | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 271 | by (cases xs) simp_all | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 272 | |
| 20105 | 273 | lemma empty_null [code inline]: | 
| 19787 | 274 | "(xs = []) = null xs" | 
| 19817 | 275 | using null_empty [symmetric] . | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 276 | |
| 15392 | 277 | subsubsection {* @{text length} *}
 | 
| 13114 | 278 | |
| 13142 | 279 | text {*
 | 
| 13145 | 280 | Needs to come before @{text "@"} because of theorem @{text
 | 
| 281 | append_eq_append_conv}. | |
| 13142 | 282 | *} | 
| 13114 | 283 | |
| 13142 | 284 | lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" | 
| 13145 | 285 | by (induct xs) auto | 
| 13114 | 286 | |
| 13142 | 287 | lemma length_map [simp]: "length (map f xs) = length xs" | 
| 13145 | 288 | by (induct xs) auto | 
| 13114 | 289 | |
| 13142 | 290 | lemma length_rev [simp]: "length (rev xs) = length xs" | 
| 13145 | 291 | by (induct xs) auto | 
| 13114 | 292 | |
| 13142 | 293 | lemma length_tl [simp]: "length (tl xs) = length xs - 1" | 
| 13145 | 294 | by (cases xs) auto | 
| 13114 | 295 | |
| 13142 | 296 | lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" | 
| 13145 | 297 | by (induct xs) auto | 
| 13114 | 298 | |
| 13142 | 299 | lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" | 
| 13145 | 300 | by (induct xs) auto | 
| 13114 | 301 | |
| 302 | lemma length_Suc_conv: | |
| 13145 | 303 | "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | 
| 304 | by (induct xs) auto | |
| 13142 | 305 | |
| 14025 | 306 | lemma Suc_length_conv: | 
| 307 | "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | |
| 14208 | 308 | apply (induct xs, simp, simp) | 
| 14025 | 309 | apply blast | 
| 310 | done | |
| 311 | ||
| 14099 | 312 | lemma impossible_Cons [rule_format]: | 
| 313 | "length xs <= length ys --> xs = x # ys = False" | |
| 20503 | 314 | apply (induct xs) | 
| 315 | apply auto | |
| 14099 | 316 | done | 
| 317 | ||
| 14247 | 318 | lemma list_induct2[consumes 1]: "\<And>ys. | 
| 319 | \<lbrakk> length xs = length ys; | |
| 320 | P [] []; | |
| 321 | \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk> | |
| 322 | \<Longrightarrow> P xs ys" | |
| 323 | apply(induct xs) | |
| 324 | apply simp | |
| 325 | apply(case_tac ys) | |
| 326 | apply simp | |
| 327 | apply(simp) | |
| 328 | done | |
| 13114 | 329 | |
| 15392 | 330 | subsubsection {* @{text "@"} -- append *}
 | 
| 13114 | 331 | |
| 13142 | 332 | lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" | 
| 13145 | 333 | by (induct xs) auto | 
| 13114 | 334 | |
| 13142 | 335 | lemma append_Nil2 [simp]: "xs @ [] = xs" | 
| 13145 | 336 | by (induct xs) auto | 
| 3507 | 337 | |
| 13142 | 338 | lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" | 
| 13145 | 339 | by (induct xs) auto | 
| 13114 | 340 | |
| 13142 | 341 | lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" | 
| 13145 | 342 | by (induct xs) auto | 
| 13114 | 343 | |
| 13142 | 344 | lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" | 
| 13145 | 345 | by (induct xs) auto | 
| 13114 | 346 | |
| 13142 | 347 | lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" | 
| 13145 | 348 | by (induct xs) auto | 
| 13114 | 349 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 350 | lemma append_eq_append_conv [simp]: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 351 | "!!ys. length xs = length ys \<or> length us = length vs | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 352 | ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 353 | apply (induct xs) | 
| 14208 | 354 | apply (case_tac ys, simp, force) | 
| 355 | apply (case_tac ys, force, simp) | |
| 13145 | 356 | done | 
| 13142 | 357 | |
| 14495 | 358 | lemma append_eq_append_conv2: "!!ys zs ts. | 
| 359 | (xs @ ys = zs @ ts) = | |
| 360 | (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)" | |
| 361 | apply (induct xs) | |
| 362 | apply fastsimp | |
| 363 | apply(case_tac zs) | |
| 364 | apply simp | |
| 365 | apply fastsimp | |
| 366 | done | |
| 367 | ||
| 13142 | 368 | lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)" | 
| 13145 | 369 | by simp | 
| 13142 | 370 | |
| 371 | lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" | |
| 13145 | 372 | by simp | 
| 13114 | 373 | |
| 13142 | 374 | lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)" | 
| 13145 | 375 | by simp | 
| 13114 | 376 | |
| 13142 | 377 | lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" | 
| 13145 | 378 | using append_same_eq [of _ _ "[]"] by auto | 
| 3507 | 379 | |
| 13142 | 380 | lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" | 
| 13145 | 381 | using append_same_eq [of "[]"] by auto | 
| 13114 | 382 | |
| 13142 | 383 | lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" | 
| 13145 | 384 | by (induct xs) auto | 
| 13114 | 385 | |
| 13142 | 386 | lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" | 
| 13145 | 387 | by (induct xs) auto | 
| 13114 | 388 | |
| 13142 | 389 | lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" | 
| 13145 | 390 | by (simp add: hd_append split: list.split) | 
| 13114 | 391 | |
| 13142 | 392 | lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" | 
| 13145 | 393 | by (simp split: list.split) | 
| 13114 | 394 | |
| 13142 | 395 | lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" | 
| 13145 | 396 | by (simp add: tl_append split: list.split) | 
| 13114 | 397 | |
| 398 | ||
| 14300 | 399 | lemma Cons_eq_append_conv: "x#xs = ys@zs = | 
| 400 | (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))" | |
| 401 | by(cases ys) auto | |
| 402 | ||
| 15281 | 403 | lemma append_eq_Cons_conv: "(ys@zs = x#xs) = | 
| 404 | (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))" | |
| 405 | by(cases ys) auto | |
| 406 | ||
| 14300 | 407 | |
| 13142 | 408 | text {* Trivial rules for solving @{text "@"}-equations automatically. *}
 | 
| 13114 | 409 | |
| 410 | lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" | |
| 13145 | 411 | by simp | 
| 13114 | 412 | |
| 13142 | 413 | lemma Cons_eq_appendI: | 
| 13145 | 414 | "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" | 
| 415 | by (drule sym) simp | |
| 13114 | 416 | |
| 13142 | 417 | lemma append_eq_appendI: | 
| 13145 | 418 | "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" | 
| 419 | by (drule sym) simp | |
| 13114 | 420 | |
| 421 | ||
| 13142 | 422 | text {*
 | 
| 13145 | 423 | Simplification procedure for all list equalities. | 
| 424 | Currently only tries to rearrange @{text "@"} to see if
 | |
| 425 | - both lists end in a singleton list, | |
| 426 | - or both lists end in the same list. | |
| 13142 | 427 | *} | 
| 428 | ||
| 429 | ML_setup {*
 | |
| 3507 | 430 | local | 
| 431 | ||
| 13122 | 432 | val append_assoc = thm "append_assoc"; | 
| 433 | val append_Nil = thm "append_Nil"; | |
| 434 | val append_Cons = thm "append_Cons"; | |
| 435 | val append1_eq_conv = thm "append1_eq_conv"; | |
| 436 | val append_same_eq = thm "append_same_eq"; | |
| 437 | ||
| 13114 | 438 | fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
 | 
| 13462 | 439 |   (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
 | 
| 440 |   | last (Const("List.op @",_) $ _ $ ys) = last ys
 | |
| 441 | | last t = t; | |
| 13114 | 442 | |
| 443 | fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
 | |
| 13462 | 444 | | list1 _ = false; | 
| 13114 | 445 | |
| 446 | fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
 | |
| 13462 | 447 |   (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
 | 
| 448 |   | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
 | |
| 449 |   | butlast xs = Const("List.list.Nil",fastype_of xs);
 | |
| 13114 | 450 | |
| 16973 | 451 | val rearr_ss = HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]; | 
| 452 | ||
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 453 | fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) = | 
| 13462 | 454 | let | 
| 455 | val lastl = last lhs and lastr = last rhs; | |
| 456 | fun rearr conv = | |
| 457 | let | |
| 458 | val lhs1 = butlast lhs and rhs1 = butlast rhs; | |
| 459 | val Type(_,listT::_) = eqT | |
| 460 | val appT = [listT,listT] ---> listT | |
| 461 |         val app = Const("List.op @",appT)
 | |
| 462 | val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) | |
| 13480 
bb72bd43c6c3
use Tactic.prove instead of prove_goalw_cterm in internal proofs!
 wenzelm parents: 
13462diff
changeset | 463 | val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); | 
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 464 | val thm = Goal.prove (Simplifier.the_context ss) [] [] eq | 
| 17877 
67d5ab1cb0d8
Simplifier.inherit_context instead of Simplifier.inherit_bounds;
 wenzelm parents: 
17830diff
changeset | 465 | (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1)); | 
| 15531 | 466 | in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; | 
| 13114 | 467 | |
| 13462 | 468 | in | 
| 469 | if list1 lastl andalso list1 lastr then rearr append1_eq_conv | |
| 470 | else if lastl aconv lastr then rearr append_same_eq | |
| 15531 | 471 | else NONE | 
| 13462 | 472 | end; | 
| 473 | ||
| 13114 | 474 | in | 
| 13462 | 475 | |
| 476 | val list_eq_simproc = | |
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 477 | Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] (K list_eq); | 
| 13462 | 478 | |
| 13114 | 479 | end; | 
| 480 | ||
| 481 | Addsimprocs [list_eq_simproc]; | |
| 482 | *} | |
| 483 | ||
| 484 | ||
| 15392 | 485 | subsubsection {* @{text map} *}
 | 
| 13114 | 486 | |
| 13142 | 487 | lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" | 
| 13145 | 488 | by (induct xs) simp_all | 
| 13114 | 489 | |
| 13142 | 490 | lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" | 
| 13145 | 491 | by (rule ext, induct_tac xs) auto | 
| 13114 | 492 | |
| 13142 | 493 | lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" | 
| 13145 | 494 | by (induct xs) auto | 
| 13114 | 495 | |
| 13142 | 496 | lemma map_compose: "map (f o g) xs = map f (map g xs)" | 
| 13145 | 497 | by (induct xs) (auto simp add: o_def) | 
| 13114 | 498 | |
| 13142 | 499 | lemma rev_map: "rev (map f xs) = map f (rev xs)" | 
| 13145 | 500 | by (induct xs) auto | 
| 13114 | 501 | |
| 13737 | 502 | lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)" | 
| 503 | by (induct xs) auto | |
| 504 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 505 | lemma map_cong [fundef_cong, recdef_cong]: | 
| 13145 | 506 | "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" | 
| 507 | -- {* a congruence rule for @{text map} *}
 | |
| 13737 | 508 | by simp | 
| 13114 | 509 | |
| 13142 | 510 | lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" | 
| 13145 | 511 | by (cases xs) auto | 
| 13114 | 512 | |
| 13142 | 513 | lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" | 
| 13145 | 514 | by (cases xs) auto | 
| 13114 | 515 | |
| 18447 | 516 | lemma map_eq_Cons_conv: | 
| 14025 | 517 | "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)" | 
| 13145 | 518 | by (cases xs) auto | 
| 13114 | 519 | |
| 18447 | 520 | lemma Cons_eq_map_conv: | 
| 14025 | 521 | "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)" | 
| 522 | by (cases ys) auto | |
| 523 | ||
| 18447 | 524 | lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] | 
| 525 | lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] | |
| 526 | declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] | |
| 527 | ||
| 14111 | 528 | lemma ex_map_conv: | 
| 529 | "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)" | |
| 18447 | 530 | by(induct ys, auto simp add: Cons_eq_map_conv) | 
| 14111 | 531 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 532 | lemma map_eq_imp_length_eq: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 533 | "!!xs. map f xs = map f ys ==> length xs = length ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 534 | apply (induct ys) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 535 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 536 | apply(simp (no_asm_use)) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 537 | apply clarify | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 538 | apply(simp (no_asm_use)) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 539 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 540 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 541 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 542 | lemma map_inj_on: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 543 | "[| map f xs = map f ys; inj_on f (set xs Un set ys) |] | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 544 | ==> xs = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 545 | apply(frule map_eq_imp_length_eq) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 546 | apply(rotate_tac -1) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 547 | apply(induct rule:list_induct2) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 548 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 549 | apply(simp) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 550 | apply (blast intro:sym) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 551 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 552 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 553 | lemma inj_on_map_eq_map: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 554 | "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 555 | by(blast dest:map_inj_on) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 556 | |
| 13114 | 557 | lemma map_injective: | 
| 14338 | 558 | "!!xs. map f xs = map f ys ==> inj f ==> xs = ys" | 
| 559 | by (induct ys) (auto dest!:injD) | |
| 13114 | 560 | |
| 14339 | 561 | lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 562 | by(blast dest:map_injective) | |
| 563 | ||
| 13114 | 564 | lemma inj_mapI: "inj f ==> inj (map f)" | 
| 17589 | 565 | by (iprover dest: map_injective injD intro: inj_onI) | 
| 13114 | 566 | |
| 567 | lemma inj_mapD: "inj (map f) ==> inj f" | |
| 14208 | 568 | apply (unfold inj_on_def, clarify) | 
| 13145 | 569 | apply (erule_tac x = "[x]" in ballE) | 
| 14208 | 570 | apply (erule_tac x = "[y]" in ballE, simp, blast) | 
| 13145 | 571 | apply blast | 
| 572 | done | |
| 13114 | 573 | |
| 14339 | 574 | lemma inj_map[iff]: "inj (map f) = inj f" | 
| 13145 | 575 | by (blast dest: inj_mapD intro: inj_mapI) | 
| 13114 | 576 | |
| 15303 | 577 | lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A" | 
| 578 | apply(rule inj_onI) | |
| 579 | apply(erule map_inj_on) | |
| 580 | apply(blast intro:inj_onI dest:inj_onD) | |
