| author | wenzelm | 
| Thu, 16 Jul 2009 20:32:40 +0200 | |
| changeset 32019 | 827a8ebb3b2c | 
| parent 16417 | 9bc16273c2d4 | 
| child 37456 | 0a1cc2675958 | 
| permissions | -rw-r--r-- | 
| 6481 | 1  | 
(* Title: HOL/ex/Recdefs.thy  | 
| 5124 | 2  | 
ID: $Id$  | 
3  | 
Author: Konrad Slind and Lawrence C Paulson  | 
|
4  | 
Copyright 1996 University of Cambridge  | 
|
5  | 
||
6  | 
Examples of recdef definitions. Most, but not all, are handled automatically.  | 
|
7  | 
*)  | 
|
8  | 
||
| 11024 | 9  | 
header {* Examples of recdef definitions *}
 | 
10  | 
||
| 16417 | 11  | 
theory Recdefs imports Main begin  | 
| 5124 | 12  | 
|
13  | 
consts fact :: "nat => nat"  | 
|
| 11024 | 14  | 
recdef fact less_than  | 
15  | 
"fact x = (if x = 0 then 1 else x * fact (x - 1))"  | 
|
| 5124 | 16  | 
|
17  | 
consts Fact :: "nat => nat"  | 
|
| 11024 | 18  | 
recdef Fact less_than  | 
19  | 
"Fact 0 = 1"  | 
|
20  | 
"Fact (Suc x) = Fact x * Suc x"  | 
|
| 5124 | 21  | 
|
| 14953 | 22  | 
consts fib :: "int => int"  | 
23  | 
recdef fib "measure nat"  | 
|
24  | 
eqn: "fib n = (if n < 1 then 0  | 
|
25  | 
else if n=1 then 1  | 
|
26  | 
else fib(n - 2) + fib(n - 1))";  | 
|
27  | 
||
28  | 
lemma "fib 7 = 13"  | 
|
29  | 
by simp  | 
|
30  | 
||
31  | 
||
| 5124 | 32  | 
consts map2 :: "('a => 'b => 'c) * 'a list * 'b list => 'c list"
 | 
| 11024 | 33  | 
recdef map2 "measure(\<lambda>(f, l1, l2). size l1)"  | 
34  | 
"map2 (f, [], []) = []"  | 
|
35  | 
"map2 (f, h # t, []) = []"  | 
|
36  | 
"map2 (f, h1 # t1, h2 # t2) = f h1 h2 # map2 (f, t1, t2)"  | 
|
| 5124 | 37  | 
|
| 11024 | 38  | 
consts finiteRchain :: "('a => 'a => bool) * 'a list => bool"
 | 
39  | 
recdef finiteRchain "measure (\<lambda>(R, l). size l)"  | 
|
40  | 
"finiteRchain(R, []) = True"  | 
|
41  | 
"finiteRchain(R, [x]) = True"  | 
|
42  | 
"finiteRchain(R, x # y # rst) = (R x y \<and> finiteRchain (R, y # rst))"  | 
|
| 5124 | 43  | 
|
| 11024 | 44  | 
text {* Not handled automatically: too complicated. *}
 | 
| 5124 | 45  | 
consts variant :: "nat * nat list => nat"  | 
| 
14244
 
f58598341d30
InductiveInvariant_examples illustrates advanced recursive function definitions
 
paulson 
parents: 
12023 
diff
changeset
 | 
46  | 
recdef (permissive) variant "measure (\<lambda>(n,ns). size (filter (\<lambda>y. n \<le> y) ns))"  | 
| 11024 | 47  | 
"variant (x, L) = (if x mem L then variant (Suc x, L) else x)"  | 
| 5124 | 48  | 
|
49  | 
consts gcd :: "nat * nat => nat"  | 
|
| 11024 | 50  | 
recdef gcd "measure (\<lambda>(x, y). x + y)"  | 
51  | 
"gcd (0, y) = y"  | 
|
52  | 
"gcd (Suc x, 0) = Suc x"  | 
|
53  | 
"gcd (Suc x, Suc y) =  | 
|
54  | 
(if y \<le> x then gcd (x - y, Suc y) else gcd (Suc x, y - x))"  | 
|
55  | 
||
56  | 
||
57  | 
text {*
 | 
|
58  | 
  \medskip The silly @{term g} function: example of nested recursion.
