src/HOL/Rings.thy
author wenzelm
Wed, 17 Aug 2022 15:18:17 +0200
changeset 75885 8342cba8eae8
parent 75669 43f5dfb7fa35
child 75875 48d032035744
permissions -rw-r--r--
clarified signature: avoid constants from Sessions.Structure within Session.Base;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
     1
(*  Title:      HOL/Rings.thy
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     2
    Author:     Gertrud Bauer
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     3
    Author:     Steven Obua
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     4
    Author:     Tobias Nipkow
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     5
    Author:     Lawrence C Paulson
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     6
    Author:     Markus Wenzel
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     7
    Author:     Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     9
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
    10
section \<open>Rings\<close>
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    11
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 35043
diff changeset
    12
theory Rings
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
    13
  imports Groups Set Fun
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15077
diff changeset
    14
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    15
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
    16
subsection \<open>Semirings and rings\<close>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
    17
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    18
class semiring = ab_semigroup_add + semigroup_mult +
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
    19
  assumes distrib_right [algebra_simps, algebra_split_simps]: "(a + b) * c = a * c + b * c"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
    20
  assumes distrib_left [algebra_simps, algebra_split_simps]: "a * (b + c) = a * b + a * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    21
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    22
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    23
text \<open>For the \<open>combine_numerals\<close> simproc\<close>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    24
lemma combine_common_factor: "a * e + (b * e + c) = (a + b) * e + c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    25
  by (simp add: distrib_right ac_simps)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    26
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    27
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    28
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    29
class mult_zero = times + zero +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    30
  assumes mult_zero_left [simp]: "0 * a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    31
  assumes mult_zero_right [simp]: "a * 0 = 0"
58195
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    32
begin
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    33
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
    34
lemma mult_not_zero: "a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0"
58195
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    35
  by auto
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    36
1fee63e0377d added various facts
haftmann
parents: 57514
diff changeset
    37
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    38
58198
099ca49b5231 generalized
haftmann
parents: 58195
diff changeset
    39
class semiring_0 = semiring + comm_monoid_add + mult_zero
099ca49b5231 generalized
haftmann
parents: 58195
diff changeset
    40
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
    41
class semiring_0_cancel = semiring + cancel_comm_monoid_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    42
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    43
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    44
subclass semiring_0
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
    45
proof
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    46
  fix a :: 'a
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    47
  have "0 * a + 0 * a = 0 * a + 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    48
    by (simp add: distrib_right [symmetric])
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    49
  then show "0 * a = 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    50
    by (simp only: add_left_cancel)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    51
  have "a * 0 + a * 0 = a * 0 + 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    52
    by (simp add: distrib_left [symmetric])
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    53
  then show "a * 0 = 0"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    54
    by (simp only: add_left_cancel)
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    55
qed
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    56
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    57
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    58
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    59
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    60
  assumes distrib: "(a + b) * c = a * c + b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    61
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    62
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    63
subclass semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
    64
proof
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    65
  fix a b c :: 'a
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    66
  show "(a + b) * c = a * c + b * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    67
    by (simp add: distrib)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    68
  have "a * (b + c) = (b + c) * a"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    69
    by (simp add: ac_simps)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    70
  also have "\<dots> = b * a + c * a"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    71
    by (simp only: distrib)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    72
  also have "\<dots> = a * b + a * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    73
    by (simp add: ac_simps)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    74
  finally show "a * (b + c) = a * b + a * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
    75
    by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    76
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    77
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    78
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    79
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    80
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    81
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    82
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    83
subclass semiring_0 ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    84
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    85
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    86
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
    87
class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    88
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    89
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    90
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    91
28141
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
    92
subclass comm_semiring_0 ..
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
    93
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    94
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    95
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    96
class zero_neq_one = zero + one +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    97
  assumes zero_neq_one [simp]: "0 \<noteq> 1"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    98
begin
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    99
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   100
lemma one_neq_zero [simp]: "1 \<noteq> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   101
  by (rule not_sym) (rule zero_neq_one)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   102
54225
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   103
definition of_bool :: "bool \<Rightarrow> 'a"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   104
  where "of_bool p = (if p then 1 else 0)"
54225
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   105
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   106
lemma of_bool_eq [simp, code]:
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   107
  "of_bool False = 0"
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   108
  "of_bool True = 1"
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   109
  by (simp_all add: of_bool_def)
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   110
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   111
lemma of_bool_eq_iff: "of_bool p = of_bool q \<longleftrightarrow> p = q"
54225
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   112
  by (simp add: of_bool_def)
8a49a5a30284 generalized of_bool conversion
haftmann
parents: 54147
diff changeset
   113
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   114
lemma split_of_bool [split]: "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)"
55187
6d0d93316daf split rules for of_bool, similar to if
haftmann
parents: 54703
diff changeset
   115
  by (cases p) simp_all
6d0d93316daf split rules for of_bool, similar to if
haftmann
parents: 54703
diff changeset
   116
75087
f3fcc7c5a0db Avoid overaggresive splitting.
haftmann
parents: 74007
diff changeset
   117
lemma split_of_bool_asm: "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)"
55187
6d0d93316daf split rules for of_bool, similar to if
haftmann
parents: 54703
diff changeset
   118
  by (cases p) simp_all
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   119
73535
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   120
lemma of_bool_eq_0_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   121
  \<open>of_bool P = 0 \<longleftrightarrow> \<not> P\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   122
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   123
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   124
lemma of_bool_eq_1_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   125
  \<open>of_bool P = 1 \<longleftrightarrow> P\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   126
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   127
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   128
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   129
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   130
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   131
begin
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   132
70144
haftmann
parents: 70094
diff changeset
   133
lemma of_bool_conj:
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   134
  "of_bool (P \<and> Q) = of_bool P * of_bool Q"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   135
  by auto
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   136
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
   137
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   138
71167
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   139
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = (*) 0"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   140
  by auto
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   141
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   142
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = (*) 1"
b4d409c65a76 Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
paulson <lp15@cam.ac.uk>
parents: 70902
diff changeset
   143
  by auto
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   144
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   145
subsection \<open>Abstract divisibility\<close>
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   146
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   147
class dvd = times
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   148
begin
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   149
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   150
definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   151
  where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   152
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   153
lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   154
  unfolding dvd_def ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   155
68251
54a127873735 consider dvdE for automated classical proving
haftmann
parents: 67689
diff changeset
   156
lemma dvdE [elim]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   157
  unfolding dvd_def by blast
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   158
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   159
end
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   160
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   161
context comm_monoid_mult
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   162
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   163
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   164
subclass dvd .
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   165
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   166
lemma dvd_refl [simp]: "a dvd a"
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   167
proof
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   168
  show "a = a * 1" by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   169
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   170
62349
7c23469b5118 cleansed junk-producing interpretations for gcd/lcm on nat altogether
haftmann
parents: 62347
diff changeset
   171
lemma dvd_trans [trans]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   172
  assumes "a dvd b" and "b dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   173
  shows "a dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   174
proof -
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   175
  from assms obtain v where "b = a * v"
70146
haftmann
parents: 70145
diff changeset
   176
    by auto
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   177
  moreover from assms obtain w where "c = b * w"
70146
haftmann
parents: 70145
diff changeset
   178
    by auto
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   179
  ultimately have "c = a * (v * w)"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   180
    by (simp add: mult.assoc)
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   181
  then show ?thesis ..