| 581 | done | |
| 582 | ||
| 14343 | 583 | lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs" | 
| 584 | by (induct xs, auto) | |
| 13114 | 585 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 586 | lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 587 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 588 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 589 | lemma map_fst_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 590 | "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 591 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 592 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 593 | lemma map_snd_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 594 | "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 595 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 596 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 597 | |
| 15392 | 598 | subsubsection {* @{text rev} *}
 | 
| 13114 | 599 | |
| 13142 | 600 | lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" | 
| 13145 | 601 | by (induct xs) auto | 
| 13114 | 602 | |
| 13142 | 603 | lemma rev_rev_ident [simp]: "rev (rev xs) = xs" | 
| 13145 | 604 | by (induct xs) auto | 
| 13114 | 605 | |
| 15870 | 606 | lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" | 
| 607 | by auto | |
| 608 | ||
| 13142 | 609 | lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" | 
| 13145 | 610 | by (induct xs) auto | 
| 13114 | 611 | |
| 13142 | 612 | lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" | 
| 13145 | 613 | by (induct xs) auto | 
| 13114 | 614 | |
| 15870 | 615 | lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" | 
| 616 | by (cases xs) auto | |
| 617 | ||
| 618 | lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" | |
| 619 | by (cases xs) auto | |
| 620 | ||
| 13142 | 621 | lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)" | 
| 14208 | 622 | apply (induct xs, force) | 
| 623 | apply (case_tac ys, simp, force) | |
| 13145 | 624 | done | 
| 13114 | 625 | |
| 15439 | 626 | lemma inj_on_rev[iff]: "inj_on rev A" | 
| 627 | by(simp add:inj_on_def) | |
| 628 | ||
| 13366 | 629 | lemma rev_induct [case_names Nil snoc]: | 
| 630 | "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" | |
| 15489 
d136af442665
Replaced application of subst by simplesubst in proof of rev_induct
 berghofe parents: 
15439diff
changeset | 631 | apply(simplesubst rev_rev_ident[symmetric]) | 
| 13145 | 632 | apply(rule_tac list = "rev xs" in list.induct, simp_all) | 
| 633 | done | |
| 13114 | 634 | |
| 13145 | 635 | ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
 | 
| 13114 | 636 | |
| 13366 | 637 | lemma rev_exhaust [case_names Nil snoc]: | 
| 638 | "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" | |
| 13145 | 639 | by (induct xs rule: rev_induct) auto | 
| 13114 | 640 | |
| 13366 | 641 | lemmas rev_cases = rev_exhaust | 
| 642 | ||
| 18423 | 643 | lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" | 
| 644 | by(rule rev_cases[of xs]) auto | |
| 645 | ||
| 13114 | 646 | |
| 15392 | 647 | subsubsection {* @{text set} *}
 | 
| 13114 | 648 | |
| 13142 | 649 | lemma finite_set [iff]: "finite (set xs)" | 
| 13145 | 650 | by (induct xs) auto | 
| 13114 | 651 | |
| 13142 | 652 | lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" | 
| 13145 | 653 | by (induct xs) auto | 
| 13114 | 654 | |
| 17830 | 655 | lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs" | 
| 656 | by(cases xs) auto | |
| 14099 | 657 | |
| 13142 | 658 | lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" | 
| 13145 | 659 | by auto | 
| 13114 | 660 | |
| 14099 | 661 | lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" | 
| 662 | by auto | |
| 663 | ||
| 13142 | 664 | lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
 | 
| 13145 | 665 | by (induct xs) auto | 
| 13114 | 666 | |
| 15245 | 667 | lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
 | 
| 668 | by(induct xs) auto | |
| 669 | ||
| 13142 | 670 | lemma set_rev [simp]: "set (rev xs) = set xs" | 
| 13145 | 671 | by (induct xs) auto | 
| 13114 | 672 | |
| 13142 | 673 | lemma set_map [simp]: "set (map f xs) = f`(set xs)" | 
| 13145 | 674 | by (induct xs) auto | 
| 13114 | 675 | |
| 13142 | 676 | lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
 | 
| 13145 | 677 | by (induct xs) auto | 
| 13114 | 678 | |
| 15425 | 679 | lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
 | 
| 14208 | 680 | apply (induct j, simp_all) | 
| 681 | apply (erule ssubst, auto) | |
| 13145 | 682 | done | 
| 13114 | 683 | |
| 13142 | 684 | lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)" | 
| 15113 | 685 | proof (induct xs) | 
| 686 | case Nil show ?case by simp | |
| 687 | case (Cons a xs) | |
| 688 | show ?case | |
| 689 | proof | |
| 690 | assume "x \<in> set (a # xs)" | |
| 691 | with prems show "\<exists>ys zs. a # xs = ys @ x # zs" | |
| 692 | by (simp, blast intro: Cons_eq_appendI) | |
| 693 | next | |
| 694 | assume "\<exists>ys zs. a # xs = ys @ x # zs" | |
| 695 | then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast | |
| 696 | show "x \<in> set (a # xs)" | |
| 697 | by (cases ys, auto simp add: eq) | |
| 698 | qed | |
| 699 | qed | |
| 13142 | 700 | |
| 18049 | 701 | lemma in_set_conv_decomp_first: | 
| 702 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)" | |
| 703 | proof (induct xs) | |
| 704 | case Nil show ?case by simp | |
| 705 | next | |
| 706 | case (Cons a xs) | |
| 707 | show ?case | |
| 708 | proof cases | |
| 709 | assume "x = a" thus ?case using Cons by force | |
| 710 | next | |
| 711 | assume "x \<noteq> a" | |
| 712 | show ?case | |
| 713 | proof | |
| 714 | assume "x \<in> set (a # xs)" | |
| 715 | from prems show "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 716 | by(fastsimp intro!: Cons_eq_appendI) | |
| 717 | next | |
| 718 | assume "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 719 | then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast | |
| 720 | show "x \<in> set (a # xs)" by (cases ys, auto simp add: eq) | |
| 721 | qed | |
| 722 | qed | |
| 723 | qed | |
| 724 | ||
| 725 | lemmas split_list = in_set_conv_decomp[THEN iffD1, standard] | |
| 726 | lemmas split_list_first = in_set_conv_decomp_first[THEN iffD1, standard] | |
| 727 | ||
| 728 | ||
| 13508 | 729 | lemma finite_list: "finite A ==> EX l. set l = A" | 
| 730 | apply (erule finite_induct, auto) | |
| 731 | apply (rule_tac x="x#l" in exI, auto) | |
| 732 | done | |
| 733 | ||
| 14388 | 734 | lemma card_length: "card (set xs) \<le> length xs" | 
| 735 | by (induct xs) (auto simp add: card_insert_if) | |
| 13114 | 736 | |
| 15168 | 737 | |
| 15392 | 738 | subsubsection {* @{text filter} *}
 | 
| 13114 | 739 | |
| 13142 | 740 | lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" | 
| 13145 | 741 | by (induct xs) auto | 
| 13114 | 742 | |
| 15305 | 743 | lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" | 
| 744 | by (induct xs) simp_all | |
| 745 | ||
| 13142 | 746 | lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" | 
| 13145 | 747 | by (induct xs) auto | 
| 13114 | 748 | |
| 16998 | 749 | lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs" | 
| 750 | by (induct xs) (auto simp add: le_SucI) | |
| 751 | ||
| 18423 | 752 | lemma sum_length_filter_compl: | 
| 753 | "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs" | |
| 754 | by(induct xs) simp_all | |
| 755 | ||
| 13142 | 756 | lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" | 
| 13145 | 757 | by (induct xs) auto | 
| 13114 | 758 | |
| 13142 | 759 | lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" | 
| 13145 | 760 | by (induct xs) auto | 
| 13114 | 761 | |
| 16998 | 762 | lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" | 
| 763 | by (induct xs) simp_all | |
| 764 | ||
| 765 | lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)" | |
| 766 | apply (induct xs) | |
| 767 | apply auto | |
| 768 | apply(cut_tac P=P and xs=xs in length_filter_le) | |
| 769 | apply simp | |
| 770 | done | |
| 13114 | 771 | |
| 16965 | 772 | lemma filter_map: | 
| 773 | "filter P (map f xs) = map f (filter (P o f) xs)" | |
| 774 | by (induct xs) simp_all | |
| 775 | ||
| 776 | lemma length_filter_map[simp]: | |
| 777 | "length (filter P (map f xs)) = length(filter (P o f) xs)" | |
| 778 | by (simp add:filter_map) | |
| 779 | ||
| 13142 | 780 | lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" | 
| 13145 | 781 | by auto | 
| 13114 | 782 | |
| 15246 | 783 | lemma length_filter_less: | 
| 784 | "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs" | |
| 785 | proof (induct xs) | |
| 786 | case Nil thus ?case by simp | |
| 787 | next | |
| 788 | case (Cons x xs) thus ?case | |
| 789 | apply (auto split:split_if_asm) | |
| 790 | using length_filter_le[of P xs] apply arith | |
| 791 | done | |
| 792 | qed | |
| 13114 | 793 | |
| 15281 | 794 | lemma length_filter_conv_card: | 
| 795 |  "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
 | |
| 796 | proof (induct xs) | |
| 797 | case Nil thus ?case by simp | |
| 798 | next | |
| 799 | case (Cons x xs) | |
| 800 |   let ?S = "{i. i < length xs & p(xs!i)}"
 | |
| 801 | have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) | |
| 802 | show ?case (is "?l = card ?S'") | |
| 803 | proof (cases) | |
| 804 | assume "p x" | |
| 805 | hence eq: "?S' = insert 0 (Suc ` ?S)" | |
| 806 | by(auto simp add: nth_Cons image_def split:nat.split elim:lessE) | |
| 807 | have "length (filter p (x # xs)) = Suc(card ?S)" | |
| 808 | using Cons by simp | |
| 809 | also have "\<dots> = Suc(card(Suc ` ?S))" using fin | |
| 810 | by (simp add: card_image inj_Suc) | |
| 811 | also have "\<dots> = card ?S'" using eq fin | |
| 812 | by (simp add:card_insert_if) (simp add:image_def) | |
| 813 | finally show ?thesis . | |
| 814 | next | |
| 815 | assume "\<not> p x" | |
| 816 | hence eq: "?S' = Suc ` ?S" | |
| 817 | by(auto simp add: nth_Cons image_def split:nat.split elim:lessE) | |
| 818 | have "length (filter p (x # xs)) = card ?S" | |
| 819 | using Cons by simp | |
| 820 | also have "\<dots> = card(Suc ` ?S)" using fin | |
| 821 | by (simp add: card_image inj_Suc) | |
| 822 | also have "\<dots> = card ?S'" using eq fin | |
| 823 | by (simp add:card_insert_if) | |
| 824 | finally show ?thesis . | |
| 825 | qed | |
| 826 | qed | |
| 827 | ||
| 17629 | 828 | lemma Cons_eq_filterD: | 
| 829 | "x#xs = filter P ys \<Longrightarrow> | |
| 830 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 19585 | 831 | (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs") | 
| 17629 | 832 | proof(induct ys) | 
| 833 | case Nil thus ?case by simp | |
| 834 | next | |
| 835 | case (Cons y ys) | |
| 836 | show ?case (is "\<exists>x. ?Q x") | |
| 837 | proof cases | |
| 838 | assume Py: "P y" | |
| 839 | show ?thesis | |
| 840 | proof cases | |
| 841 | assume xy: "x = y" | |
| 842 | show ?thesis | |
| 843 | proof from Py xy Cons(2) show "?Q []" by simp qed | |
| 844 | next | |
| 845 | assume "x \<noteq> y" with Py Cons(2) show ?thesis by simp | |
| 846 | qed | |
| 847 | next | |
| 848 | assume Py: "\<not> P y" | |
| 849 | with Cons obtain us vs where 1 : "?P (y#ys) (y#us) vs" by fastsimp | |
| 850 | show ?thesis (is "? us. ?Q us") | |
| 851 | proof show "?Q (y#us)" using 1 by simp qed | |
| 852 | qed | |
| 853 | qed | |
| 854 | ||
| 855 | lemma filter_eq_ConsD: | |
| 856 | "filter P ys = x#xs \<Longrightarrow> | |
| 857 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 858 | by(rule Cons_eq_filterD) simp | |
| 859 | ||
| 860 | lemma filter_eq_Cons_iff: | |
| 861 | "(filter P ys = x#xs) = | |
| 862 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 863 | by(auto dest:filter_eq_ConsD) | |
| 864 | ||
| 865 | lemma Cons_eq_filter_iff: | |
| 866 | "(x#xs = filter P ys) = | |
| 867 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 868 | by(auto dest:Cons_eq_filterD) | |
| 869 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 870 | lemma filter_cong[fundef_cong, recdef_cong]: | 
| 17501 | 871 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys" | 
| 872 | apply simp | |
| 873 | apply(erule thin_rl) | |
| 874 | by (induct ys) simp_all | |
| 875 | ||
| 15281 | 876 | |
| 15392 | 877 | subsubsection {* @{text concat} *}
 | 
| 13114 | 878 | |
| 13142 | 879 | lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" | 
| 13145 | 880 | by (induct xs) auto | 
| 13114 | 881 | |
| 18447 | 882 | lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 883 | by (induct xss) auto | 
| 13114 | 884 | |
| 18447 | 885 | lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 886 | by (induct xss) auto | 
| 13114 | 887 | |
| 13142 | 888 | lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)" | 
| 13145 | 889 | by (induct xs) auto | 
| 13114 | 890 | |
| 13142 | 891 | lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" | 
| 13145 | 892 | by (induct xs) auto | 
| 13114 | 893 | |
| 13142 | 894 | lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" | 
| 13145 | 895 | by (induct xs) auto | 
| 13114 | 896 | |
| 13142 | 897 | lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" | 
| 13145 | 898 | by (induct xs) auto | 
| 13114 | 899 | |
| 900 | ||
| 15392 | 901 | subsubsection {* @{text nth} *}
 | 
| 13114 | 902 | |
| 13142 | 903 | lemma nth_Cons_0 [simp]: "(x # xs)!0 = x" | 
| 13145 | 904 | by auto | 
| 13114 | 905 | |
| 13142 | 906 | lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n" | 
| 13145 | 907 | by auto | 
| 13114 | 908 | |
| 13142 | 909 | declare nth.simps [simp del] | 
| 13114 | 910 | |
| 911 | lemma nth_append: | |
| 13145 | 912 | "!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" | 
| 14208 | 913 | apply (induct "xs", simp) | 
| 914 | apply (case_tac n, auto) | |
| 13145 | 915 | done | 
| 13114 | 916 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 917 | lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 918 | by (induct "xs") auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 919 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 920 | lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 921 | by (induct "xs") auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 922 | |
| 13142 | 923 | lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)" | 
| 14208 | 924 | apply (induct xs, simp) | 
| 925 | apply (case_tac n, auto) | |
| 13145 | 926 | done | 
| 13114 | 927 | |
| 18423 | 928 | lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0" | 
| 929 | by(cases xs) simp_all | |
| 930 | ||
| 18049 | 931 | |
| 932 | lemma list_eq_iff_nth_eq: | |
| 933 | "!!ys. (xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))" | |
| 934 | apply(induct xs) | |