 | 
|
59  | 
  Not handled automatically.  In fact, @{term g} is the zero constant
 | 
|
60  | 
function.  | 
|
61  | 
*}  | 
|
| 5124 | 62  | 
|
| 11024 | 63  | 
consts g :: "nat => nat"  | 
| 11626 | 64  | 
recdef (permissive) g less_than  | 
| 11024 | 65  | 
"g 0 = 0"  | 
66  | 
"g (Suc x) = g (g x)"  | 
|
67  | 
||
68  | 
lemma g_terminates: "g x < Suc x"  | 
|
69  | 
apply (induct x rule: g.induct)  | 
|
70  | 
apply (auto simp add: g.simps)  | 
|
71  | 
done  | 
|
72  | 
||
73  | 
lemma g_zero: "g x = 0"  | 
|
74  | 
apply (induct x rule: g.induct)  | 
|
75  | 
apply (simp_all add: g.simps g_terminates)  | 
|
76  | 
done  | 
|
77  | 
||
| 5124 | 78  | 
|
79  | 
consts Div :: "nat * nat => nat * nat"  | 
|
| 11024 | 80  | 
recdef Div "measure fst"  | 
81  | 
"Div (0, x) = (0, 0)"  | 
|
82  | 
"Div (Suc x, y) =  | 
|
83  | 
(let (q, r) = Div (x, y)  | 
|
84  | 
in if y \<le> Suc r then (Suc q, 0) else (q, Suc r))"  | 
|
85  | 
||
86  | 
text {*
 | 
|
87  | 
\medskip Not handled automatically. Should be the predecessor  | 
|
88  | 
function, but there is an unnecessary "looping" recursive call in  | 
|
| 12023 | 89  | 
  @{text "k 1"}.
 | 
| 11024 | 90  | 
*}  | 
| 5124 | 91  | 
|
| 11024 | 92  | 
consts k :: "nat => nat"  | 
| 
11701
 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 
wenzelm 
parents: 
11626 
diff
changeset
 | 
93  | 
|
| 11626 | 94  | 
recdef (permissive) k less_than  | 
| 11024 | 95  | 
"k 0 = 0"  | 
96  | 
"k (Suc n) =  | 
|
97  | 
(let x = k 1  | 
|
| 
11701
 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 
wenzelm 
parents: 
11626 
diff
changeset
 | 
98  | 
in if False then k (Suc 1) else n)"  | 
| 11024 | 99  | 
|
100  | 
consts part :: "('a => bool) * 'a list * 'a list * 'a list => 'a list * 'a list"
 | 
|
101  | 
recdef part "measure (\<lambda>(P, l, l1, l2). size l)"  | 
|
102  | 
"part (P, [], l1, l2) = (l1, l2)"  | 
|
103  | 
"part (P, h # rst, l1, l2) =  | 
|
104  | 
(if P h then part (P, rst, h # l1, l2)  | 
|
105  | 
else part (P, rst, l1, h # l2))"  | 
|
| 5124 | 106  | 
|
| 11024 | 107  | 
consts fqsort :: "('a => 'a => bool) * 'a list => 'a list"
 | 
| 11626 | 108  | 
recdef (permissive) fqsort "measure (size o snd)"  | 
| 11024 | 109  | 
"fqsort (ord, []) = []"  | 
110  | 
"fqsort (ord, x # rst) =  | 
|
111  | 
(let (less, more) = part ((\<lambda>y. ord y x), rst, ([], []))  | 
|
112  | 
in fqsort (ord, less) @ [x] @ fqsort (ord, more))"  | 
|
113  | 
||
114  | 
text {*
 | 
|
115  | 
\medskip Silly example which demonstrates the occasional need for  | 
|
116  | 
  additional congruence rules (here: @{thm [source] map_cong}).  If
 | 
|
117  | 
the congruence rule is removed, an unprovable termination condition  | 
|
118  | 
is generated! Termination not proved automatically. TFL requires  | 
|
119  | 
  @{term [source] "\<lambda>x. mapf x"} instead of @{term [source] mapf}.
 | 
|
120  | 
*}  | 
|
| 5124 | 121  | 
|
| 11024 | 122  | 
consts mapf :: "nat => nat list"  | 
| 11626 | 123  | 
recdef (permissive) mapf "measure (\<lambda>m. m)"  | 
| 11024 | 124  | 
"mapf 0 = []"  | 
125  | 
"mapf (Suc n) = concat (map (\<lambda>x. mapf x) (replicate n n))"  | 
|
126  | 
(hints cong: map_cong)  | 
|
| 5124 | 127  | 
|
| 11024 | 128  | 
recdef_tc mapf_tc: mapf  | 
129  | 
apply (rule allI)  | 
|
130  | 
apply (case_tac "n = 0")  | 
|
131  | 
apply simp_all  | 
|
132  | 
done  | 
|
133  | 
||
134  | 
text {* Removing the termination condition from the generated thms: *}
 | 
|
135  | 
||
136  | 
lemma "mapf (Suc n) = concat (map mapf (replicate n n))"  | 
|
137  | 
apply (simp add: mapf.simps mapf_tc)  | 
|
138  | 
done  | 
|
139  | 
||
140  | 
lemmas mapf_induct = mapf.induct [OF mapf_tc]  | 
|
| 5124 | 141  | 
|
142  | 
end  |