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   182
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   183
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   184
lemma subset_divisors_dvd: "{c. c dvd a} \<subseteq> {c. c dvd b} \<longleftrightarrow> a dvd b"
62366
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   185
  by (auto simp add: subset_iff intro: dvd_trans)
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   186
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   187
lemma strict_subset_divisors_dvd: "{c. c dvd a} \<subset> {c. c dvd b} \<longleftrightarrow> a dvd b \<and> \<not> b dvd a"
62366
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   188
  by (auto simp add: subset_iff intro: dvd_trans)
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
   189
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   190
lemma one_dvd [simp]: "1 dvd a"
70146
haftmann
parents: 70145
diff changeset
   191
  by (auto intro: dvdI)
haftmann
parents: 70145
diff changeset
   192
haftmann
parents: 70145
diff changeset
   193
lemma dvd_mult [simp]: "a dvd (b * c)" if "a dvd c"
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
   194
  using that by (auto intro: mult.left_commute dvdI)
70146
haftmann
parents: 70145
diff changeset
   195
haftmann
parents: 70145
diff changeset
   196
lemma dvd_mult2 [simp]: "a dvd (b * c)" if "a dvd b"
haftmann
parents: 70145
diff changeset
   197
  using that dvd_mult [of a b c] by (simp add: ac_simps)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   198
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   199
lemma dvd_triv_right [simp]: "a dvd b * a"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   200
  by (rule dvd_mult) (rule dvd_refl)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   201
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   202
lemma dvd_triv_left [simp]: "a dvd a * b"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   203
  by (rule dvd_mult2) (rule dvd_refl)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   204
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   205
lemma mult_dvd_mono:
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   206
  assumes "a dvd b"
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   207
    and "c dvd d"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   208
  shows "a * c dvd b * d"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   209
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   210
  from \<open>a dvd b\<close> obtain b' where "b = a * b'" ..
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   211
  moreover from \<open>c dvd d\<close> obtain d' where "d = c * d'" ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   212
  ultimately have "b * d = (a * c) * (b' * d')"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   213
    by (simp add: ac_simps)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   214
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   215
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   216
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   217
lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   218
  by (simp add: dvd_def mult.assoc) blast
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   219
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   220
lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   221
  using dvd_mult_left [of b a c] by (simp add: ac_simps)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   222
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   223
end
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   224
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   225
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   226
begin
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   227
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   228
subclass semiring_1 ..
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   229
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   230
lemma dvd_0_left_iff [simp]: "0 dvd a \<longleftrightarrow> a = 0"
70146
haftmann
parents: 70145
diff changeset
   231
  by auto
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   232
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   233
lemma dvd_0_right [iff]: "a dvd 0"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   234
proof
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   235
  show "0 = a * 0" by simp
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   236
qed
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   237
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   238
lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   239
  by simp
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   240
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   241
lemma dvd_add [simp]:
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   242
  assumes "a dvd b" and "a dvd c"
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 59000
diff changeset
   243
  shows "a dvd (b + c)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   244
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   245
  from \<open>a dvd b\<close> obtain b' where "b = a * b'" ..
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   246
  moreover from \<open>a dvd c\<close> obtain c' where "c = a * c'" ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   247
  ultimately have "b + c = a * (b' + c')"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   248
    by (simp add: distrib_left)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   249
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   250
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   251
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   252
end
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   253
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   254
class semiring_1_cancel = semiring + cancel_comm_monoid_add
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   255
  + zero_neq_one + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   256
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   257
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   258
subclass semiring_0_cancel ..
25512
4134f7c782e2 using intro_locales instead of unfold_locales if appropriate
haftmann
parents: 25450
diff changeset
   259
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   260
subclass semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   261
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   262
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   263
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   264
class comm_semiring_1_cancel =
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   265
  comm_semiring + cancel_comm_monoid_add + zero_neq_one + comm_monoid_mult +
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   266
  assumes right_diff_distrib' [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   267
    "a * (b - c) = a * b - a * c"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   268
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   269
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   270
subclass semiring_1_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   271
subclass comm_semiring_0_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   272
subclass comm_semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   273
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   274
lemma left_diff_distrib' [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   275
  "(b - c) * a = b * a - c * a"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   276
  by (simp add: algebra_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   277
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   278
lemma dvd_add_times_triv_left_iff [simp]: "a dvd c * a + b \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   279
proof -
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   280
  have "a dvd a * c + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q")
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   281
  proof
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   282
    assume ?Q
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   283
    then show ?P by simp
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   284
  next
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   285
    assume ?P
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   286
    then obtain d where "a * c + b = a * d" ..
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   287
    then have "a * c + b - a * c = a * d - a * c" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   288
    then have "b = a * d - a * c" by simp
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   289
    then have "b = a * (d - c)" by (simp add: algebra_simps)
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   290
    then show ?Q ..
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   291
  qed
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   292
  then show "a dvd c * a + b \<longleftrightarrow> a dvd b" by (simp add: ac_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   293
qed
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   294
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   295
lemma dvd_add_times_triv_right_iff [simp]: "a dvd b + c * a \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   296
  using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   297
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   298
lemma dvd_add_triv_left_iff [simp]: "a dvd a + b \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   299
  using dvd_add_times_triv_left_iff [of a 1 b] by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   300
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   301
lemma dvd_add_triv_right_iff [simp]: "a dvd b + a \<longleftrightarrow> a dvd b"
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   302
  using dvd_add_times_triv_right_iff [of a b 1] by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   303
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   304
lemma dvd_add_right_iff:
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   305
  assumes "a dvd b"
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   306
  shows "a dvd b + c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q")
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   307
proof
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   308
  assume ?P
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   309
  then obtain d where "b + c = a * d" ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   310
  moreover from \<open>a dvd b\<close> obtain e where "b = a * e" ..
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   311
  ultimately have "a * e + c = a * d" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   312
  then have "a * e + c - a * e = a * d - a * e" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   313
  then have "c = a * d - a * e" by simp
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   314
  then have "c = a * (d - e)" by (simp add: algebra_simps)
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   315
  then show ?Q ..