| 935 | apply simp apply blast | |
| 936 | apply(case_tac ys) | |
| 937 | apply simp | |
| 938 | apply(simp add:nth_Cons split:nat.split)apply blast | |
| 939 | done | |
| 940 | ||
| 13142 | 941 | lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
 | 
| 15251 | 942 | apply (induct xs, simp, simp) | 
| 13145 | 943 | apply safe | 
| 14208 | 944 | apply (rule_tac x = 0 in exI, simp) | 
| 945 | apply (rule_tac x = "Suc i" in exI, simp) | |
| 946 | apply (case_tac i, simp) | |
| 13145 | 947 | apply (rename_tac j) | 
| 14208 | 948 | apply (rule_tac x = j in exI, simp) | 
| 13145 | 949 | done | 
| 13114 | 950 | |
| 17501 | 951 | lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)" | 
| 952 | by(auto simp:set_conv_nth) | |
| 953 | ||
| 13145 | 954 | lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)" | 
| 955 | by (auto simp add: set_conv_nth) | |
| 13114 | 956 | |
| 13142 | 957 | lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" | 
| 13145 | 958 | by (auto simp add: set_conv_nth) | 
| 13114 | 959 | |
| 960 | lemma all_nth_imp_all_set: | |
| 13145 | 961 | "[| !i < length xs. P(xs!i); x : set xs|] ==> P x" | 
| 962 | by (auto simp add: set_conv_nth) | |
| 13114 | 963 | |
| 964 | lemma all_set_conv_all_nth: | |
| 13145 | 965 | "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))" | 
| 966 | by (auto simp add: set_conv_nth) | |
| 13114 | 967 | |
| 968 | ||
| 15392 | 969 | subsubsection {* @{text list_update} *}
 | 
| 13114 | 970 | |
| 13142 | 971 | lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs" | 
| 13145 | 972 | by (induct xs) (auto split: nat.split) | 
| 13114 | 973 | |
| 974 | lemma nth_list_update: | |
| 13145 | 975 | "!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" | 
| 976 | by (induct xs) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 977 | |
| 13142 | 978 | lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" | 
| 13145 | 979 | by (simp add: nth_list_update) | 
| 13114 | 980 | |
| 13142 | 981 | lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j" | 
| 13145 | 982 | by (induct xs) (auto simp add: nth_Cons split: nat.split) | 
| 13114 | 983 | |
| 13142 | 984 | lemma list_update_overwrite [simp]: | 
| 13145 | 985 | "!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" | 
| 986 | by (induct xs) (auto split: nat.split) | |
| 13114 | 987 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 988 | lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs" | 
| 14208 | 989 | apply (induct xs, simp) | 
| 14187 | 990 | apply(simp split:nat.splits) | 
| 991 | done | |
| 992 | ||
| 17501 | 993 | lemma list_update_beyond[simp]: "\<And>i. length xs \<le> i \<Longrightarrow> xs[i:=x] = xs" | 
| 994 | apply (induct xs) | |
| 995 | apply simp | |
| 996 | apply (case_tac i) | |
| 997 | apply simp_all | |
| 998 | done | |
| 999 | ||
| 13114 | 1000 | lemma list_update_same_conv: | 
| 13145 | 1001 | "!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" | 
| 1002 | by (induct xs) (auto split: nat.split) | |
| 13114 | 1003 | |
| 14187 | 1004 | lemma list_update_append1: | 
| 1005 | "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys" | |
| 14208 | 1006 | apply (induct xs, simp) | 
| 14187 | 1007 | apply(simp split:nat.split) | 
| 1008 | done | |
| 1009 | ||
| 15868 | 1010 | lemma list_update_append: | 
| 1011 | "!!n. (xs @ ys) [n:= x] = | |
| 1012 | (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" | |
| 1013 | by (induct xs) (auto split:nat.splits) | |
| 1014 | ||
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1015 | lemma list_update_length [simp]: | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1016 | "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1017 | by (induct xs, auto) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1018 | |
| 13114 | 1019 | lemma update_zip: | 
| 13145 | 1020 | "!!i xy xs. length xs = length ys ==> | 
| 1021 | (zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" | |
| 1022 | by (induct ys) (auto, case_tac xs, auto split: nat.split) | |
| 13114 | 1023 | |
| 1024 | lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)" | |
| 13145 | 1025 | by (induct xs) (auto split: nat.split) | 
| 13114 | 1026 | |
| 1027 | lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" | |
| 13145 | 1028 | by (blast dest!: set_update_subset_insert [THEN subsetD]) | 
| 13114 | 1029 | |
| 15868 | 1030 | lemma set_update_memI: "!!n. n < length xs \<Longrightarrow> x \<in> set (xs[n := x])" | 
| 1031 | by (induct xs) (auto split:nat.splits) | |
| 1032 | ||
| 13114 | 1033 | |
| 15392 | 1034 | subsubsection {* @{text last} and @{text butlast} *}
 | 
| 13114 | 1035 | |
| 13142 | 1036 | lemma last_snoc [simp]: "last (xs @ [x]) = x" | 
| 13145 | 1037 | by (induct xs) auto | 
| 13114 | 1038 | |
| 13142 | 1039 | lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" | 
| 13145 | 1040 | by (induct xs) auto | 
| 13114 | 1041 | |
| 14302 | 1042 | lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x" | 
| 1043 | by(simp add:last.simps) | |
| 1044 | ||
| 1045 | lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs" | |
| 1046 | by(simp add:last.simps) | |
| 1047 | ||
| 1048 | lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" | |
| 1049 | by (induct xs) (auto) | |
| 1050 | ||
| 1051 | lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs" | |
| 1052 | by(simp add:last_append) | |
| 1053 | ||
| 1054 | lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys" | |
| 1055 | by(simp add:last_append) | |
| 1056 | ||
| 17762 | 1057 | lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs" | 
| 1058 | by(rule rev_exhaust[of xs]) simp_all | |
| 1059 | ||
| 1060 | lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs" | |
| 1061 | by(cases xs) simp_all | |
| 1062 | ||
| 17765 | 1063 | lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as" | 
| 1064 | by (induct as) auto | |
| 17762 | 1065 | |
| 13142 | 1066 | lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" | 
| 13145 | 1067 | by (induct xs rule: rev_induct) auto | 
| 13114 | 1068 | |
| 1069 | lemma butlast_append: | |
| 13145 | 1070 | "!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" | 
| 1071 | by (induct xs) auto | |
| 13114 | 1072 | |
| 13142 | 1073 | lemma append_butlast_last_id [simp]: | 
| 13145 | 1074 | "xs \<noteq> [] ==> butlast xs @ [last xs] = xs" | 
| 1075 | by (induct xs) auto | |
| 13114 | 1076 | |
| 13142 | 1077 | lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" | 
| 13145 | 1078 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1079 | |
| 1080 | lemma in_set_butlast_appendI: | |
| 13145 | 1081 | "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" | 
| 1082 | by (auto dest: in_set_butlastD simp add: butlast_append) | |
| 13114 | 1083 | |
| 17501 | 1084 | lemma last_drop[simp]: "!!n. n < length xs \<Longrightarrow> last (drop n xs) = last xs" | 
| 1085 | apply (induct xs) | |
| 1086 | apply simp | |
| 1087 | apply (auto split:nat.split) | |
| 1088 | done | |
| 1089 | ||
| 17589 | 1090 | lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)" | 
| 1091 | by(induct xs)(auto simp:neq_Nil_conv) | |
| 1092 | ||
| 15392 | 1093 | subsubsection {* @{text take} and @{text drop} *}
 | 
| 13114 | 1094 | |
| 13142 | 1095 | lemma take_0 [simp]: "take 0 xs = []" | 
| 13145 | 1096 | by (induct xs) auto | 
| 13114 | 1097 | |
| 13142 | 1098 | lemma drop_0 [simp]: "drop 0 xs = xs" | 
| 13145 | 1099 | by (induct xs) auto | 
| 13114 | 1100 | |
| 13142 | 1101 | lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" | 
| 13145 | 1102 | by simp | 
| 13114 | 1103 | |
| 13142 | 1104 | lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" | 
| 13145 | 1105 | by simp | 
| 13114 | 1106 | |
| 13142 | 1107 | declare take_Cons [simp del] and drop_Cons [simp del] | 
| 13114 | 1108 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1109 | lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1110 | by(clarsimp simp add:neq_Nil_conv) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1111 | |
| 14187 | 1112 | lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" | 
| 1113 | by(cases xs, simp_all) | |
| 1114 | ||
| 1115 | lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)" | |
| 1116 | by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split) | |
| 1117 | ||
| 1118 | lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y" | |
| 14208 | 1119 | apply (induct xs, simp) | 
| 14187 | 1120 | apply(simp add:drop_Cons nth_Cons split:nat.splits) | 
| 1121 | done | |
| 1122 | ||
| 13913 | 1123 | lemma take_Suc_conv_app_nth: | 
| 1124 | "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]" | |
| 14208 | 1125 | apply (induct xs, simp) | 
| 1126 | apply (case_tac i, auto) | |
| 13913 | 1127 | done | 
| 1128 | ||
| 14591 | 1129 | lemma drop_Suc_conv_tl: | 
| 1130 | "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs" | |
| 1131 | apply (induct xs, simp) | |
| 1132 | apply (case_tac i, auto) | |
| 1133 | done | |
| 1134 | ||
| 13142 | 1135 | lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n" | 
| 13145 | 1136 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1137 | |
| 13142 | 1138 | lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)" | 
| 13145 | 1139 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1140 | |
| 13142 | 1141 | lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs" | 
| 13145 | 1142 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1143 | |
| 13142 | 1144 | lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []" | 
| 13145 | 1145 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1146 | |
| 13142 | 1147 | lemma take_append [simp]: | 
| 13145 | 1148 | "!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" | 
| 1149 | by (induct n) (auto, case_tac xs, auto) | |
| 13114 | 1150 | |
| 13142 | 1151 | lemma drop_append [simp]: | 
| 13145 | 1152 | "!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" | 
| 1153 | by (induct n) (auto, case_tac xs, auto) | |
| 13114 | 1154 | |
| 13142 | 1155 | lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs" | 
| 14208 | 1156 | apply (induct m, auto) | 
| 1157 | apply (case_tac xs, auto) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15176diff
changeset | 1158 | apply (case_tac n, auto) | 
| 13145 | 1159 | done | 
| 13114 | 1160 | |
| 13142 | 1161 | lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs" | 
| 14208 | 1162 | apply (induct m, auto) | 
| 1163 | apply (case_tac xs, auto) | |
| 13145 | 1164 | done | 
| 13114 | 1165 | |
| 1166 | lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)" | |
| 14208 | 1167 | apply (induct m, auto) | 
| 1168 | apply (case_tac xs, auto) | |
| 13145 | 1169 | done | 
| 13114 | 1170 | |
| 14802 | 1171 | lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)" | 
| 1172 | apply(induct xs) | |
| 1173 | apply simp | |
| 1174 | apply(simp add: take_Cons drop_Cons split:nat.split) | |
| 1175 | done | |
| 1176 | ||
| 13142 | 1177 | lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs" | 
| 14208 | 1178 | apply (induct n, auto) | 
| 1179 | apply (case_tac xs, auto) | |
| 13145 | 1180 | done | 
| 13114 | 1181 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1182 | lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1183 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1184 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1185 | apply(simp add:take_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1186 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1187 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1188 | lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1189 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1190 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1191 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1192 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1193 | |
| 13114 | 1194 | lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)" | 
| 14208 | 1195 | apply (induct n, auto) | 
| 1196 | apply (case_tac xs, auto) | |
| 13145 | 1197 | done | 
| 13114 | 1198 | |
| 13142 | 1199 | lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)" | 
| 14208 | 1200 | apply (induct n, auto) | 
| 1201 | apply (case_tac xs, auto) | |
| 13145 | 1202 | done | 
| 13114 | 1203 | |
| 1204 | lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)" | |
| 14208 | 1205 | apply (induct xs, auto) | 
| 1206 | apply (case_tac i, auto) | |
| 13145 | 1207 | done | 
| 13114 | 1208 | |
| 1209 | lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)" | |
| 14208 | 1210 | apply (induct xs, auto) | 
| 1211 | apply (case_tac i, auto) | |
| 13145 | 1212 | done | 
| 13114 | 1213 | |
| 13142 | 1214 | lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i" | 
| 14208 | 1215 | apply (induct xs, auto) | 
| 1216 | apply (case_tac n, blast) | |
| 1217 | apply (case_tac i, auto) | |
| 13145 | 1218 | done | 
| 13114 | 1219 | |
| 13142 | 1220 | lemma nth_drop [simp]: | 
| 13145 | 1221 | "!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" | 
| 14208 | 1222 | apply (induct n, auto) | 
| 1223 | apply (case_tac xs, auto) | |
| 13145 | 1224 | done | 
| 3507 | 1225 | |
| 18423 | 1226 | lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n" | 
| 1227 | by(simp add: hd_conv_nth) | |
| 1228 | ||
| 14025 | 1229 | lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs" | 
| 1230 | by(induct xs)(auto simp:take_Cons split:nat.split) | |
| 1231 | ||
| 1232 | lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs" | |
| 1233 | by(induct xs)(auto simp:drop_Cons split:nat.split) | |
| 1234 | ||
| 14187 | 1235 | lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs" | 
| 1236 | using set_take_subset by fast | |
| 1237 | ||
| 1238 | lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs" | |
| 1239 | using set_drop_subset by fast | |
| 1240 | ||
| 13114 | 1241 | lemma append_eq_conv_conj: | 
| 13145 | 1242 | "!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" | 
| 14208 | 1243 | apply (induct xs, simp, clarsimp) | 
| 1244 | apply (case_tac zs, auto) | |
| 13145 | 1245 | done | 
| 13142 | 1246 | |
| 14050 | 1247 | lemma take_add [rule_format]: | 
| 1248 | "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)" | |
| 1249 | apply (induct xs, auto) | |
| 1250 | apply (case_tac i, simp_all) | |
| 1251 | done | |
| 1252 | ||
| 14300 | 1253 | lemma append_eq_append_conv_if: | 
| 1254 | "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) = | |
| 1255 | (if size xs\<^isub>1 \<le> size ys\<^isub>1 | |
| 1256 | then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2 | |
| 1257 | else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)" | |
| 1258 | apply(induct xs\<^isub>1) | |
