| 
1474
 | 
     1  | 
(*  Title:      LCF/lcf.thy
  | 
| 
0
 | 
     2  | 
    ID:         $Id$
  | 
| 
1474
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
0
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Natural Deduction Rules for LCF
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
LCF = FOL +
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
classes cpo < term
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
default cpo
  | 
| 
 | 
    14  | 
  | 
| 
283
 | 
    15  | 
types
  | 
| 
 | 
    16  | 
 tr
  | 
| 
 | 
    17  | 
 void
  | 
| 
1474
 | 
    18  | 
 ('a,'b) "*"            (infixl 6)
 | 
| 
 | 
    19  | 
 ('a,'b) "+"            (infixl 5)
 | 
| 
0
 | 
    20  | 
  | 
| 
283
 | 
    21  | 
arities
  | 
| 
 | 
    22  | 
 fun, "*", "+" :: (cpo,cpo)cpo
  | 
| 
 | 
    23  | 
 tr,void       :: cpo
  | 
| 
0
 | 
    24  | 
  | 
| 
 | 
    25  | 
consts
  | 
| 
1474
 | 
    26  | 
 UU     :: "'a"
  | 
| 
 | 
    27  | 
 TT,FF  :: "tr"
  | 
| 
 | 
    28  | 
 FIX    :: "('a => 'a) => 'a"
 | 
| 
 | 
    29  | 
 FST    :: "'a*'b => 'a"
  | 
| 
 | 
    30  | 
 SND    :: "'a*'b => 'b"
  | 
| 
0
 | 
    31  | 
 INL    :: "'a => 'a+'b"
  | 
| 
 | 
    32  | 
 INR    :: "'b => 'a+'b"
  | 
| 
 | 
    33  | 
 WHEN   :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
  | 
| 
1474
 | 
    34  | 
 adm    :: "('a => o) => o"
 | 
| 
 | 
    35  | 
 VOID   :: "void"               ("'(')")
 | 
| 
 | 
    36  | 
 PAIR   :: "['a,'b] => 'a*'b"   ("(1<_,/_>)" [0,0] 100)
 | 
| 
 | 
    37  | 
 COND   :: "[tr,'a,'a] => 'a"   ("(_ =>/ (_ |/ _))" [60,60,60] 60)
 | 
| 
 | 
    38  | 
 "<<"   :: "['a,'a] => o"       (infixl 50)
  | 
| 
0
 | 
    39  | 
rules
  | 
| 
 | 
    40  | 
  (** DOMAIN THEORY **)
  | 
| 
 | 
    41  | 
  | 
| 
1474
 | 
    42  | 
  eq_def        "x=y == x << y & y << x"
  | 
| 
0
 | 
    43  | 
  | 
| 
1474
 | 
    44  | 
  less_trans    "[| x << y; y << z |] ==> x << z"
  | 
| 
0
 | 
    45  | 
  | 
| 
1474
 | 
    46  | 
  less_ext      "(ALL x. f(x) << g(x)) ==> f << g"
  | 
| 
0
 | 
    47  | 
  | 
| 
1474
 | 
    48  | 
  mono          "[| f << g; x << y |] ==> f(x) << g(y)"
  | 
| 
0
 | 
    49  | 
  | 
| 
1474
 | 
    50  | 
  minimal       "UU << x"
  | 
| 
0
 | 
    51  | 
  | 
| 
1474
 | 
    52  | 
  FIX_eq        "f(FIX(f)) = FIX(f)"
  | 
| 
0
 | 
    53  | 
  | 
| 
 | 
    54  | 
  (** TR **)
  | 
| 
 | 
    55  | 
  | 
| 
1474
 | 
    56  | 
  tr_cases      "p=UU | p=TT | p=FF"
  | 
| 
0
 | 
    57  | 
  | 
| 
 | 
    58  | 
  not_TT_less_FF "~ TT << FF"
  | 
| 
 | 
    59  | 
  not_FF_less_TT "~ FF << TT"
  | 
| 
 | 
    60  | 
  not_TT_less_UU "~ TT << UU"
  | 
| 
 | 
    61  | 
  not_FF_less_UU "~ FF << UU"
  | 
| 
 | 
    62  | 
  | 
| 
1474
 | 
    63  | 
  COND_UU       "UU => x | y  =  UU"
  | 
| 
 | 
    64  | 
  COND_TT       "TT => x | y  =  x"
  | 
| 
 | 
    65  | 
  COND_FF       "FF => x | y  =  y"
  | 
| 
0
 | 
    66  | 
  | 
| 
 | 
    67  | 
  (** PAIRS **)
  | 
| 
 | 
    68  | 
  | 
| 
1474
 | 
    69  | 
  surj_pairing  "<FST(z),SND(z)> = z"
  | 
| 
0
 | 
    70  | 
  | 
| 
1474
 | 
    71  | 
  FST   "FST(<x,y>) = x"
  | 
| 
 | 
    72  | 
  SND   "SND(<x,y>) = y"
  | 
| 
0
 | 
    73  | 
  | 
| 
 | 
    74  | 
  (*** STRICT SUM ***)
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
  INL_DEF "~x=UU ==> ~INL(x)=UU"
  | 
| 
 | 
    77  | 
  INR_DEF "~x=UU ==> ~INR(x)=UU"
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  INL_STRICT "INL(UU) = UU"
  | 
| 
 | 
    80  | 
  INR_STRICT "INR(UU) = UU"
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
  WHEN_UU  "WHEN(f,g,UU) = UU"
  | 
| 
 | 
    83  | 
  WHEN_INL "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
  | 
| 
 | 
    84  | 
  WHEN_INR "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
  SUM_EXHAUSTION
  | 
| 
 | 
    87  | 
    "z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
  (** VOID **)
  | 
| 
 | 
    90  | 
  | 
| 
1474
 | 
    91  | 
  void_cases    "(x::void) = UU"
  | 
| 
0
 | 
    92  | 
  | 
| 
 | 
    93  | 
  (** INDUCTION **)
  | 
| 
 | 
    94  | 
  | 
| 
1474
 | 
    95  | 
  induct        "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
  | 
| 
0
 | 
    96  | 
  | 
| 
 | 
    97  | 
  (** Admissibility / Chain Completeness **)
  | 
| 
 | 
    98  | 
  (* All rules can be found on pages 199--200 of Larry's LCF book.
  | 
| 
 | 
    99  | 
     Note that "easiness" of types is not taken into account
  | 
| 
 | 
   100  | 
     because it cannot be expressed schematically; flatness could be. *)
  | 
| 
 | 
   101  | 
  | 
| 
3837
 | 
   102  | 
  adm_less      "adm(%x. t(x) << u(x))"
  | 
| 
1474
 | 
   103  | 
  adm_not_less  "adm(%x.~ t(x) << u)"
  | 
| 
3837
 | 
   104  | 
  adm_not_free  "adm(%x. A)"
  | 
| 
 | 
   105  | 
  adm_subst     "adm(P) ==> adm(%x. P(t(x)))"
  | 
| 
 | 
   106  | 
  adm_conj      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
  | 
| 
 | 
   107  | 
  adm_disj      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
  | 
| 
 | 
   108  | 
  adm_imp       "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
  | 
| 
 | 
   109  | 
  adm_all       "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
  | 
| 
0
 | 
   110  | 
end
  |