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   316
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   317
  assume ?Q
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   318
  with assms show ?P by simp
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   319
qed
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   320
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   321
lemma dvd_add_left_iff: "a dvd c \<Longrightarrow> a dvd b + c \<longleftrightarrow> a dvd b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   322
  using dvd_add_right_iff [of a c b] by (simp add: ac_simps)
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   323
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   324
end
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59557
diff changeset
   325
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   326
class ring = semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   327
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   328
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   329
subclass semiring_0_cancel ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   330
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   331
text \<open>Distribution rules\<close>
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   332
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   333
lemma minus_mult_left: "- (a * b) = - a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   334
  by (rule minus_unique) (simp add: distrib_right [symmetric])
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   335
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   336
lemma minus_mult_right: "- (a * b) = a * - b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   337
  by (rule minus_unique) (simp add: distrib_left [symmetric])
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   338
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   339
text \<open>Extract signs from products\<close>
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 52435
diff changeset
   340
lemmas mult_minus_left [simp] = minus_mult_left [symmetric]
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 52435
diff changeset
   341
lemmas mult_minus_right [simp] = minus_mult_right [symmetric]
29407
5ef7e97fd9e4 move lemmas mult_minus{left,right} inside class ring
huffman
parents: 29406
diff changeset
   342
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   343
lemma minus_mult_minus [simp]: "- a * - b = a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   344
  by simp
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   345
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   346
lemma minus_mult_commute: "- a * b = a * - b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   347
  by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   348
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   349
lemma right_diff_distrib [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   350
  "a * (b - c) = a * b - a * c"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54225
diff changeset
   351
  using distrib_left [of a b "-c "] by simp
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   352
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   353
lemma left_diff_distrib [algebra_simps, algebra_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   354
  "(a - b) * c = a * c - b * c"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54225
diff changeset
   355
  using distrib_right [of a "- b" c] by simp
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   356
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   357
lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   358
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   359
lemma eq_add_iff1: "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   360
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   361
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   362
lemma eq_add_iff2: "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   363
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   364
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   365
end
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   366
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   367
lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   368
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   369
class comm_ring = comm_semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   370
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   371
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   372
subclass ring ..
28141
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
   373
subclass comm_semiring_0_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   374
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   375
lemma square_diff_square_factored: "x * x - y * y = (x + y) * (x - y)"
44350
63cddfbc5a09 replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents: 44346
diff changeset
   376
  by (simp add: algebra_simps)
63cddfbc5a09 replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents: 44346
diff changeset
   377
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   378
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   379
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   380
class ring_1 = ring + zero_neq_one + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   381
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   382
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   383
subclass semiring_1_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   384
73535
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   385
lemma of_bool_not_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   386
  \<open>of_bool (\<not> P) = 1 - of_bool P\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   387
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
   388
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   389
lemma square_diff_one_factored: "x * x - 1 = (x + 1) * (x - 1)"
44346
00dd3c4dabe0 rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents: 44064
diff changeset
   390
  by (simp add: algebra_simps)
00dd3c4dabe0 rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents: 44064
diff changeset
   391
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   392
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   393
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   394
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   395
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   396
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   397
subclass ring_1 ..
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   398
subclass comm_semiring_1_cancel
70146
haftmann
parents: 70145
diff changeset
   399
  by standard (simp add: algebra_simps)
58647
fce800afeec7 more facts about abstract divisibility
haftmann
parents: 58198
diff changeset
   400
29465
b2cfb5d0a59e change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents: 29461
diff changeset
   401
lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y"
29408
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   402
proof
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   403
  assume "x dvd - y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   404
  then have "x dvd - 1 * - y" by (rule dvd_mult)
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   405
  then show "x dvd y" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   406
next
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   407
  assume "x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   408
  then have "x dvd - 1 * y" by (rule dvd_mult)
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   409
  then show "x dvd - y" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   410
qed
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   411
29465
b2cfb5d0a59e change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents: 29461
diff changeset
   412
lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y"
29408
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   413
proof
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   414
  assume "- x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   415
  then obtain k where "y = - x * k" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   416
  then have "y = x * - k" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   417
  then show "x dvd y" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   418
next
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   419
  assume "x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   420
  then obtain k where "y = x * k" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   421
  then have "y = - x * - k" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   422
  then show "- x dvd y" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   423
qed
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   424
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   425
lemma dvd_diff [simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54225
diff changeset
   426
  using dvd_add [of x y "- z"] by simp
29409
f0a8fe83bc07 add lemma dvd_diff to class comm_ring_1
huffman
parents: 29408
diff changeset
   427
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   428
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   429
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   430
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   431
subsection \<open>Towards integral domains\<close>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   432
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   433
class semiring_no_zero_divisors = semiring_0 +
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   434
  assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   435
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   436
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   437
lemma divisors_zero:
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   438
  assumes "a * b = 0"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   439
  shows "a = 0 \<or> b = 0"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   440
proof (rule classical)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   441
  assume "\<not> ?thesis"
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   442
  then have "a \<noteq> 0" and "b \<noteq> 0" by auto
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   443
  with no_zero_divisors have "a * b \<noteq> 0" by blast
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   444
  with assms show ?thesis by simp
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   445
qed
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   446
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   447
lemma mult_eq_0_iff [simp]: "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   448
proof (cases "a = 0 \<or> b = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   449
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   450
  then have "a \<noteq> 0" and "b \<noteq> 0" by auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   451
    then show ?thesis using no_zero_divisors by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   452
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   453
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   454
  then show ?thesis by auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   455
qed
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   456
58952
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   457
end
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   458
62481
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   459
class semiring_1_no_zero_divisors = semiring_1 + semiring_no_zero_divisors
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   460
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   461
class semiring_no_zero_divisors_cancel = semiring_no_zero_divisors +
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   462
  assumes mult_cancel_right [simp]: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   463
    and mult_cancel_left [simp]: "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b"
58952
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   464
begin
5d82cdef6c1b equivalence rules for structures without zero divisors
haftmann
parents: 58889
diff changeset
   465
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   466
lemma mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   467
  by simp
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 55912
diff changeset
   468
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   469
lemma mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   470
  by simp
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 55912
diff changeset
   471
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   472
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   473
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   474
class ring_no_zero_divisors = ring + semiring_no_zero_divisors
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   475
begin
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   476
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   477
subclass semiring_no_zero_divisors_cancel
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   478
proof
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   479
  fix a b c
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   480
  have "a * c = b * c \<longleftrightarrow> (a - b) * c = 0"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   481
    by (simp add: algebra_simps)
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   482
  also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   483
    by auto
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   484
  finally show "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" .
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   485
  have "c * a = c * b \<longleftrightarrow> c * (a - b) = 0"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   486
    by (simp add: algebra_simps)
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   487
  also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b"
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   488
    by auto
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   489
  finally show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" .
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   490
qed
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   491
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   492
end
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   493
23544
4b4165cb3e0d rename class dom to ring_1_no_zero_divisors
huffman
parents: 23527
diff changeset
   494
class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   495
begin
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   496
62481
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   497
subclass semiring_1_no_zero_divisors ..
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   498
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   499
lemma square_eq_1_iff: "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1"
36821
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   500
proof -
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   501
  have "(x - 1) * (x + 1) = x * x - 1"
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   502
    by (simp add: algebra_simps)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   503
  then have "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0"
36821
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   504
    by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   505
  then show ?thesis
36821
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   506
    by (simp add: eq_neg_iff_add_eq_0)
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   507
qed
9207505d1ee5 move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents: 36719
diff changeset
   508
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   509
lemma mult_cancel_right1 [simp]: "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   510
  using mult_cancel_right [of 1 c b] by auto
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   511
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   512
lemma mult_cancel_right2 [simp]: "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   513
  using mult_cancel_right [of a c 1] by simp
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   514
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   515
lemma mult_cancel_left1 [simp]: "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   516
  using mult_cancel_left [of c 1 b] by force
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   517
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   518
lemma mult_cancel_left2 [simp]: "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   519
  using mult_cancel_left [of c a 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   520
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   521
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   522
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   523
class semidom = comm_semiring_1_cancel + semiring_no_zero_divisors
62481
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   524
begin
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   525
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   526
subclass semiring_1_no_zero_divisors ..