| 1259 | apply simp | |
| 1260 | apply(case_tac ys\<^isub>1) | |
| 1261 | apply simp_all | |
| 1262 | done | |
| 1263 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1264 | lemma take_hd_drop: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1265 | "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1266 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1267 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1268 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1269 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1270 | |
| 17501 | 1271 | lemma id_take_nth_drop: | 
| 1272 | "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" | |
| 1273 | proof - | |
| 1274 | assume si: "i < length xs" | |
| 1275 | hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto | |
| 1276 | moreover | |
| 1277 | from si have "take (Suc i) xs = take i xs @ [xs!i]" | |
| 1278 | apply (rule_tac take_Suc_conv_app_nth) by arith | |
| 1279 | ultimately show ?thesis by auto | |
| 1280 | qed | |
| 1281 | ||
| 1282 | lemma upd_conv_take_nth_drop: | |
| 1283 | "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs" | |
| 1284 | proof - | |
| 1285 | assume i: "i < length xs" | |
| 1286 | have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" | |
| 1287 | by(rule arg_cong[OF id_take_nth_drop[OF i]]) | |
| 1288 | also have "\<dots> = take i xs @ a # drop (Suc i) xs" | |
| 1289 | using i by (simp add: list_update_append) | |
| 1290 | finally show ?thesis . | |
| 1291 | qed | |
| 1292 | ||
| 13114 | 1293 | |
| 15392 | 1294 | subsubsection {* @{text takeWhile} and @{text dropWhile} *}
 | 
| 13114 | 1295 | |
| 13142 | 1296 | lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" | 
| 13145 | 1297 | by (induct xs) auto | 
| 13114 | 1298 | |
| 13142 | 1299 | lemma takeWhile_append1 [simp]: | 
| 13145 | 1300 | "[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs" | 
| 1301 | by (induct xs) auto | |
| 13114 | 1302 | |
| 13142 | 1303 | lemma takeWhile_append2 [simp]: | 
| 13145 | 1304 | "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" | 
| 1305 | by (induct xs) auto | |
| 13114 | 1306 | |
| 13142 | 1307 | lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" | 
| 13145 | 1308 | by (induct xs) auto | 
| 13114 | 1309 | |
| 13142 | 1310 | lemma dropWhile_append1 [simp]: | 
| 13145 | 1311 | "[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" | 
| 1312 | by (induct xs) auto | |
| 13114 | 1313 | |
| 13142 | 1314 | lemma dropWhile_append2 [simp]: | 
| 13145 | 1315 | "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" | 
| 1316 | by (induct xs) auto | |
| 13114 | 1317 | |
| 13142 | 1318 | lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" | 
| 13145 | 1319 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1320 | |
| 13913 | 1321 | lemma takeWhile_eq_all_conv[simp]: | 
| 1322 | "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)" | |
| 1323 | by(induct xs, auto) | |
| 1324 | ||
| 1325 | lemma dropWhile_eq_Nil_conv[simp]: | |
| 1326 | "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)" | |
| 1327 | by(induct xs, auto) | |
| 1328 | ||
| 1329 | lemma dropWhile_eq_Cons_conv: | |
| 1330 | "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)" | |
| 1331 | by(induct xs, auto) | |
| 1332 | ||
| 17501 | 1333 | text{* The following two lemmmas could be generalized to an arbitrary
 | 
| 1334 | property. *} | |
| 1335 | ||
| 1336 | lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1337 | takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))" | |
| 1338 | by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) | |
| 1339 | ||
| 1340 | lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1341 | dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)" | |
| 1342 | apply(induct xs) | |
| 1343 | apply simp | |
| 1344 | apply auto | |
| 1345 | apply(subst dropWhile_append2) | |
| 1346 | apply auto | |
| 1347 | done | |
| 1348 | ||
| 18423 | 1349 | lemma takeWhile_not_last: | 
| 1350 | "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs" | |
| 1351 | apply(induct xs) | |
| 1352 | apply simp | |
| 1353 | apply(case_tac xs) | |
| 1354 | apply(auto) | |
| 1355 | done | |
| 1356 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1357 | lemma takeWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1358 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1359 | ==> takeWhile P l = takeWhile Q k" | 
| 20503 | 1360 | by (induct k arbitrary: l) (simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1361 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1362 | lemma dropWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1363 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1364 | ==> dropWhile P l = dropWhile Q k" | 
| 20503 | 1365 | by (induct k arbitrary: l, simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1366 | |
| 13114 | 1367 | |
| 15392 | 1368 | subsubsection {* @{text zip} *}
 | 
| 13114 | 1369 | |
| 13142 | 1370 | lemma zip_Nil [simp]: "zip [] ys = []" | 
| 13145 | 1371 | by (induct ys) auto | 
| 13114 | 1372 | |
| 13142 | 1373 | lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | 
| 13145 | 1374 | by simp | 
| 13114 | 1375 | |
| 13142 | 1376 | declare zip_Cons [simp del] | 
| 13114 | 1377 | |
| 15281 | 1378 | lemma zip_Cons1: | 
| 1379 | "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)" | |
| 1380 | by(auto split:list.split) | |
| 1381 | ||
| 13142 | 1382 | lemma length_zip [simp]: | 
| 13145 | 1383 | "!!xs. length (zip xs ys) = min (length xs) (length ys)" | 
| 14208 | 1384 | apply (induct ys, simp) | 
| 1385 | apply (case_tac xs, auto) | |
| 13145 | 1386 | done | 
| 13114 | 1387 | |
| 1388 | lemma zip_append1: | |
| 13145 | 1389 | "!!xs. zip (xs @ ys) zs = | 
| 1390 | zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" | |
| 14208 | 1391 | apply (induct zs, simp) | 
| 1392 | apply (case_tac xs, simp_all) | |
| 13145 | 1393 | done | 
| 13114 | 1394 | |
| 1395 | lemma zip_append2: | |
| 13145 | 1396 | "!!ys. zip xs (ys @ zs) = | 
| 1397 | zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" | |
| 14208 | 1398 | apply (induct xs, simp) | 
| 1399 | apply (case_tac ys, simp_all) | |
| 13145 | 1400 | done | 
| 13114 | 1401 | |
| 13142 | 1402 | lemma zip_append [simp]: | 
| 1403 | "[| length xs = length us; length ys = length vs |] ==> | |
| 13145 | 1404 | zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" | 
| 1405 | by (simp add: zip_append1) | |
| 13114 | 1406 | |
| 1407 | lemma zip_rev: | |
| 14247 | 1408 | "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" | 
| 1409 | by (induct rule:list_induct2, simp_all) | |
| 13114 | 1410 | |
| 13142 | 1411 | lemma nth_zip [simp]: | 
| 13145 | 1412 | "!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)" | 
| 14208 | 1413 | apply (induct ys, simp) | 
| 13145 | 1414 | apply (case_tac xs) | 
| 1415 | apply (simp_all add: nth.simps split: nat.split) | |
| 1416 | done | |
| 13114 | 1417 | |
| 1418 | lemma set_zip: | |
| 13145 | 1419 | "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
 | 
| 1420 | by (simp add: set_conv_nth cong: rev_conj_cong) | |
| 13114 | 1421 | |
| 1422 | lemma zip_update: | |
| 13145 | 1423 | "length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" | 
| 1424 | by (rule sym, simp add: update_zip) | |
| 13114 | 1425 | |
| 13142 | 1426 | lemma zip_replicate [simp]: | 
| 13145 | 1427 | "!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" | 
| 14208 | 1428 | apply (induct i, auto) | 
| 1429 | apply (case_tac j, auto) | |
| 13145 | 1430 | done | 
| 13114 | 1431 | |
| 19487 | 1432 | lemma take_zip: | 
| 1433 | "!!xs ys. take n (zip xs ys) = zip (take n xs) (take n ys)" | |
| 1434 | apply (induct n) | |
| 1435 | apply simp | |
| 1436 | apply (case_tac xs, simp) | |
| 1437 | apply (case_tac ys, simp_all) | |
| 1438 | done | |
| 1439 | ||
| 1440 | lemma drop_zip: | |
| 1441 | "!!xs ys. drop n (zip xs ys) = zip (drop n xs) (drop n ys)" | |
| 1442 | apply (induct n) | |
| 1443 | apply simp | |
| 1444 | apply (case_tac xs, simp) | |
| 1445 | apply (case_tac ys, simp_all) | |
| 1446 | done | |
| 1447 | ||
| 13142 | 1448 | |
| 15392 | 1449 | subsubsection {* @{text list_all2} *}
 | 
| 13114 | 1450 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 1451 | lemma list_all2_lengthD [intro?]: | 
| 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 1452 | "list_all2 P xs ys ==> length xs = length ys" | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1453 | by (simp add: list_all2_def) | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1454 | |
| 19787 | 1455 | lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1456 | by (simp add: list_all2_def) | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1457 | |
| 19787 | 1458 | lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" | 
| 1459 | by (simp add: list_all2_def) | |
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1460 | |
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1461 | lemma list_all2_Cons [iff, code]: | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1462 | "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1463 | by (auto simp add: list_all2_def) | 
| 13114 | 1464 | |
| 1465 | lemma list_all2_Cons1: | |
| 13145 | 1466 | "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" | 
| 1467 | by (cases ys) auto | |
| 13114 | 1468 | |
| 1469 | lemma list_all2_Cons2: | |
| 13145 | 1470 | "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" | 
| 1471 | by (cases xs) auto | |
| 13114 | 1472 | |
| 13142 | 1473 | lemma list_all2_rev [iff]: | 
| 13145 | 1474 | "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" | 
| 1475 | by (simp add: list_all2_def zip_rev cong: conj_cong) | |
| 13114 | 1476 | |
| 13863 | 1477 | lemma list_all2_rev1: | 
| 1478 | "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" | |
| 1479 | by (subst list_all2_rev [symmetric]) simp | |
| 1480 | ||
| 13114 | 1481 | lemma list_all2_append1: | 
| 13145 | 1482 | "list_all2 P (xs @ ys) zs = | 
| 1483 | (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> | |
| 1484 | list_all2 P xs us \<and> list_all2 P ys vs)" | |
| 1485 | apply (simp add: list_all2_def zip_append1) | |
| 1486 | apply (rule iffI) | |
| 1487 | apply (rule_tac x = "take (length xs) zs" in exI) | |
| 1488 | apply (rule_tac x = "drop (length xs) zs" in exI) | |
| 14208 | 1489 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 1490 | apply (simp add: ball_Un) | 
| 1491 | done | |
| 13114 | 1492 | |
| 1493 | lemma list_all2_append2: | |
| 13145 | 1494 | "list_all2 P xs (ys @ zs) = | 
| 1495 | (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> | |
| 1496 | list_all2 P us ys \<and> list_all2 P vs zs)" | |
| 1497 | apply (simp add: list_all2_def zip_append2) | |
| 1498 | apply (rule iffI) | |
| 1499 | apply (rule_tac x = "take (length ys) xs" in exI) | |
| 1500 | apply (rule_tac x = "drop (length ys) xs" in exI) | |
| 14208 | 1501 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 1502 | apply (simp add: ball_Un) | 
| 1503 | done | |
| 13114 | 1504 | |
| 13863 | 1505 | lemma list_all2_append: | 
| 14247 | 1506 | "length xs = length ys \<Longrightarrow> | 
| 1507 | list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)" | |
| 1508 | by (induct rule:list_induct2, simp_all) | |
| 13863 | 1509 | |
| 1510 | lemma list_all2_appendI [intro?, trans]: | |
| 1511 | "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)" | |
| 1512 | by (simp add: list_all2_append list_all2_lengthD) | |
| 1513 | ||
| 13114 | 1514 | lemma list_all2_conv_all_nth: | 
| 13145 | 1515 | "list_all2 P xs ys = | 
| 1516 | (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" | |
| 1517 | by (force simp add: list_all2_def set_zip) | |
| 13114 | 1518 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1519 | lemma list_all2_trans: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1520 | assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1521 | shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1522 | (is "!!bs cs. PROP ?Q as bs cs") | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1523 | proof (induct as) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1524 | fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1525 | show "!!cs. PROP ?Q (x # xs) bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1526 | proof (induct bs) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1527 | fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1528 | show "PROP ?Q (x # xs) (y # ys) cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1529 | by (induct cs) (auto intro: tr I1 I2) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1530 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1531 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1532 | |
| 13863 | 1533 | lemma list_all2_all_nthI [intro?]: | 
| 1534 | "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b" | |
| 1535 | by (simp add: list_all2_conv_all_nth) | |
| 1536 | ||
| 14395 | 1537 | lemma list_all2I: | 
| 1538 | "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b" | |
| 1539 | by (simp add: list_all2_def) | |
| 1540 | ||
| 14328 | 1541 | lemma list_all2_nthD: | 
| 13863 | 1542 | "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | 
| 1543 | by (simp add: list_all2_conv_all_nth) | |
| 1544 | ||
| 14302 | 1545 | lemma list_all2_nthD2: | 
| 1546 | "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | |
| 1547 | by (frule list_all2_lengthD) (auto intro: list_all2_nthD) | |
| 1548 | ||
| 13863 | 1549 | lemma list_all2_map1: | 
| 1550 | "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs" | |
| 1551 | by (simp add: list_all2_conv_all_nth) | |
| 1552 | ||
| 1553 | lemma list_all2_map2: | |
| 1554 | "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs" | |
| 1555 | by (auto simp add: list_all2_conv_all_nth) | |
| 1556 | ||
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 1557 | lemma list_all2_refl [intro?]: | 
| 13863 | 1558 | "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs" | 
| 1559 | by (simp add: list_all2_conv_all_nth) | |
| 1560 | ||
| 1561 | lemma list_all2_update_cong: | |
| 1562 | "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 1563 | by (simp add: list_all2_conv_all_nth nth_list_update) | |
| 1564 | ||
| 1565 | lemma list_all2_update_cong2: | |
| 1566 | "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 1567 | by (simp add: list_all2_lengthD list_all2_update_cong) | |
| 1568 | ||
| 14302 | 1569 | lemma list_all2_takeI [simp,intro?]: | 
| 1570 | "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)" | |
| 1571 | apply (induct xs) | |
| 1572 | apply simp | |
| 1573 | apply (clarsimp simp add: list_all2_Cons1) | |
| 1574 | apply (case_tac n) | |
| 1575 | apply auto | |
| 1576 | done | |
| 1577 | ||
| 1578 | lemma list_all2_dropI [simp,intro?]: | |
| 13863 | 1579 | "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)" | 
| 14208 | 1580 | apply (induct as, simp) | 
| 13863 | 1581 | apply (clarsimp simp add: list_all2_Cons1) | 
| 14208 | 1582 | apply (case_tac n, simp, simp) | 
| 13863 | 1583 | done | 
| 1584 | ||
| 14327 | 1585 | lemma list_all2_mono [intro?]: | 
| 13863 | 1586 | "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y" | 
| 14208 | 1587 | apply (induct x, simp) | 
| 1588 | apply (case_tac y, auto) | |
| 13863 | 1589 | done | 
| 1590 | ||
| 13142 | 1591 | |
| 15392 | 1592 | subsubsection {* @{text foldl} and @{text foldr} *}
 | 
| 13142 | 1593 | |
| 1594 | lemma foldl_append [simp]: | |
| 13145 | 1595 | "!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" | 
| 1596 | by (induct xs) auto | |
| 13142 | 1597 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1598 | lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1599 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1600 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1601 | lemma foldl_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1602 | "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1603 | ==> foldl f a l = foldl g b k" | 
| 20503 | 1604 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1605 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1606 | lemma foldr_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1607 | "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1608 | ==> foldr f l a = foldr g k b" | 
| 20503 | 1609 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1610 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1611 | lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1612 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1613 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1614 | lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1615 | by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"]) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1616 | |
| 13142 | 1617 | text {*
 | 
| 13145 | 1618 | Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
 | 
| 1619 | difficult to use because it requires an additional transitivity step. | |
| 13142 | 1620 | *} | 
| 1621 | ||
| 1622 | lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns" | |
| 13145 | 1623 | by (induct ns) auto | 
| 13142 | 1624 | |
| 1625 | lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns" | |
| 13145 | 1626 | by (force intro: start_le_sum simp add: in_set_conv_decomp) | 
| 13142 | 1627 | |
| 1628 | lemma sum_eq_0_conv [iff]: | |
| 13145 | 1629 | "!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" | 
| 1630 | by (induct ns) auto | |
| 13114 | 1631 | |
| 1632 | ||
| 15392 | 1633 | subsubsection {* @{text upto} *}
 | 
| 13114 | 1634 | |
| 17090 | 1635 | lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])" | 
| 1636 | -- {* simp does not terminate! *}
 | |
| 13145 | 1637 | by (induct j) auto | 
| 13142 | 1638 | |
| 15425 | 1639 | lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []" | 
| 13145 | 1640 | by (subst upt_rec) simp | 
| 13114 | 1641 | |
| 15425 | 1642 | lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)" | 
| 15281 | 1643 | by(induct j)simp_all | 
| 1644 | ||
| 1645 | lemma upt_eq_Cons_conv: | |
| 15425 | 1646 | "!!x xs. ([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)" | 
| 15281 | 1647 | apply(induct j) | 
| 1648 | apply simp | |
| 1649 | apply(clarsimp simp add: append_eq_Cons_conv) | |
| 1650 | apply arith | |
| 1651 | done | |
| 1652 | ||
| 15425 | 1653 | lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]" | 
| 13145 | 1654 | -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
 | 
| 1655 | by simp | |
| 13114 | 1656 | |
| 15425 | 1657 | lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]" | 
| 13145 | 1658 | apply(rule trans) | 
| 1659 | apply(subst upt_rec) | |
| 14208 | 1660 | prefer 2 apply (rule refl, simp) | 
| 13145 | 1661 | done | 
| 13114 | 1662 | |
| 15425 | 1663 | lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]" | 
| 13145 | 1664 | -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
 | 
| 1665 | by (induct k) auto | |
| 13114 | 1666 | |
| 15425 | 1667 | lemma length_upt [simp]: "length [i..<j] = j - i" | 
| 13145 | 1668 | by (induct j) (auto simp add: Suc_diff_le) | 
| 13114 | 1669 | |
| 15425 | 1670 | lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k" | 
| 13145 | 1671 | apply (induct j) | 
| 1672 | apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) | |
| 1673 | done | |
| 13114 | 1674 | |
| 17906 | 1675 | |
| 1676 | lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i" | |
| 1677 | by(simp add:upt_conv_Cons) | |
| 1678 | ||
| 1679 | lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1" | |
| 1680 | apply(cases j) | |
| 1681 | apply simp | |
| 1682 | by(simp add:upt_Suc_append) | |
| 1683 | ||
| 15425 | 1684 | lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..<n] = [i..<i+m]" | 
| 14208 | 1685 | apply (induct m, simp) | 
| 13145 | 1686 | apply (subst upt_rec) | 
| 1687 | apply (rule sym) | |
| 1688 | apply (subst upt_rec) | |
| 1689 | apply (simp del: upt.simps) | |
| 1690 | done | |
| 3507 | 1691 | |
| 17501 | 1692 | lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]" | 
| 1693 | apply(induct j) | |
| 1694 | apply auto | |
| 1695 | done | |
| 1696 | ||
| 15425 | 1697 | lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..n]" | 
| 13145 | 1698 | by (induct n) auto | 
| 13114 | 1699 | |
| 15425 | 1700 | lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..<n]) ! i = f(m+i)" | 
| 13145 | 1701 | apply (induct n m rule: diff_induct) | 
| 1702 | prefer 3 apply (subst map_Suc_upt[symmetric]) | |
| 1703 | apply (auto simp add: less_diff_conv nth_upt) | |
| 1704 | done | |
| 13114 | 1705 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1706 | lemma nth_take_lemma: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1707 | "!!xs ys. k <= length xs ==> k <= length ys ==> | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1708 | (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1709 | apply (atomize, induct k) | 
| 14208 | 1710 | apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify) | 
| 13145 | 1711 | txt {* Both lists must be non-empty *}
 | 
| 14208 | 1712 | apply (case_tac xs, simp) | 
| 1713 | apply (case_tac ys, clarify) | |
| 13145 | 1714 | apply (simp (no_asm_use)) | 
| 1715 | apply clarify | |
| 1716 | txt {* prenexing's needed, not miniscoping *}
 | |
| 1717 | apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) | |
| 1718 | apply blast | |
| 1719 | done | |
| 13114 | 1720 | |
| 1721 | lemma nth_equalityI: | |
| 1722 | "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" | |
| 13145 | 1723 | apply (frule nth_take_lemma [OF le_refl eq_imp_le]) | 
| 1724 | apply (simp_all add: take_all) | |
| 1725 | done | |
| 13142 | 1726 | |
| 13863 | 1727 | (* needs nth_equalityI *) | 
| 1728 | lemma list_all2_antisym: | |
| 1729 | "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> | |
| 1730 | \<Longrightarrow> xs = ys" | |
| 1731 | apply (simp add: list_all2_conv_all_nth) | |
| 14208 | 1732 | apply (rule nth_equalityI, blast, simp) | 
| 13863 | 1733 | done | 
| 1734 | ||
| 13142 | 1735 | lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" | 
| 13145 | 1736 | -- {* The famous take-lemma. *}
 | 
| 1737 | apply (drule_tac x = "max (length xs) (length ys)" in spec) | |
| 1738 | apply (simp add: le_max_iff_disj take_all) | |
| 1739 | done | |
| 13142 | 1740 | |
| 1741 | ||
| 15302 | 1742 | lemma take_Cons': | 
| 1743 | "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" | |
| 1744 | by (cases n) simp_all | |
| 1745 | ||
| 1746 | lemma drop_Cons': | |
| 1747 | "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" | |
| 1748 | by (cases n) simp_all | |
| 1749 | ||
| 1750 | lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" | |
| 1751 | by (cases n) simp_all | |
| 1752 | ||
| 18622 | 1753 | lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard] | 
| 1754 | lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard] | |
| 1755 | lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard] | |
| 1756 | ||
| 1757 | declare take_Cons_number_of [simp] | |
| 1758 | drop_Cons_number_of [simp] | |
| 1759 | nth_Cons_number_of [simp] | |
| 15302 | 1760 | |
| 1761 | ||
| 15392 | 1762 | subsubsection {* @{text "distinct"} and @{text remdups} *}
 | 
| 13142 | 1763 | |
| 1764 | lemma distinct_append [simp]: | |
| 13145 | 1765 | "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
 | 
| 1766 | by (induct xs) auto | |
| 13142 | 1767 | |
| 15305 | 1768 | lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" | 
| 1769 | by(induct xs) auto | |
| 1770 | ||
| 13142 | 1771 | lemma set_remdups [simp]: "set (remdups xs) = set xs" | 
| 13145 | 1772 | by (induct xs) (auto simp add: insert_absorb) | 
| 13142 | 1773 | |
| 1774 | lemma distinct_remdups [iff]: "distinct (remdups xs)" | |
| 13145 | 1775 | by (induct xs) auto | 
| 13142 | 1776 | |
| 15072 | 1777 | lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" | 
| 15251 | 1778 | by (induct x, auto) | 
| 15072 | 1779 | |
| 1780 | lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" | |
| 15251 | 1781 | by (induct x, auto) | 
| 15072 | 1782 | |
| 15245 | 1783 | lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs" | 
| 1784 | by (induct xs) auto | |
| 1785 | ||
| 1786 | lemma length_remdups_eq[iff]: | |
| 1787 | "(length (remdups xs) = length xs) = (remdups xs = xs)" | |
| 1788 | apply(induct xs) | |
| 1789 | apply auto | |
| 1790 | apply(subgoal_tac "length (remdups xs) <= length xs") | |
| 1791 | apply arith | |
| 1792 | apply(rule length_remdups_leq) | |
| 1793 | done | |
| 1794 | ||
| 18490 | 1795 | |
| 1796 | lemma distinct_map: | |
| 1797 | "distinct(map f xs) = (distinct xs & inj_on f (set xs))" | |
| 1798 | by (induct xs) auto | |
| 1799 | ||
| 1800 | ||
| 13142 | 1801 | lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" | 
| 13145 | 1802 | by (induct xs) auto | 
| 13114 | 1803 | |
| 17501 | 1804 | lemma distinct_upt[simp]: "distinct[i..<j]" | 
| 1805 | by (induct j) auto | |
| 1806 | ||
| 1807 | lemma distinct_take[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (take i xs)" | |
| 1808 | apply(induct xs) | |
| 1809 | apply simp | |
| 1810 | apply (case_tac i) | |
| 1811 | apply simp_all | |
| 1812 | apply(blast dest:in_set_takeD) | |
| 1813 | done | |
| 1814 | ||
| 1815 | lemma distinct_drop[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (drop i xs)" | |
| 1816 | apply(induct xs) | |
| 1817 | apply simp | |
| 1818 | apply (case_tac i) | |
| 1819 | apply simp_all | |
| 1820 | done | |
| 1821 | ||
| 1822 | lemma distinct_list_update: | |
| 1823 | assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
 | |
| 1824 | shows "distinct (xs[i:=a])" | |
| 1825 | proof (cases "i < length xs") | |
| 1826 | case True | |
| 1827 |   with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
 | |
| 1828 | apply (drule_tac id_take_nth_drop) by simp | |
| 1829 | with d True show ?thesis | |
| 1830 | apply (simp add: upd_conv_take_nth_drop) | |
| 1831 | apply (drule subst [OF id_take_nth_drop]) apply assumption | |
| 1832 | apply simp apply (cases "a = xs!i") apply simp by blast | |
| 1833 | next | |
| 1834 | case False with d show ?thesis by auto | |
| 1835 | qed | |
| 1836 | ||
| 1837 | ||
| 1838 | text {* It is best to avoid this indexed version of distinct, but
 | |
| 1839 | sometimes it is useful. *} | |
| 1840 | ||
| 13142 | 1841 | lemma distinct_conv_nth: | 
| 17501 | 1842 | "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)" | 
| 15251 | 1843 | apply (induct xs, simp, simp) | 
| 14208 | 1844 | apply (rule iffI, clarsimp) | 
| 13145 | 1845 | apply (case_tac i) | 
| 14208 | 1846 | apply (case_tac j, simp) | 
| 13145 | 1847 | apply (simp add: set_conv_nth) | 
| 1848 | apply (case_tac j) | |
| 14208 | 1849 | apply (clarsimp simp add: set_conv_nth, simp) | 
| 13145 | 1850 | apply (rule conjI) | 
| 1851 | apply (clarsimp simp add: set_conv_nth) | |
| 17501 | 1852 | apply (erule_tac x = 0 in allE, simp) | 
| 14208 | 1853 | apply (erule_tac x = "Suc i" in allE, simp, clarsimp) | 
| 17501 | 1854 | apply (erule_tac x = "Suc i" in allE, simp) | 
| 14208 | 1855 | apply (erule_tac x = "Suc j" in allE, simp) | 
| 13145 | 1856 | done | 
| 13114 | 1857 | |
| 18490 | 1858 | lemma nth_eq_iff_index_eq: | 
| 1859 | "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)" | |
| 1860 | by(auto simp: distinct_conv_nth) | |
| 1861 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1862 | lemma distinct_card: "distinct xs ==> card (set xs) = size xs" | 
| 14388 | 1863 | by (induct xs) auto | 
| 1864 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1865 | lemma card_distinct: "card (set xs) = size xs ==> distinct xs" | 
| 14388 | 1866 | proof (induct xs) | 
| 1867 | case Nil thus ?case by simp | |
| 1868 | next | |
| 1869 | case (Cons x xs) | |
| 1870 | show ?case | |
| 1871 | proof (cases "x \<in> set xs") | |
| 1872 | case False with Cons show ?thesis by simp | |
| 1873 | next | |
| 1874 | case True with Cons.prems | |
| 1875 | have "card (set xs) = Suc (length xs)" | |
| 1876 | by (simp add: card_insert_if split: split_if_asm) | |
| 1877 | moreover have "card (set xs) \<le> length xs" by (rule card_length) | |
| 1878 | ultimately have False by simp | |
| 1879 | thus ?thesis .. | |
| 1880 | qed | |
| 1881 | qed | |
| 1882 | ||
| 18490 | 1883 | |
| 1884 | lemma length_remdups_concat: | |
| 1885 | "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)" | |
| 1886 | by(simp add: distinct_card[symmetric]) | |
| 17906 | 1887 | |
| 1888 | ||
| 15392 | 1889 | subsubsection {* @{text remove1} *}
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1890 | |
| 18049 | 1891 | lemma remove1_append: | 
| 1892 | "remove1 x (xs @ ys) = | |
| 1893 | (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)" | |
| 1894 | by (induct xs) auto | |
| 1895 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1896 | lemma set_remove1_subset: "set(remove1 x xs) <= set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1897 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1898 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1899 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1900 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1901 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1902 | |