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   527
b5d8e57826df tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents: 62390
diff changeset
   528
end
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   529
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   530
class idom = comm_ring_1 + semiring_no_zero_divisors
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   531
begin
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   532
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   533
subclass semidom ..
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   534
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   535
subclass ring_1_no_zero_divisors ..
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   536
70146
haftmann
parents: 70145
diff changeset
   537
lemma dvd_mult_cancel_right [simp]:
haftmann
parents: 70145
diff changeset
   538
  "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b"
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   539
proof -
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   540
  have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
70146
haftmann
parents: 70145
diff changeset
   541
    by (auto simp add: ac_simps)
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   542
  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
70146
haftmann
parents: 70145
diff changeset
   543
    by auto
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   544
  finally show ?thesis .
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   545
qed
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   546
70146
haftmann
parents: 70145
diff changeset
   547
lemma dvd_mult_cancel_left [simp]:
haftmann
parents: 70145
diff changeset
   548
  "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b"
haftmann
parents: 70145
diff changeset
   549
  using dvd_mult_cancel_right [of a c b] by (simp add: ac_simps)
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   550
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   551
lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> a = b \<or> a = - b"
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   552
proof
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   553
  assume "a * a = b * b"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   554
  then have "(a - b) * (a + b) = 0"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   555
    by (simp add: algebra_simps)
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   556
  then show "a = b \<or> a = - b"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   557
    by (simp add: eq_neg_iff_add_eq_0)
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   558
next
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   559
  assume "a = b \<or> a = - b"
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   560
  then show "a * a = b * b" by auto
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   561
qed
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
   562
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   563
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   564
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   565
class idom_abs_sgn = idom + abs + sgn +
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   566
  assumes sgn_mult_abs: "sgn a * \<bar>a\<bar> = a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   567
    and sgn_sgn [simp]: "sgn (sgn a) = sgn a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   568
    and abs_abs [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   569
    and abs_0 [simp]: "\<bar>0\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   570
    and sgn_0 [simp]: "sgn 0 = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   571
    and sgn_1 [simp]: "sgn 1 = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   572
    and sgn_minus_1: "sgn (- 1) = - 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   573
    and sgn_mult: "sgn (a * b) = sgn a * sgn b"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   574
begin
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   575
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   576
lemma sgn_eq_0_iff:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   577
  "sgn a = 0 \<longleftrightarrow> a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   578
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   579
  { assume "sgn a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   580
    then have "sgn a * \<bar>a\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   581
      by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   582
    then have "a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   583
      by (simp add: sgn_mult_abs)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   584
  } then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   585
    by auto
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   586
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   587
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   588
lemma abs_eq_0_iff:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   589
  "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   590
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   591
  { assume "\<bar>a\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   592
    then have "sgn a * \<bar>a\<bar> = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   593
      by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   594
    then have "a = 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   595
      by (simp add: sgn_mult_abs)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   596
  } then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   597
    by auto
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   598
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   599
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   600
lemma abs_mult_sgn:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   601
  "\<bar>a\<bar> * sgn a = a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   602
  using sgn_mult_abs [of a] by (simp add: ac_simps)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   603
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   604
lemma abs_1 [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   605
  "\<bar>1\<bar> = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   606
  using sgn_mult_abs [of 1] by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   607
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   608
lemma sgn_abs [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   609
  "\<bar>sgn a\<bar> = of_bool (a \<noteq> 0)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   610
  using sgn_mult_abs [of "sgn a"] mult_cancel_left [of "sgn a" "\<bar>sgn a\<bar>" 1]
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   611
  by (auto simp add: sgn_eq_0_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   612
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   613
lemma abs_sgn [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   614
  "sgn \<bar>a\<bar> = of_bool (a \<noteq> 0)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   615
  using sgn_mult_abs [of "\<bar>a\<bar>"] mult_cancel_right [of "sgn \<bar>a\<bar>" "\<bar>a\<bar>" 1]
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   616
  by (auto simp add: abs_eq_0_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   617
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   618
lemma abs_mult:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   619
  "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   620
proof (cases "a = 0 \<or> b = 0")
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   621
  case True
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   622
  then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   623
    by auto
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   624
next
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   625
  case False
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   626
  then have *: "sgn (a * b) \<noteq> 0"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   627
    by (simp add: sgn_eq_0_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   628
  from abs_mult_sgn [of "a * b"] abs_mult_sgn [of a] abs_mult_sgn [of b]
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   629
  have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * sgn a * \<bar>b\<bar> * sgn b"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   630
    by (simp add: ac_simps)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   631
  then have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * \<bar>b\<bar> * sgn (a * b)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   632
    by (simp add: sgn_mult ac_simps)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   633
  with * show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   634
    by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   635
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   636
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   637
lemma sgn_minus [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   638
  "sgn (- a) = - sgn a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   639
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   640
  from sgn_minus_1 have "sgn (- 1 * a) = - 1 * sgn a"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   641
    by (simp only: sgn_mult)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   642
  then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   643
    by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   644
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   645
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   646
lemma abs_minus [simp]:
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   647
  "\<bar>- a\<bar> = \<bar>a\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   648
proof -
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   649
  have [simp]: "\<bar>- 1\<bar> = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   650
    using sgn_mult_abs [of "- 1"] by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   651
  then have "\<bar>- 1 * a\<bar> = 1 * \<bar>a\<bar>"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   652
    by (simp only: abs_mult)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   653
  then show ?thesis
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   654
    by simp
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   655
qed
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   656
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   657
end
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
   658
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   659
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
   660
subsection \<open>(Partial) Division\<close>
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
   661
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   662
class divide =
60429
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   663
  fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "div" 70)
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   664
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
   665
setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close>
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   666
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   667
context semiring
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   668
begin
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   669
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   670
lemma [field_simps, field_split_simps]:
60429
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   671
  shows distrib_left_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b + c) = a * b + a * c"
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   672
    and distrib_right_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a + b) * c = a * c + b * c"
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   673
  by (rule distrib_left distrib_right)+
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   674
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   675
end
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   676
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   677
context ring
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   678
begin
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   679
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
   680
lemma [field_simps, field_split_simps]:
60429
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   681
  shows left_diff_distrib_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a - b) * c = a * c - b * c"
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
   682
    and right_diff_distrib_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b - c) = a * b - a * c"
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   683
  by (rule left_diff_distrib right_diff_distrib)+
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   684
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   685
end
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   686
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
   687
setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a::divide \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close>
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   688
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
   689