| 17724 | 1903 | lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1904 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1905 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1906 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1907 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1908 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1909 | |
| 18049 | 1910 | lemma remove1_filter_not[simp]: | 
| 1911 | "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs" | |
| 1912 | by(induct xs) auto | |
| 1913 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1914 | lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1915 | apply(insert set_remove1_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1916 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1917 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1918 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1919 | lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1920 | by (induct xs) simp_all | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1921 | |
| 13114 | 1922 | |
| 15392 | 1923 | subsubsection {* @{text replicate} *}
 | 
| 13114 | 1924 | |
| 13142 | 1925 | lemma length_replicate [simp]: "length (replicate n x) = n" | 
| 13145 | 1926 | by (induct n) auto | 
| 13124 | 1927 | |
| 13142 | 1928 | lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" | 
| 13145 | 1929 | by (induct n) auto | 
| 13114 | 1930 | |
| 1931 | lemma replicate_app_Cons_same: | |
| 13145 | 1932 | "(replicate n x) @ (x # xs) = x # replicate n x @ xs" | 
| 1933 | by (induct n) auto | |
| 13114 | 1934 | |
| 13142 | 1935 | lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" | 
| 14208 | 1936 | apply (induct n, simp) | 
| 13145 | 1937 | apply (simp add: replicate_app_Cons_same) | 
| 1938 | done | |
| 13114 | 1939 | |
| 13142 | 1940 | lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" | 
| 13145 | 1941 | by (induct n) auto | 
| 13114 | 1942 | |
| 16397 | 1943 | text{* Courtesy of Matthias Daum: *}
 | 
| 1944 | lemma append_replicate_commute: | |
| 1945 | "replicate n x @ replicate k x = replicate k x @ replicate n x" | |
| 1946 | apply (simp add: replicate_add [THEN sym]) | |
| 1947 | apply (simp add: add_commute) | |
| 1948 | done | |
| 1949 | ||
| 13142 | 1950 | lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" | 
| 13145 | 1951 | by (induct n) auto | 
| 13114 | 1952 | |
| 13142 | 1953 | lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x" | 
| 13145 | 1954 | by (induct n) auto | 
| 13114 | 1955 | |
| 13142 | 1956 | lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" | 
| 13145 | 1957 | by (atomize (full), induct n) auto | 
| 13114 | 1958 | |
| 13142 | 1959 | lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x" | 
| 14208 | 1960 | apply (induct n, simp) | 
| 13145 | 1961 | apply (simp add: nth_Cons split: nat.split) | 
| 1962 | done | |
| 13114 | 1963 | |
| 16397 | 1964 | text{* Courtesy of Matthias Daum (2 lemmas): *}
 | 
| 1965 | lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" | |
| 1966 | apply (case_tac "k \<le> i") | |
| 1967 | apply (simp add: min_def) | |
| 1968 | apply (drule not_leE) | |
| 1969 | apply (simp add: min_def) | |
| 1970 | apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x") | |
| 1971 | apply simp | |
| 1972 | apply (simp add: replicate_add [symmetric]) | |
| 1973 | done | |
| 1974 | ||
| 1975 | lemma drop_replicate[simp]: "!!i. drop i (replicate k x) = replicate (k-i) x" | |
| 1976 | apply (induct k) | |
| 1977 | apply simp | |
| 1978 | apply clarsimp | |
| 1979 | apply (case_tac i) | |
| 1980 | apply simp | |
| 1981 | apply clarsimp | |
| 1982 | done | |
| 1983 | ||
| 1984 | ||
| 13142 | 1985 | lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
 | 
| 13145 | 1986 | by (induct n) auto | 
| 13114 | 1987 | |
| 13142 | 1988 | lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
 | 
| 13145 | 1989 | by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) | 
| 13114 | 1990 | |
| 13142 | 1991 | lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
 | 
| 13145 | 1992 | by auto | 
| 13114 | 1993 | |
| 13142 | 1994 | lemma in_set_replicateD: "x : set (replicate n y) ==> x = y" | 
| 13145 | 1995 | by (simp add: set_replicate_conv_if split: split_if_asm) | 
| 13114 | 1996 | |
| 1997 | ||
| 15392 | 1998 | subsubsection{*@{text rotate1} and @{text rotate}*}
 | 
| 15302 | 1999 | |
| 2000 | lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]" | |
| 2001 | by(simp add:rotate1_def) | |
| 2002 | ||
| 2003 | lemma rotate0[simp]: "rotate 0 = id" | |
| 2004 | by(simp add:rotate_def) | |
| 2005 | ||
| 2006 | lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" | |
| 2007 | by(simp add:rotate_def) | |
| 2008 | ||
| 2009 | lemma rotate_add: | |
| 2010 | "rotate (m+n) = rotate m o rotate n" | |
| 2011 | by(simp add:rotate_def funpow_add) | |
| 2012 | ||
| 2013 | lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" | |
| 2014 | by(simp add:rotate_add) | |
| 2015 | ||
| 18049 | 2016 | lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" | 
| 2017 | by(simp add:rotate_def funpow_swap1) | |
| 2018 | ||
| 15302 | 2019 | lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs" | 
| 2020 | by(cases xs) simp_all | |
| 2021 | ||
| 2022 | lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs" | |
| 2023 | apply(induct n) | |
| 2024 | apply simp | |
| 2025 | apply (simp add:rotate_def) | |
| 13145 | 2026 | done | 
| 13114 | 2027 | |
| 15302 | 2028 | lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]" | 
| 2029 | by(simp add:rotate1_def split:list.split) | |
| 2030 | ||
| 2031 | lemma rotate_drop_take: | |
| 2032 | "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" | |
| 2033 | apply(induct n) | |
| 2034 | apply simp | |
| 2035 | apply(simp add:rotate_def) | |
| 2036 | apply(cases "xs = []") | |
| 2037 | apply (simp) | |
| 2038 | apply(case_tac "n mod length xs = 0") | |
| 2039 | apply(simp add:mod_Suc) | |
| 2040 | apply(simp add: rotate1_hd_tl drop_Suc take_Suc) | |
| 2041 | apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] | |
| 2042 | take_hd_drop linorder_not_le) | |
| 13145 | 2043 | done | 
| 13114 | 2044 | |
| 15302 | 2045 | lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" | 
| 2046 | by(simp add:rotate_drop_take) | |
| 2047 | ||
| 2048 | lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs" | |
| 2049 | by(simp add:rotate_drop_take) | |
| 2050 | ||
| 2051 | lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" | |
| 2052 | by(simp add:rotate1_def split:list.split) | |
| 2053 | ||
| 2054 | lemma length_rotate[simp]: "!!xs. length(rotate n xs) = length xs" | |
| 2055 | by (induct n) (simp_all add:rotate_def) | |
| 2056 | ||
| 2057 | lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" | |
| 2058 | by(simp add:rotate1_def split:list.split) blast | |
| 2059 | ||
| 2060 | lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" | |
| 2061 | by (induct n) (simp_all add:rotate_def) | |
| 2062 | ||
| 2063 | lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" | |
| 2064 | by(simp add:rotate_drop_take take_map drop_map) | |
| 2065 | ||
| 2066 | lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" | |
| 2067 | by(simp add:rotate1_def split:list.split) | |
| 2068 | ||
| 2069 | lemma set_rotate[simp]: "set(rotate n xs) = set xs" | |
| 2070 | by (induct n) (simp_all add:rotate_def) | |
| 2071 | ||
| 2072 | lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" | |
| 2073 | by(simp add:rotate1_def split:list.split) | |
| 2074 | ||
| 2075 | lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" | |
| 2076 | by (induct n) (simp_all add:rotate_def) | |
| 13114 | 2077 | |
| 15439 | 2078 | lemma rotate_rev: | 
| 2079 | "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" | |
| 2080 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 2081 | apply(cases "length xs = 0") | |
| 2082 | apply simp | |
| 2083 | apply(cases "n mod length xs = 0") | |
| 2084 | apply simp | |
| 2085 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 2086 | done | |
| 2087 | ||
| 18423 | 2088 | lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)" | 
| 2089 | apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth) | |
| 2090 | apply(subgoal_tac "length xs \<noteq> 0") | |
| 2091 | prefer 2 apply simp | |
| 2092 | using mod_less_divisor[of "length xs" n] by arith | |
| 2093 | ||
| 13114 | 2094 | |
| 15392 | 2095 | subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
 | 
| 13114 | 2096 | |
| 13142 | 2097 | lemma sublist_empty [simp]: "sublist xs {} = []"
 | 
| 13145 | 2098 | by (auto simp add: sublist_def) | 
| 13114 | 2099 | |
| 13142 | 2100 | lemma sublist_nil [simp]: "sublist [] A = []" | 
| 13145 | 2101 | by (auto simp add: sublist_def) | 
| 13114 | 2102 | |
| 15281 | 2103 | lemma length_sublist: | 
| 2104 |   "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
 | |
| 2105 | by(simp add: sublist_def length_filter_conv_card cong:conj_cong) | |
| 2106 | ||
| 2107 | lemma sublist_shift_lemma_Suc: | |
| 2108 | "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) = | |
| 2109 | map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))" | |
| 2110 | apply(induct xs) | |
| 2111 | apply simp | |
| 2112 | apply (case_tac "is") | |
| 2113 | apply simp | |
| 2114 | apply simp | |
| 2115 | done | |
| 2116 | ||
| 13114 | 2117 | lemma sublist_shift_lemma: | 
| 15425 | 2118 | "map fst [p:zip xs [i..<i + length xs] . snd p : A] = | 
| 2119 | map fst [p:zip xs [0..<length xs] . snd p + i : A]" | |
| 13145 | 2120 | by (induct xs rule: rev_induct) (simp_all add: add_commute) | 
| 13114 | 2121 | |
| 2122 | lemma sublist_append: | |
| 15168 | 2123 |      "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
 | 
| 13145 | 2124 | apply (unfold sublist_def) | 
| 14208 | 2125 | apply (induct l' rule: rev_induct, simp) | 
| 13145 | 2126 | apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) | 
| 2127 | apply (simp add: add_commute) | |
| 2128 | done | |
| 13114 | 2129 | |
| 2130 | lemma sublist_Cons: | |
| 13145 | 2131 | "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
 | 
| 2132 | apply (induct l rule: rev_induct) | |
| 2133 | apply (simp add: sublist_def) | |
| 2134 | apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) | |
| 2135 | done | |
| 13114 | 2136 | |
| 15281 | 2137 | lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
 | 
| 2138 | apply(induct xs) | |
| 2139 | apply simp | |
| 2140 | apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE) | |
| 2141 | apply(erule lessE) | |
| 2142 | apply auto | |
| 2143 | apply(erule lessE) | |
| 2144 | apply auto | |
| 2145 | done | |
| 2146 | ||
| 2147 | lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs" | |
| 2148 | by(auto simp add:set_sublist) | |
| 2149 | ||
| 2150 | lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)" | |
| 2151 | by(auto simp add:set_sublist) | |
| 2152 | ||
| 2153 | lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs" | |
| 2154 | by(auto simp add:set_sublist) | |
| 2155 | ||
| 13142 | 2156 | lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" | 
| 13145 | 2157 | by (simp add: sublist_Cons) | 
| 13114 | 2158 | |
| 15281 | 2159 | |
| 2160 | lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)" | |
| 2161 | apply(induct xs) | |
| 2162 | apply simp | |
| 2163 | apply(auto simp add:sublist_Cons) | |
| 2164 | done | |
| 2165 | ||
| 2166 | ||
| 15045 | 2167 | lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
 | 
| 14208 | 2168 | apply (induct l rule: rev_induct, simp) | 
| 13145 | 2169 | apply (simp split: nat_diff_split add: sublist_append) | 
| 2170 | done | |
| 13114 | 2171 | |
| 17501 | 2172 | lemma filter_in_sublist: "\<And>s. distinct xs \<Longrightarrow> | 
| 2173 | filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s" | |
| 2174 | proof (induct xs) | |
| 2175 | case Nil thus ?case by simp | |
| 2176 | next | |
| 2177 | case (Cons a xs) | |
| 2178 | moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto | |
| 2179 | ultimately show ?case by(simp add: sublist_Cons cong:filter_cong) | |
| 2180 | qed | |
| 2181 | ||
| 13114 | 2182 | |
| 19390 | 2183 | subsubsection {* @{const splice} *}
 | 
| 2184 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2185 | lemma splice_Nil2 [simp, code]: | 
| 19390 | 2186 | "splice xs [] = xs" | 
| 2187 | by (cases xs) simp_all | |
| 2188 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2189 | lemma splice_Cons_Cons [simp, code]: | 
| 19390 | 2190 | "splice (x#xs) (y#ys) = x # y # splice xs ys" | 
| 2191 | by simp | |
| 2192 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2193 | declare splice.simps(2) [simp del, code del] | 
| 19390 | 2194 | |
| 15392 | 2195 | subsubsection{*Sets of Lists*}
 | 
| 2196 | ||
| 2197 | subsubsection {* @{text lists}: the list-forming operator over sets *}
 | |
| 15302 | 2198 | |
| 2199 | consts lists :: "'a set => 'a list set" | |
| 2200 | inductive "lists A" | |
| 2201 | intros | |
| 2202 | Nil [intro!]: "[]: lists A" | |
| 2203 | Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A" | |
| 2204 | ||
| 2205 | inductive_cases listsE [elim!]: "x#l : lists A" | |
| 2206 | ||
| 2207 | lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B" | |
| 2208 | by (unfold lists.defs) (blast intro!: lfp_mono) | |
| 2209 | ||
| 2210 | lemma lists_IntI: | |
| 2211 | assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l | |
| 2212 | by induct blast+ | |
| 2213 | ||
| 2214 | lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B" | |
| 2215 | proof (rule mono_Int [THEN equalityI]) | |
| 2216 | show "mono lists" by (simp add: mono_def lists_mono) | |
| 2217 | show "lists A \<inter> lists B \<subseteq> lists (A \<inter> B)" by (blast intro: lists_IntI) | |
| 14388 | 2218 | qed | 
| 2219 | ||
| 15302 | 2220 | lemma append_in_lists_conv [iff]: | 
| 2221 | "(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)" | |
| 2222 | by (induct xs) auto | |
| 2223 | ||
| 2224 | lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)" | |
| 2225 | -- {* eliminate @{text lists} in favour of @{text set} *}
 | |
| 2226 | by (induct xs) auto | |
| 2227 | ||
| 2228 | lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A" | |
| 2229 | by (rule in_lists_conv_set [THEN iffD1]) | |
| 2230 | ||
| 2231 | lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A" | |
| 2232 | by (rule in_lists_conv_set [THEN iffD2]) | |
| 2233 | ||
| 2234 | lemma lists_UNIV [simp]: "lists UNIV = UNIV" | |
| 2235 | by auto | |
| 2236 | ||
| 17086 | 2237 | subsubsection {* For efficiency *}
 | 
| 2238 | ||
| 2239 | text{* Only use @{text mem} for generating executable code.  Otherwise
 | |
| 2240 | use @{prop"x : set xs"} instead --- it is much easier to reason about.