text \<open>Algebraic classes with division\<close>
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
   690
  
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   691
class semidom_divide = semidom + divide +
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   692
  assumes nonzero_mult_div_cancel_right [simp]: "b \<noteq> 0 \<Longrightarrow> (a * b) div b = a"
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   693
  assumes div_by_0 [simp]: "a div 0 = 0"
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   694
begin
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   695
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   696
lemma nonzero_mult_div_cancel_left [simp]: "a \<noteq> 0 \<Longrightarrow> (a * b) div a = b"
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   697
  using nonzero_mult_div_cancel_right [of a b] by (simp add: ac_simps)
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   698
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   699
subclass semiring_no_zero_divisors_cancel
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   700
proof
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   701
  show *: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" for a b c
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   702
  proof (cases "c = 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   703
    case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   704
    then show ?thesis by simp
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   705
  next
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   706
    case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   707
    have "a = b" if "a * c = b * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   708
    proof -
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   709
      from that have "a * c div c = b * c div c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   710
        by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   711
      with False show ?thesis
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   712
        by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   713
    qed
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   714
    then show ?thesis by auto
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   715
  qed
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   716
  show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" for a b c
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   717
    using * [of a c b] by (simp add: ac_simps)
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   718
qed
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   719
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   720
lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1"
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   721
  using nonzero_mult_div_cancel_left [of a 1] by simp
60516
0826b7025d07 generalized some theorems about integral domains and moved to HOL theories
haftmann
parents: 60429
diff changeset
   722
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   723
lemma div_0 [simp]: "0 div a = 0"
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   724
proof (cases "a = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   725
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   726
  then show ?thesis by simp
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   727
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   728
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   729
  then have "a * 0 div a = 0"
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   730
    by (rule nonzero_mult_div_cancel_left)
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   731
  then show ?thesis by simp
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
   732
qed
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   733
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   734
lemma div_by_1 [simp]: "a div 1 = a"
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
   735
  using nonzero_mult_div_cancel_left [of 1 a] by simp
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   736
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   737
lemma dvd_div_eq_0_iff:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   738
  assumes "b dvd a"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   739
  shows "a div b = 0 \<longleftrightarrow> a = 0"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   740
  using assms by (elim dvdE, cases "b = 0") simp_all  
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   741
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   742
lemma dvd_div_eq_cancel:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   743
  "a div c = b div c \<Longrightarrow> c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a = b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   744
  by (elim dvdE, cases "c = 0") simp_all
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   745
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   746
lemma dvd_div_eq_iff:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   747
  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a div c = b div c \<longleftrightarrow> a = b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   748
  by (elim dvdE, cases "c = 0") simp_all
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   749
69661
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   750
lemma inj_on_mult:
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   751
  "inj_on ((*) a) A" if "a \<noteq> 0"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   752
proof (rule inj_onI)
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   753
  fix b c
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   754
  assume "a * b = a * c"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   755
  then have "a * b div a = a * c div a"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   756
    by (simp only:)
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   757
  with that show "b = c"
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   758
    by simp
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   759
qed
a03a63b81f44 tuned proofs
haftmann
parents: 69605
diff changeset
   760
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   761
end
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   762
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   763
class idom_divide = idom + semidom_divide
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   764
begin
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   765
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   766
lemma dvd_neg_div:
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   767
  assumes "b dvd a"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   768
  shows "- a div b = - (a div b)"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   769
proof (cases "b = 0")
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   770
  case True
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   771
  then show ?thesis by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   772
next
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   773
  case False
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   774
  from assms obtain c where "a = b * c" ..
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   775
  then have "- a div b = (b * - c) div b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   776
    by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   777
  from False also have "\<dots> = - c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   778
    by (rule nonzero_mult_div_cancel_left)  
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   779
  with False \<open>a = b * c\<close> show ?thesis
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   780
    by simp
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   781
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   782
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   783
lemma dvd_div_neg:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   784
  assumes "b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   785
  shows "a div - b = - (a div b)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   786
proof (cases "b = 0")
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   787
  case True
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   788
  then show ?thesis by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   789
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   790
  case False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   791
  then have "- b \<noteq> 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   792
    by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   793
  from assms obtain c where "a = b * c" ..
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   794
  then have "a div - b = (- b * - c) div - b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   795
    by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   796
  from \<open>- b \<noteq> 0\<close> also have "\<dots> = - c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   797
    by (rule nonzero_mult_div_cancel_left)  
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   798
  with False \<open>a = b * c\<close> show ?thesis
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   799
    by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   800
qed
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   801
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
   802
end
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   803
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   804
class algebraic_semidom = semidom_divide
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   805
begin
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   806
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   807
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
   808
  Class \<^class>\<open>algebraic_semidom\<close> enriches a integral domain
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   809
  by notions from algebra, like units in a ring.
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   810
  It is a separate class to avoid spoiling fields with notions
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   811
  which are degenerated there.
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   812
\<close>
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   813
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   814
lemma dvd_times_left_cancel_iff [simp]:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   815
  assumes "a \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   816
  shows "a * b dvd a * c \<longleftrightarrow> b dvd c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   817
    (is "?lhs \<longleftrightarrow> ?rhs")
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   818
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   819
  assume ?lhs
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   820
  then obtain d where "a * c = a * b * d" ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   821
  with assms have "c = b * d" by (simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   822
  then show ?rhs ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   823
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   824
  assume ?rhs
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   825
  then obtain d where "c = b * d" ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   826
  then have "a * c = a * b * d" by (simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   827
  then show ?lhs ..
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   828
qed
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
   829
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   830
lemma dvd_times_right_cancel_iff [simp]:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   831
  assumes "a \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   832
  shows "b * a dvd c * a \<longleftrightarrow> b dvd c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   833
  using dvd_times_left_cancel_iff [of a b c] assms by (simp add: ac_simps)
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
   834
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   835
lemma div_dvd_iff_mult:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   836
  assumes "b \<noteq> 0" and "b dvd a"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   837
  shows "a div b dvd c \<longleftrightarrow> a dvd c * b"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   838
proof -
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   839
  from \<open>b dvd a\<close> obtain d where "a = b * d" ..
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   840
  with \<open>b \<noteq> 0\<close> show ?thesis by (simp add: ac_simps)
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   841
qed
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   842
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   843
lemma dvd_div_iff_mult:
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   844
  assumes "c \<noteq> 0" and "c dvd b"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   845
  shows "a dvd b div c \<longleftrightarrow> a * c dvd b"
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   846
proof -
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   847
  from \<open>c dvd b\<close> obtain d where "b = c * d" ..
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   848
  with \<open>c \<noteq> 0\<close> show ?thesis by (simp add: mult.commute [of a])
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   849
qed
a9e45c9588c3 tuned facts
haftmann
parents: 60688
diff changeset
   850
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   851
lemma div_dvd_div [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   852
  assumes "a dvd b" and "a dvd c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   853
  shows "b div a dvd c div a \<longleftrightarrow> b dvd c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   854
proof (cases "a = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   855
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   856
  with assms show ?thesis by simp
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   857
next
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   858
  case False
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   859
  moreover from assms obtain k l where "b = a * k" and "c = a * l"
70146
haftmann
parents: 70145
diff changeset
   860
    by blast
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   861
  ultimately show ?thesis by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   862
qed
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   863
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   864
lemma div_add [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   865
  assumes "c dvd a" and "c dvd b"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   866
  shows "(a + b) div c = a div c + b div c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   867
proof (cases "c = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   868
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   869
  then show ?thesis by simp
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   870
next
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   871
  case False
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   872
  moreover from assms obtain k l where "a = c * k" and "b = c * l"
70146
haftmann
parents: 70145
diff changeset
   873
    by blast
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   874
  moreover have "c * k + c * l = c * (k + l)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   875
    by (simp add: algebra_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   876
  ultimately show ?thesis
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   877
    by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   878
qed
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   879
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   880
lemma div_mult_div_if_dvd:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   881
  assumes "b dvd a" and "d dvd c"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   882
  shows "(a div b) * (c div d) = (a * c) div (b * d)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   883
proof (cases "b = 0 \<or> c = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   884
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   885
  with assms show ?thesis by auto
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   886
next
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   887
  case False
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   888
  moreover from assms obtain k l where "a = b * k" and "c = d * l"
70146
haftmann
parents: 70145
diff changeset
   889
    by blast
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   890
  moreover have "b * k * (d * l) div (b * d) = (b * d) * (k * l) div (b * d)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   891
    by (simp add: ac_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   892
  ultimately show ?thesis by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   893
qed
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   894
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   895
lemma dvd_div_eq_mult:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   896
  assumes "a \<noteq> 0" and "a dvd b"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   897
  shows "b div a = c \<longleftrightarrow> b = c * a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   898
    (is "?lhs \<longleftrightarrow> ?rhs")
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   899
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   900
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   901
  then show ?lhs by (simp add: assms)
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   902
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   903
  assume ?lhs
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   904
  then have "b div a * a = c * a" by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   905
  moreover from assms have "b div a * a = b"
70146
haftmann
parents: 70145
diff changeset
   906
    by (auto simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   907
  ultimately show ?rhs by simp
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   908
qed
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
   909
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   910
lemma dvd_div_mult_self [simp]: "a dvd b \<Longrightarrow> b div a * a = b"
70146
haftmann
parents: 70145
diff changeset
   911
  by (cases "a = 0") (auto simp add: ac_simps)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   912
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   913
lemma dvd_mult_div_cancel [simp]: "a dvd b \<Longrightarrow> a * (b div a) = b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   914
  using dvd_div_mult_self [of a b] by (simp add: ac_simps)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
   915
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   916
lemma div_mult_swap:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   917
  assumes "c dvd b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   918
  shows "a * (b div c) = (a * b) div c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   919
proof (cases "c = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   920
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   921
  then show ?thesis by simp
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   922
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   923
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   924
  from assms obtain d where "b = c * d" ..
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   925
  moreover from False have "a * divide (d * c) c = ((a * d) * c) div c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   926
    by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   927
  ultimately show ?thesis by (simp add: ac_simps)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   928
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   929
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   930
lemma dvd_div_mult: "c dvd b \<Longrightarrow> b div c * a = (b * a) div c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   931
  using div_mult_swap [of c b a] by (simp add: ac_simps)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
   932
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   933
lemma dvd_div_mult2_eq:
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   934
  assumes "b * c dvd a"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   935
  shows "a div (b * c) = a div b div c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   936
proof -
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
   937
  from assms obtain k where "a = b * c * k" ..
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   938
  then show ?thesis
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   939
    by (cases "b = 0 \<or> c = 0") (auto, simp add: ac_simps)
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   940
qed
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
   941
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   942
lemma dvd_div_div_eq_mult:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   943
  assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   944
  shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   945
    (is "?lhs \<longleftrightarrow> ?rhs")
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   946
proof -
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   947
  from assms have "a * c \<noteq> 0" by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   948
  then have "?lhs \<longleftrightarrow> b div a * (a * c) = d div c * (a * c)"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   949
    by simp
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   950
  also have "\<dots> \<longleftrightarrow> (a * (b div a)) * c = (c * (d div c)) * a"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   951
    by (simp add: ac_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   952
  also have "\<dots> \<longleftrightarrow> (a * b div a) * c = (c * d div c) * a"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   953
    using assms by (simp add: div_mult_swap)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   954
  also have "\<dots> \<longleftrightarrow> ?rhs"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   955
    using assms by (simp add: ac_simps)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   956
  finally show ?thesis .
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   957
qed
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   958
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   959
lemma dvd_mult_imp_div:
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   960
  assumes "a * c dvd b"
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   961
  shows "a dvd b div c"
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   962
proof (cases "c = 0")
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   963
  case True then show ?thesis by simp
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   964
next
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   965
  case False
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   966
  from \<open>a * c dvd b\<close> obtain d where "b = a * c * d" ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   967
  with False show ?thesis
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
   968
    by (simp add: mult.commute [of a] mult.assoc)
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   969
qed
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63325
diff changeset
   970
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   971
lemma div_div_eq_right:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   972
  assumes "c dvd b" "b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   973
  shows   "a div (b div c) = a div b * c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   974
proof (cases "c = 0 \<or> b = 0")
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   975
  case True
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   976
  then show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   977
    by auto
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   978
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   979
  case False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   980
  from assms obtain r s where "b = c * r" and "a = c * r * s"
70146
haftmann
parents: 70145
diff changeset
   981
    by blast
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   982
  moreover with False have "r \<noteq> 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   983
    by auto
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   984
  ultimately show ?thesis using False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   985
    by simp (simp add: mult.commute [of _ r] mult.assoc mult.commute [of c])
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   986
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   987
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   988
lemma div_div_div_same:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   989
  assumes "d dvd b" "b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   990
  shows   "(a div d) div (b div d) = a div b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   991
proof (cases "b = 0 \<or> d = 0")
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   992
  case True
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   993
  with assms show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   994
    by auto
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   995
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   996
  case False
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   997
  from assms obtain r s
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
   998
    where "a = d * r * s" and "b = d * r"
70146
haftmann
parents: 70145
diff changeset
   999
    by blast
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
  1000
  with False show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
  1001
    by simp (simp add: ac_simps)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
  1002
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64591
diff changeset
  1003
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1004
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1005
text \<open>Units: invertible elements in a ring\<close>
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1006
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1007
abbreviation is_unit :: "'a \<Rightarrow> bool"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1008
  where "is_unit a \<equiv> a dvd 1"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1009
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1010
lemma not_is_unit_0 [simp]: "\<not> is_unit 0"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1011
  by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1012
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1013
lemma unit_imp_dvd [dest]: "is_unit b \<Longrightarrow> b dvd a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1014
  by (rule dvd_trans [of _ 1]) simp_all
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1015
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1016
lemma unit_dvdE:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1017
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1018
  obtains c where "a \<noteq> 0" and "b = a * c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1019
proof -
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1020
  from assms have "a dvd b" by auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1021
  then obtain c where "b = a * c" ..