 | |
| 2241 | The same is true for @{const list_all} and @{const list_ex}: write
 | |
| 2242 | @{text"\<forall>x\<in>set xs"} and @{text"\<exists>x\<in>set xs"} instead because the HOL
 | |
| 19817 | 2243 | quantifiers are aleady known to the automatic provers. In fact, | 
| 2244 | the declarations in the code subsection make sure that @{text"\<in>"}, @{text"\<forall>x\<in>set xs"}
 | |
| 17090 | 2245 | and @{text"\<exists>x\<in>set xs"} are implemented efficiently.
 | 
| 17086 | 2246 | |
| 2247 | The functions @{const itrev}, @{const filtermap} and @{const
 | |
| 2248 | map_filter} are just there to generate efficient code. Do not use them | |
| 2249 | for modelling and proving. *} | |
| 2250 | ||
| 2251 | lemma mem_iff: "(x mem xs) = (x : set xs)" | |
| 2252 | by (induct xs) auto | |
| 2253 | ||
| 2254 | lemma list_inter_conv: "set(list_inter xs ys) = set xs \<inter> set ys" | |
| 2255 | by (induct xs) auto | |
| 2256 | ||
| 2257 | lemma list_all_iff: "list_all P xs = (\<forall>x \<in> set xs. P x)" | |
| 2258 | by (induct xs) auto | |
| 2259 | ||
| 2260 | lemma list_all_append [simp]: | |
| 2261 | "list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)" | |
| 2262 | by (induct xs) auto | |
| 2263 | ||
| 2264 | lemma list_all_rev [simp]: "list_all P (rev xs) = list_all P xs" | |
| 2265 | by (simp add: list_all_iff) | |
| 2266 | ||
| 2267 | lemma list_ex_iff: "list_ex P xs = (\<exists>x \<in> set xs. P x)" | |
| 2268 | by (induct xs) simp_all | |
| 2269 | ||
| 2270 | lemma itrev[simp]: "ALL ys. itrev xs ys = rev xs @ ys" | |
| 2271 | by (induct xs) simp_all | |
| 2272 | ||
| 2273 | lemma filtermap_conv: | |
| 18447 | 2274 | "filtermap f xs = map (%x. the(f x)) (filter (%x. f x \<noteq> None) xs)" | 
| 2275 | by (induct xs) (simp_all split: option.split) | |
| 17086 | 2276 | |
| 2277 | lemma map_filter_conv[simp]: "map_filter f P xs = map f (filter P xs)" | |
| 2278 | by (induct xs) auto | |
| 2279 | ||
| 2280 | ||
| 2281 | subsubsection {* Code generation *}
 | |
| 2282 | ||
| 2283 | text{* Defaults for generating efficient code for some standard functions. *}
 | |
| 2284 | ||
| 17090 | 2285 | lemmas in_set_code[code unfold] = mem_iff[symmetric, THEN eq_reflection] | 
| 2286 | ||
| 2287 | lemma rev_code[code unfold]: "rev xs == itrev xs []" | |
| 17086 | 2288 | by simp | 
| 2289 | ||
| 17090 | 2290 | lemma distinct_Cons_mem[code]: "distinct (x#xs) = (~(x mem xs) \<and> distinct xs)" | 
| 17086 | 2291 | by (simp add:mem_iff) | 
| 2292 | ||
| 17090 | 2293 | lemma remdups_Cons_mem[code]: | 
| 17086 | 2294 | "remdups (x#xs) = (if x mem xs then remdups xs else x # remdups xs)" | 
| 2295 | by (simp add:mem_iff) | |
| 2296 | ||
| 17090 | 2297 | lemma list_inter_Cons_mem[code]: "list_inter (a#as) bs = | 
| 17086 | 2298 | (if a mem bs then a#(list_inter as bs) else list_inter as bs)" | 
| 2299 | by(simp add:mem_iff) | |
| 2300 | ||
| 17090 | 2301 | text{* For implementing bounded quantifiers over lists by
 | 
| 2302 | @{const list_ex}/@{const list_all}: *}
 | |
| 2303 | ||
| 2304 | lemmas list_bex_code[code unfold] = list_ex_iff[symmetric, THEN eq_reflection] | |
| 2305 | lemmas list_ball_code[code unfold] = list_all_iff[symmetric, THEN eq_reflection] | |
| 17086 | 2306 | |
| 2307 | ||
| 2308 | subsubsection{* Inductive definition for membership *}
 | |
| 2309 | ||
| 2310 | consts ListMem :: "('a \<times> 'a list)set"
 | |
| 2311 | inductive ListMem | |
| 2312 | intros | |
| 2313 | elem: "(x,x#xs) \<in> ListMem" | |
| 2314 | insert: "(x,xs) \<in> ListMem \<Longrightarrow> (x,y#xs) \<in> ListMem" | |
| 2315 | ||
| 2316 | lemma ListMem_iff: "((x,xs) \<in> ListMem) = (x \<in> set xs)" | |
| 2317 | apply (rule iffI) | |
| 2318 | apply (induct set: ListMem) | |
| 2319 | apply auto | |
| 2320 | apply (induct xs) | |
| 2321 | apply (auto intro: ListMem.intros) | |
| 2322 | done | |
| 2323 | ||
| 2324 | ||
| 2325 | ||
| 15392 | 2326 | subsubsection{*Lists as Cartesian products*}
 | 
| 15302 | 2327 | |
| 2328 | text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
 | |
| 2329 | @{term A} and tail drawn from @{term Xs}.*}
 | |
| 2330 | ||
| 2331 | constdefs | |
| 2332 | set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set" | |
| 2333 |   "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
 | |
| 2334 | ||
| 17724 | 2335 | lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
 | 
| 15302 | 2336 | by (auto simp add: set_Cons_def) | 
| 2337 | ||
| 2338 | text{*Yields the set of lists, all of the same length as the argument and
 | |
| 2339 | with elements drawn from the corresponding element of the argument.*} | |
| 2340 | ||
| 2341 | consts listset :: "'a set list \<Rightarrow> 'a list set" | |
| 2342 | primrec | |
| 2343 |    "listset []    = {[]}"
 | |
| 2344 | "listset(A#As) = set_Cons A (listset As)" | |
| 2345 | ||
| 2346 | ||
| 15656 | 2347 | subsection{*Relations on Lists*}
 | 
| 2348 | ||
| 2349 | subsubsection {* Length Lexicographic Ordering *}
 | |
| 2350 | ||
| 2351 | text{*These orderings preserve well-foundedness: shorter lists 
 | |
| 2352 | precede longer lists. These ordering are not used in dictionaries.*} | |
| 2353 | ||
| 2354 | consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
 | |
| 2355 |         --{*The lexicographic ordering for lists of the specified length*}
 | |
| 15302 | 2356 | primrec | 
| 15656 | 2357 |   "lexn r 0 = {}"
 | 
| 2358 | "lexn r (Suc n) = | |
| 2359 | (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int | |
| 2360 |     {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
 | |
| 15302 | 2361 | |
| 2362 | constdefs | |
| 15656 | 2363 |   lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
 | 
| 2364 | "lex r == \<Union>n. lexn r n" | |
| 2365 |         --{*Holds only between lists of the same length*}
 | |
| 2366 | ||
| 15693 | 2367 |   lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
 | 
| 2368 | "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))" | |
| 15656 | 2369 |         --{*Compares lists by their length and then lexicographically*}
 | 
| 15302 | 2370 | |
| 2371 | ||
| 2372 | lemma wf_lexn: "wf r ==> wf (lexn r n)" | |
| 2373 | apply (induct n, simp, simp) | |
| 2374 | apply(rule wf_subset) | |
| 2375 | prefer 2 apply (rule Int_lower1) | |
| 2376 | apply(rule wf_prod_fun_image) | |
| 2377 | prefer 2 apply (rule inj_onI, auto) | |
| 2378 | done | |
| 2379 | ||
| 2380 | lemma lexn_length: | |
| 2381 | "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" | |
| 2382 | by (induct n) auto | |
| 2383 | ||
| 2384 | lemma wf_lex [intro!]: "wf r ==> wf (lex r)" | |
| 2385 | apply (unfold lex_def) | |
| 2386 | apply (rule wf_UN) | |
| 2387 | apply (blast intro: wf_lexn, clarify) | |
| 2388 | apply (rename_tac m n) | |
| 2389 | apply (subgoal_tac "m \<noteq> n") | |
| 2390 | prefer 2 apply blast | |
| 2391 | apply (blast dest: lexn_length not_sym) | |
| 2392 | done | |
| 2393 | ||
| 2394 | lemma lexn_conv: | |
| 15656 | 2395 | "lexn r n = | 
| 2396 |     {(xs,ys). length xs = n \<and> length ys = n \<and>
 | |
| 2397 | (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" | |
| 18423 | 2398 | apply (induct n, simp) | 
| 15302 | 2399 | apply (simp add: image_Collect lex_prod_def, safe, blast) | 
| 2400 | apply (rule_tac x = "ab # xys" in exI, simp) | |
| 2401 | apply (case_tac xys, simp_all, blast) | |
| 2402 | done | |
| 2403 | ||
| 2404 | lemma lex_conv: | |
| 15656 | 2405 | "lex r = | 
| 2406 |     {(xs,ys). length xs = length ys \<and>
 | |
| 2407 | (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" | |
| 15302 | 2408 | by (force simp add: lex_def lexn_conv) | 
| 2409 | ||
| 15693 | 2410 | lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)" | 
| 2411 | by (unfold lenlex_def) blast | |
| 2412 | ||
| 2413 | lemma lenlex_conv: | |
| 2414 |     "lenlex r = {(xs,ys). length xs < length ys |
 | |
| 15656 | 2415 | length xs = length ys \<and> (xs, ys) : lex r}" | 
| 19623 | 2416 | by (simp add: lenlex_def diag_def lex_prod_def inv_image_def) | 
| 15302 | 2417 | |
| 2418 | lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" | |
| 2419 | by (simp add: lex_conv) | |
| 2420 | ||
| 2421 | lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" | |
| 2422 | by (simp add:lex_conv) | |
| 2423 | ||
| 18447 | 2424 | lemma Cons_in_lex [simp]: | 
| 15656 | 2425 | "((x # xs, y # ys) : lex r) = | 
| 2426 | ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)" | |
| 15302 | 2427 | apply (simp add: lex_conv) | 
| 2428 | apply (rule iffI) | |
| 2429 | prefer 2 apply (blast intro: Cons_eq_appendI, clarify) | |
| 2430 | apply (case_tac xys, simp, simp) | |
| 2431 | apply blast | |
| 2432 | done | |
| 2433 | ||
| 2434 | ||
| 15656 | 2435 | subsubsection {* Lexicographic Ordering *}
 | 
| 2436 | ||
| 2437 | text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
 | |
| 2438 |     This ordering does \emph{not} preserve well-foundedness.
 | |
| 17090 | 2439 | Author: N. Voelker, March 2005. *} | 
| 15656 | 2440 | |
| 2441 | constdefs | |
| 2442 |   lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
 | |
| 2443 |   "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
 | |
| 2444 | (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}" | |
| 2445 | ||
| 2446 | lemma lexord_Nil_left[simp]: "([],y) \<in> lexord r = (\<exists> a x. y = a # x)" | |
| 2447 | by (unfold lexord_def, induct_tac y, auto) | |
| 2448 | ||
| 2449 | lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r" | |
| 2450 | by (unfold lexord_def, induct_tac x, auto) | |
| 2451 | ||
| 2452 | lemma lexord_cons_cons[simp]: | |
| 2453 | "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))" | |
| 2454 | apply (unfold lexord_def, safe, simp_all) | |
| 2455 | apply (case_tac u, simp, simp) | |
| 2456 | apply (case_tac u, simp, clarsimp, blast, blast, clarsimp) | |
| 2457 | apply (erule_tac x="b # u" in allE) | |
| 2458 | by force | |
| 2459 | ||
| 2460 | lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons | |
| 2461 | ||
| 2462 | lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r" | |
| 2463 | by (induct_tac x, auto) | |
| 2464 | ||
| 2465 | lemma lexord_append_left_rightI: | |
| 2466 | "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r" | |
| 2467 | by (induct_tac u, auto) | |
| 2468 | ||
| 2469 | lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r" | |
| 2470 | by (induct x, auto) | |
| 2471 | ||
| 2472 | lemma lexord_append_leftD: | |
| 2473 | "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r" | |
| 2474 | by (erule rev_mp, induct_tac x, auto) | |
| 2475 | ||
| 2476 | lemma lexord_take_index_conv: | |
| 2477 | "((x,y) : lexord r) = | |
| 2478 | ((length x < length y \<and> take (length x) y = x) \<or> | |
| 2479 | (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))" | |
| 2480 | apply (unfold lexord_def Let_def, clarsimp) | |
| 2481 | apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2) | |
| 2482 | apply auto | |
| 2483 | apply (rule_tac x="hd (drop (length x) y)" in exI) | |
| 2484 | apply (rule_tac x="tl (drop (length x) y)" in exI) | |
| 2485 | apply (erule subst, simp add: min_def) | |
| 2486 | apply (rule_tac x ="length u" in exI, simp) | |
| 2487 | apply (rule_tac x ="take i x" in exI) | |
| 2488 | apply (rule_tac x ="x ! i" in exI) | |
| 2489 | apply (rule_tac x ="y ! i" in exI, safe) | |
| 2490 | apply (rule_tac x="drop (Suc i) x" in exI) | |
| 2491 | apply (drule sym, simp add: drop_Suc_conv_tl) | |
| 2492 | apply (rule_tac x="drop (Suc i) y" in exI) | |
| 2493 | by (simp add: drop_Suc_conv_tl) | |
| 2494 | ||
| 2495 | -- {* lexord is extension of partial ordering List.lex *} 
 | |
| 2496 | lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)" | |
| 2497 | apply (rule_tac x = y in spec) | |
| 2498 | apply (induct_tac x, clarsimp) | |
| 2499 | by (clarify, case_tac x, simp, force) | |
| 2500 | ||
| 2501 | lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r" | |
| 2502 | by (induct y, auto) | |
| 2503 | ||
| 2504 | lemma lexord_trans: | |
| 2505 | "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r" | |
| 2506 | apply (erule rev_mp)+ | |
| 2507 | apply (rule_tac x = x in spec) | |
| 2508 | apply (rule_tac x = z in spec) | |
| 2509 | apply ( induct_tac y, simp, clarify) | |
| 2510 | apply (case_tac xa, erule ssubst) | |
| 2511 |   apply (erule allE, erule allE) -- {* avoid simp recursion *} 
 | |
| 2512 | apply (case_tac x, simp, simp) | |
| 2513 | apply (case_tac x, erule allE, erule allE, simp) | |
| 2514 | apply (erule_tac x = listb in allE) | |
| 2515 | apply (erule_tac x = lista in allE, simp) | |
| 2516 | apply (unfold trans_def) | |
| 2517 | by blast | |
| 2518 | ||
| 2519 | lemma lexord_transI: "trans r \<Longrightarrow> trans (lexord r)" | |
| 2520 | by (rule transI, drule lexord_trans, blast) | |
| 2521 | ||
| 2522 | lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r" | |
| 2523 | apply (rule_tac x = y in spec) | |
| 2524 | apply (induct_tac x, rule allI) | |
| 2525 | apply (case_tac x, simp, simp) | |
| 2526 | apply (rule allI, case_tac x, simp, simp) | |
| 2527 | by blast | |
| 2528 | ||
| 2529 | ||
| 15392 | 2530 | subsubsection{*Lifting a Relation on List Elements to the Lists*}
 | 
| 15302 | 2531 | |
| 2532 | consts  listrel :: "('a * 'a)set => ('a list * 'a list)set"
 | |
| 2533 | ||
| 2534 | inductive "listrel(r)" | |
| 2535 | intros | |
| 2536 | Nil: "([],[]) \<in> listrel r" | |
| 2537 | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r" | |
| 2538 | ||
| 2539 | inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r" | |
| 2540 | inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r" | |
| 2541 | inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r" | |
| 2542 | inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r" | |
| 2543 | ||
| 2544 | ||
| 2545 | lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s" | |
| 2546 | apply clarify | |
| 2547 | apply (erule listrel.induct) | |
| 2548 | apply (blast intro: listrel.intros)+ | |
| 2549 | done | |
| 2550 | ||
| 2551 | lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A" | |
| 2552 | apply clarify | |
| 2553 | apply (erule listrel.induct, auto) | |
| 2554 | done | |
| 2555 | ||
| 2556 | lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" | |
| 2557 | apply (simp add: refl_def listrel_subset Ball_def) | |
| 2558 | apply (rule allI) | |
| 2559 | apply (induct_tac x) | |
| 2560 | apply (auto intro: listrel.intros) | |
| 2561 | done | |
| 2562 | ||
| 2563 | lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" | |
| 2564 | apply (auto simp add: sym_def) | |
| 2565 | apply (erule listrel.induct) | |
| 2566 | apply (blast intro: listrel.intros)+ | |
| 2567 | done | |
| 2568 | ||
| 2569 | lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" | |
| 2570 | apply (simp add: trans_def) | |
| 2571 | apply (intro allI) | |
| 2572 | apply (rule impI) | |
| 2573 | apply (erule listrel.induct) | |
| 2574 | apply (blast intro: listrel.intros)+ | |
| 2575 | done | |
| 2576 | ||
| 2577 | theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)" | |
| 2578 | by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) | |
| 2579 | ||
| 2580 | lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
 | |
| 2581 | by (blast intro: listrel.intros) | |
| 2582 | ||
| 2583 | lemma listrel_Cons: | |
| 2584 |      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
 | |
| 2585 | by (auto simp add: set_Cons_def intro: listrel.intros) | |
| 2586 | ||
| 2587 | ||
| 15392 | 2588 | subsection{*Miscellany*}
 | 
| 2589 | ||
| 2590 | subsubsection {* Characters and strings *}
 | |
| 13366 | 2591 | |
| 2592 | datatype nibble = | |
| 2593 | Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7 | |
| 2594 | | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF | |
| 2595 | ||
| 2596 | datatype char = Char nibble nibble | |
| 2597 | -- "Note: canonical order of character encoding coincides with standard term ordering" | |
| 2598 | ||
| 2599 | types string = "char list" | |
| 2600 | ||
| 2601 | syntax | |
| 2602 |   "_Char" :: "xstr => char"    ("CHR _")
 | |
| 2603 |   "_String" :: "xstr => string"    ("_")
 | |
| 2604 | ||
| 2605 | parse_ast_translation {*
 | |
| 2606 | let | |
| 2607 | val constants = Syntax.Appl o map Syntax.Constant; | |
| 2608 | ||
| 2609 | fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10)); | |
| 2610 | fun mk_char c = | |
| 2611 | if Symbol.is_ascii c andalso Symbol.is_printable c then | |
| 2612 | constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)] | |
| 2613 |       else error ("Printable ASCII character expected: " ^ quote c);
 | |
| 2614 | ||
| 2615 | fun mk_string [] = Syntax.Constant "Nil" | |
| 2616 | | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs]; | |
| 2617 | ||
| 2618 | fun char_ast_tr [Syntax.Variable xstr] = | |
| 2619 | (case Syntax.explode_xstr xstr of | |
| 2620 | [c] => mk_char c | |
| 2621 |         | _ => error ("Single character expected: " ^ xstr))
 | |
| 2622 |       | char_ast_tr asts = raise AST ("char_ast_tr", asts);
 | |
| 2623 | ||
| 2624 | fun string_ast_tr [Syntax.Variable xstr] = | |
| 2625 | (case Syntax.explode_xstr xstr of | |
| 2626 | [] => constants [Syntax.constrainC, "Nil", "string"] | |
| 2627 | | cs => mk_string cs) | |
| 2628 |       | string_ast_tr asts = raise AST ("string_tr", asts);
 | |
| 2629 |   in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
 | |
| 2630 | *} | |
| 2631 | ||
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2632 | ML {*
 | 
| 20184 | 2633 | structure HOList = | 
| 2634 | struct | |
| 2635 | ||
| 2636 | local | |
| 2637 | val thy = the_context (); | |
| 2638 | in | |
| 2639 | val typ_string = Type (Sign.intern_type thy "string", []); | |
| 2640 | fun typ_list ty = Type (Sign.intern_type thy "list", [ty]); | |
| 2641 | fun term_list ty f [] = Const (Sign.intern_const thy "Nil", typ_list ty) | |
| 2642 | | term_list ty f (x::xs) = Const (Sign.intern_const thy "Cons", | |
| 2643 | ty --> typ_list ty --> typ_list ty) $ f x $ term_list ty f xs; | |
| 2644 | end; | |
| 2645 | ||
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2646 | fun int_of_nibble h = | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2647 | if "0" <= h andalso h <= "9" then ord h - ord "0" | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2648 | else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10 | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2649 | else raise Match; | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2650 | |
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2651 | fun nibble_of_int i = | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2652 | if i <= 9 then chr (ord "0" + i) else chr (ord "A" + i - 10); | 
| 20181 | 2653 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2654 | fun dest_char (Const ("List.char.Char", _) $ c1 $ c2) =
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2655 | let | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2656 | fun dest_nibble (Const (s, _)) = (int_of_nibble o unprefix "List.nibble.Nibble") s | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2657 | | dest_nibble _ = raise Match; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2658 | in | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2659 | (SOME (dest_nibble c1 * 16 + dest_nibble c2) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2660 | handle Fail _ => NONE | Match => NONE) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2661 | end | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2662 | | dest_char _ = NONE; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2663 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2664 | val print_list = Pretty.enum "," "[" "]"; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2665 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2666 | fun print_char c = | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2667 | let | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2668 | val i = ord c | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2669 | in if i < 32 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2670 | then prefix "\\" (string_of_int i) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2671 | else c | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2672 | end; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2673 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2674 | val print_string = quote; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2675 | |
| 20184 | 2676 | fun term_string s = | 
| 20181 | 2677 | let | 
| 2678 |     val ty_n = Type ("List.nibble", []);
 | |
| 2679 |     val ty_c = Type ("List.char", []);
 | |
| 2680 |     val ty_l = Type ("List.list", [ty_c]);
 | |
| 2681 |     fun mk_nib n = Const ("List.nibble.Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10)), ty_n);
 | |
| 2682 | fun mk_char c = | |
| 2683 | if Symbol.is_ascii c andalso Symbol.is_printable c then | |
| 2684 |         Const ("List.char.Char", ty_n --> ty_n --> ty_c) $ mk_nib (ord c div 16) $ mk_nib (ord c mod 16)
 | |
| 2685 |       else error ("Printable ASCII character expected: " ^ quote c);
 | |
| 2686 |     fun mk_string c t = Const ("List.list.Cons", ty_c --> ty_l --> ty_l)
 | |
| 2687 | $ mk_char c $ t; | |
| 2688 |   in fold_rev mk_string (explode s) (Const ("List.list.Nil", ty_l)) end;
 | |
| 20184 | 2689 | |
| 2690 | end; | |
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2691 | *} | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2692 | |
| 13366 | 2693 | print_ast_translation {*
 | 
| 2694 | let | |
| 2695 | fun dest_nib (Syntax.Constant c) = | |
| 2696 | (case explode c of | |
| 20184 | 2697 | ["N", "i", "b", "b", "l", "e", h] => HOList.int_of_nibble h | 
| 13366 | 2698 | | _ => raise Match) | 
| 2699 | | dest_nib _ = raise Match; | |
| 2700 | ||
| 2701 | fun dest_chr c1 c2 = | |
| 2702 | let val c = chr (dest_nib c1 * 16 + dest_nib c2) | |
| 2703 | in if Symbol.is_printable c then c else raise Match end; | |
| 2704 | ||
| 2705 | fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2 | |
| 2706 | | dest_char _ = raise Match; | |
| 2707 | ||
| 2708 | fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)]; | |
| 2709 | ||
| 2710 | fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]] | |
| 2711 | | char_ast_tr' _ = raise Match; | |
| 2712 | ||
| 2713 | fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String", | |
| 2714 | xstr (map dest_char (Syntax.unfold_ast "_args" args))] | |
| 2715 | | list_ast_tr' ts = raise Match; | |
| 2716 |   in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
 | |
| 2717 | *} | |
| 2718 | ||
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2719 | |
| 15392 | 2720 | subsubsection {* Code generator setup *}
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2721 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2722 | types_code | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2723 |   "list" ("_ list")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2724 | attach (term_of) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2725 | val term_of_list = HOLogic.mk_list; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2726 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2727 | attach (test) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2728 | fun gen_list' aG i j = frequency | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2729 | [(i, fn () => aG j :: gen_list' aG (i-1) j), (1, fn () => [])] () | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2730 | and gen_list aG i = gen_list' aG i i; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2731 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2732 |   "char" ("string")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2733 | attach (term_of) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2734 | val nibbleT = Type ("List.nibble", []);
 | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2735 | |
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2736 | fun term_of_char c = | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2737 |   Const ("List.char.Char", nibbleT --> nibbleT --> Type ("List.char", [])) $
 | 
| 20184 | 2738 |     Const ("List.nibble.Nibble" ^ HOList.nibble_of_int (ord c div 16), nibbleT) $
 | 
| 2739 |     Const ("List.nibble.Nibble" ^ HOList.nibble_of_int (ord c mod 16), nibbleT);
 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2740 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2741 | attach (test) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2742 | fun gen_char i = chr (random_range (ord "a") (Int.min (ord "a" + i, ord "z"))); | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2743 | *} | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2744 | |
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2745 | consts_code "Cons" ("(_ ::/ _)")
 | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2746 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2747 | code_type list | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2748 | (SML "_ list") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2749 | (Haskell target_atom "[_]") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2750 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2751 | code_const Nil | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2752 | (SML target_atom "[]") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2753 | (Haskell target_atom "[]") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2754 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2755 | code_type char | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2756 | (SML target_atom "char") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2757 | (Haskell target_atom "Char") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2758 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2759 | code_const Char | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2760 | (SML target_atom "(__,/ __)") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2761 | (Haskell target_atom "(__,/ __)") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2762 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2763 | setup {*
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2764 | let | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2765 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2766 | fun list_codegen thy defs gr dep thyname b t = | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2767 | let val (gr', ps) = foldl_map (Codegen.invoke_codegen thy defs dep thyname false) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2768 | (gr, HOLogic.dest_list t) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2769 | in SOME (gr', Pretty.list "[" "]" ps) end handle TERM _ => NONE; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2770 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2771 | fun char_codegen thy defs gr dep thyname b t = | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2772 | case (Option.map chr o HOList.dest_char) t | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2773 | of SOME c => | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2774 | if Symbol.is_printable c | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2775 | then SOME (gr, (Pretty.quote o Pretty.str) c) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2776 | else NONE | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2777 | | NONE => NONE; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2778 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2779 | in | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2780 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2781 | Codegen.add_codegen "list_codegen" list_codegen | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2782 | #> Codegen.add_codegen "char_codegen" char_codegen | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2783 | #> CodegenPackage.add_pretty_list "SML" "List.list.Nil" "List.list.Cons" | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2784 | HOList.print_list NONE (7, "::") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2785 | #> CodegenPackage.add_pretty_list "Haskell" "List.list.Nil" "List.list.Cons" | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2786 | HOList.print_list (SOME (HOList.print_char, HOList.print_string)) (5, ":") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2787 | #> CodegenPackage.add_appconst | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2788 |        ("List.char.Char", CodegenPackage.appgen_char HOList.dest_char)
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2789 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2790 | end; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2791 | *} | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2792 | |
| 13122 | 2793 | end |