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1022
  moreover from assms have "a \<noteq> 0" by auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1023
  ultimately show thesis using that by blast
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1024
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1025
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1026
lemma dvd_unit_imp_unit: "a dvd b \<Longrightarrow> is_unit b \<Longrightarrow> is_unit a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1027
  by (rule dvd_trans)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1028
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1029
lemma unit_div_1_unit [simp, intro]:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1030
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1031
  shows "is_unit (1 div a)"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1032
proof -
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1033
  from assms have "1 = 1 div a * a" by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1034
  then show "is_unit (1 div a)" by (rule dvdI)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1035
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1036
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1037
lemma is_unitE [elim?]:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1038
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1039
  obtains b where "a \<noteq> 0" and "b \<noteq> 0"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1040
    and "is_unit b" and "1 div a = b" and "1 div b = a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1041
    and "a * b = 1" and "c div a = c * b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1042
proof (rule that)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62626
diff changeset
  1043
  define b where "b = 1 div a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1044
  then show "1 div a = b" by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1045
  from assms b_def show "is_unit b" by simp
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1046
  with assms show "a \<noteq> 0" and "b \<noteq> 0" by auto
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1047
  from assms b_def show "a * b = 1" by simp
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1048
  then have "1 = a * b" ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1049
  with b_def \<open>b \<noteq> 0\<close> show "1 div b = a" by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1050
  from assms have "a dvd c" ..
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1051
  then obtain d where "c = a * d" ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1052
  with \<open>a \<noteq> 0\<close> \<open>a * b = 1\<close> show "c div a = c * b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1053
    by (simp add: mult.assoc mult.left_commute [of a])
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1054
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1055
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1056
lemma unit_prod [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a * b)"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1057
  by (subst mult_1_left [of 1, symmetric]) (rule mult_dvd_mono)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1058
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1059
lemma is_unit_mult_iff: "is_unit (a * b) \<longleftrightarrow> is_unit a \<and> is_unit b"
62366
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
  1060
  by (auto dest: dvd_mult_left dvd_mult_right)
95c6cf433c91 more theorems
haftmann
parents: 62349
diff changeset
  1061
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1062
lemma unit_div [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a div b)"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1063
  by (erule is_unitE [of b a]) (simp add: ac_simps unit_prod)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1064
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1065
lemma mult_unit_dvd_iff:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1066
  assumes "is_unit b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1067
  shows "a * b dvd c \<longleftrightarrow> a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1068
proof
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1069
  assume "a * b dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1070
  with assms show "a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1071
    by (simp add: dvd_mult_left)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1072
next
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1073
  assume "a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1074
  then obtain k where "c = a * k" ..
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1075
  with assms have "c = (a * b) * (1 div b * k)"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1076
    by (simp add: mult_ac)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1077
  then show "a * b dvd c" by (rule dvdI)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1078
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1079
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1080
lemma mult_unit_dvd_iff': "is_unit a \<Longrightarrow> (a * b) dvd c \<longleftrightarrow> b dvd c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1081
  using mult_unit_dvd_iff [of a b c] by (simp add: ac_simps)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1082
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1083
lemma dvd_mult_unit_iff:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1084
  assumes "is_unit b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1085
  shows "a dvd c * b \<longleftrightarrow> a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1086
proof
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1087
  assume "a dvd c * b"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1088
  with assms have "c * b dvd c * (b * (1 div b))"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1089
    by (subst mult_assoc [symmetric]) simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1090
  also from assms have "b * (1 div b) = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1091
    by (rule is_unitE) simp
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1092
  finally have "c * b dvd c" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1093
  with \<open>a dvd c * b\<close> show "a dvd c" by (rule dvd_trans)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1094
next
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1095
  assume "a dvd c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1096
  then show "a dvd c * b" by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1097
qed
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1098
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1099
lemma dvd_mult_unit_iff': "is_unit b \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd c"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1100
  using dvd_mult_unit_iff [of b a c] by (simp add: ac_simps)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1101
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1102
lemma div_unit_dvd_iff: "is_unit b \<Longrightarrow> a div b dvd c \<longleftrightarrow> a dvd c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1103
  by (erule is_unitE [of _ a]) (auto simp add: mult_unit_dvd_iff)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1104
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1105
lemma dvd_div_unit_iff: "is_unit b \<Longrightarrow> a dvd c div b \<longleftrightarrow> a dvd c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1106
  by (erule is_unitE [of _ c]) (simp add: dvd_mult_unit_iff)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1107
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1108
lemmas unit_dvd_iff = mult_unit_dvd_iff mult_unit_dvd_iff'
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1109
  dvd_mult_unit_iff dvd_mult_unit_iff' 
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63680
diff changeset
  1110
  div_unit_dvd_iff dvd_div_unit_iff (* FIXME consider named_theorems *)
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1111
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1112
lemma unit_mult_div_div [simp]: "is_unit a \<Longrightarrow> b * (1 div a) = b div a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1113
  by (erule is_unitE [of _ b]) simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1114
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1115
lemma unit_div_mult_self [simp]: "is_unit a \<Longrightarrow> b div a * a = b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1116
  by (rule dvd_div_mult_self) auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1117
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1118
lemma unit_div_1_div_1 [simp]: "is_unit a \<Longrightarrow> 1 div (1 div a) = a"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1119
  by (erule is_unitE) simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1120
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1121
lemma unit_div_mult_swap: "is_unit c \<Longrightarrow> a * (b div c) = (a * b) div c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1122
  by (erule unit_dvdE [of _ b]) (simp add: mult.left_commute [of _ c])
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1123
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1124
lemma unit_div_commute: "is_unit b \<Longrightarrow> (a div b) * c = (a * c) div b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1125
  using unit_div_mult_swap [of b c a] by (simp add: ac_simps)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1126
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1127
lemma unit_eq_div1: "is_unit b \<Longrightarrow> a div b = c \<longleftrightarrow> a = c * b"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1128
  by (auto elim: is_unitE)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1129
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1130
lemma unit_eq_div2: "is_unit b \<Longrightarrow> a = c div b \<longleftrightarrow> a * b = c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1131
  using unit_eq_div1 [of b c a] by auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1132
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1133
lemma unit_mult_left_cancel: "is_unit a \<Longrightarrow> a * b = a * c \<longleftrightarrow> b = c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1134
  using mult_cancel_left [of a b c] by auto
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1135
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1136
lemma unit_mult_right_cancel: "is_unit a \<Longrightarrow> b * a = c * a \<longleftrightarrow> b = c"
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1137
  using unit_mult_left_cancel [of a b c] by (auto simp add: ac_simps)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1138
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1139
lemma unit_div_cancel:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1140
  assumes "is_unit a"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1141
  shows "b div a = c div a \<longleftrightarrow> b = c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1142
proof -
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1143
  from assms have "is_unit (1 div a)" by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1144
  then have "b * (1 div a) = c * (1 div a) \<longleftrightarrow> b = c"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1145
    by (rule unit_mult_right_cancel)
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1146
  with assms show ?thesis by simp
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1147
qed
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1148
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1149
lemma is_unit_div_mult2_eq:
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1150
  assumes "is_unit b" and "is_unit c"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1151
  shows "a div (b * c) = a div b div c"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1152
proof -
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1153
  from assms have "is_unit (b * c)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1154
    by (simp add: unit_prod)
60570
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1155
  then have "b * c dvd a"
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1156
    by (rule unit_imp_dvd)
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1157
  then show ?thesis
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1158
    by (rule dvd_div_mult2_eq)
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1159
qed
7ed2cde6806d more theorems
haftmann
parents: 60562
diff changeset
  1160
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1161
lemma is_unit_div_mult_cancel_left:
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1162
  assumes "a \<noteq> 0" and "is_unit b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1163
  shows "a div (a * b) = 1 div b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1164
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1165
  from assms have "a div (a * b) = a div a div b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1166
    by (simp add: mult_unit_dvd_iff dvd_div_mult2_eq)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1167
  with assms show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1168
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1169
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1170
lemma is_unit_div_mult_cancel_right:
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1171
  assumes "a \<noteq> 0" and "is_unit b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1172
  shows "a div (b * a) = 1 div b"
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1173
  using assms is_unit_div_mult_cancel_left [of a b] by (simp add: ac_simps)
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1174
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1175
lemma unit_div_eq_0_iff:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1176
  assumes "is_unit b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1177
  shows "a div b = 0 \<longleftrightarrow> a = 0"
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  1178
  using assms by (simp add: dvd_div_eq_0_iff unit_imp_dvd)
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1179
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1180
lemma div_mult_unit2:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1181
  "is_unit c \<Longrightarrow> b dvd a \<Longrightarrow> a div (b * c) = a div b div c"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1182
  by (rule dvd_div_mult2_eq) (simp_all add: mult_unit_dvd_iff)
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1183
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1184
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1185
text \<open>Coprimality\<close>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1186
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1187
definition coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1188
  where "coprime a b \<longleftrightarrow> (\<forall>c. c dvd a \<longrightarrow> c dvd b \<longrightarrow> is_unit c)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1189
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1190
lemma coprimeI:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1191
  assumes "\<And>c. c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1192
  shows "coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1193
  using assms by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1194
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1195
lemma not_coprimeI:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1196
  assumes "c dvd a" and "c dvd b" and "\<not> is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1197
  shows "\<not> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1198
  using assms by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1199
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1200
lemma coprime_common_divisor:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1201
  "is_unit c" if "coprime a b" and "c dvd a" and "c dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1202
  using that by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1203
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1204
lemma not_coprimeE:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1205
  assumes "\<not> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1206
  obtains c where "c dvd a" and "c dvd b" and "\<not> is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1207
  using assms by (auto simp: coprime_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1208
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1209
lemma coprime_imp_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1210
  "coprime a b" if "coprime c d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1211
    and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1212
    and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1213
proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1214
  fix e
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1215
  assume "e dvd a" and "e dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1216
  with that have "e dvd c" and "e dvd d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1217
    by (auto intro: dvd_trans)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1218
  with \<open>coprime c d\<close> show "is_unit e"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1219
    by (rule coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1220
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1221
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1222
lemma coprime_divisors:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1223
  "coprime a b" if "a dvd c" "b dvd d" and "coprime c d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1224
using \<open>coprime c d\<close> proof (rule coprime_imp_coprime)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1225
  fix e
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1226
  assume "e dvd a" then show "e dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1227
    using \<open>a dvd c\<close> by (rule dvd_trans)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1228
  assume "e dvd b" then show "e dvd d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1229
    using \<open>b dvd d\<close> by (rule dvd_trans)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1230
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1231
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1232
lemma coprime_self [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1233
  "coprime a a \<longleftrightarrow> is_unit a" (is "?P \<longleftrightarrow> ?Q")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1234
proof
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1235
  assume ?P
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1236
  then show ?Q
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1237
    by (rule coprime_common_divisor) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1238
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1239
  assume ?Q
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1240
  show ?P
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1241
    by (rule coprimeI) (erule dvd_unit_imp_unit, rule \<open>?Q\<close>)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1242
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1243
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1244
lemma coprime_commute [ac_simps]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1245
  "coprime b a \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1246
  unfolding coprime_def by auto
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1247
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1248
lemma is_unit_left_imp_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1249
  "coprime a b" if "is_unit a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1250
proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1251
  fix c
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1252
  assume "c dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1253
  with that show "is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1254
    by (auto intro: dvd_unit_imp_unit)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1255
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1256
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1257
lemma is_unit_right_imp_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1258
  "coprime a b" if "is_unit b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1259
  using that is_unit_left_imp_coprime [of b a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1260
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1261
lemma coprime_1_left [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1262
  "coprime 1 a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1263
  by (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1264
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1265
lemma coprime_1_right [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1266
  "coprime a 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1267
  by (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1268
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1269
lemma coprime_0_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1270
  "coprime 0 a \<longleftrightarrow> is_unit a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1271
  by (auto intro: coprimeI dvd_unit_imp_unit coprime_common_divisor [of 0 a a])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1272
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1273
lemma coprime_0_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1274
  "coprime a 0 \<longleftrightarrow> is_unit a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1275
  using coprime_0_left_iff [of a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1276
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1277
lemma coprime_mult_self_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1278
  "coprime (c * a) (c * b) \<longleftrightarrow> is_unit c \<and> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1279
  by (auto intro: coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1280
    (rule coprimeI, auto intro: coprime_common_divisor simp add: dvd_mult_unit_iff')+
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1281
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1282
lemma coprime_mult_self_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1283
  "coprime (a * c) (b * c) \<longleftrightarrow> is_unit c \<and> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1284
  using coprime_mult_self_left_iff [of c a b] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1285
67234
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1286
lemma coprime_absorb_left:
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1287
  assumes "x dvd y"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1288
  shows   "coprime x y \<longleftrightarrow> is_unit x"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1289
  using assms coprime_common_divisor is_unit_left_imp_coprime by auto
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1290
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1291
lemma coprime_absorb_right:
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1292
  assumes "y dvd x"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1293
  shows   "coprime x y \<longleftrightarrow> is_unit y"
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1294
  using assms coprime_common_divisor is_unit_right_imp_coprime by auto
ab10ea1d6fd0 Some lemmas on complex numbers and coprimality
eberlm <eberlm@in.tum.de>
parents: 67226
diff changeset
  1295
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1296
end
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1297
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1298
class unit_factor =
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1299
  fixes unit_factor :: "'a \<Rightarrow> 'a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1300
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1301
class semidom_divide_unit_factor = semidom_divide + unit_factor +
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1302
  assumes unit_factor_0 [simp]: "unit_factor 0 = 0"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1303
    and is_unit_unit_factor: "a dvd 1 \<Longrightarrow> unit_factor a = a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1304
    and unit_factor_is_unit: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd 1"
71398
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1305
    and unit_factor_mult_unit_left: "a dvd 1 \<Longrightarrow> unit_factor (a * b) = a * unit_factor b"
67226
ec32cdaab97b isabelle update_cartouches -c -t;
wenzelm
parents: 67084
diff changeset
  1306
  \<comment> \<open>This fine-grained hierarchy will later on allow lean normalization of polynomials\<close>
71398
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1307
begin
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1308
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1309
lemma unit_factor_mult_unit_right: "a dvd 1 \<Longrightarrow> unit_factor (b * a) = unit_factor b * a"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1310
  using unit_factor_mult_unit_left[of a b] by (simp add: mult_ac)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1311
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1312
lemmas [simp] = unit_factor_mult_unit_left unit_factor_mult_unit_right
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1313
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1314
end
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1315
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1316
class normalization_semidom = algebraic_semidom + semidom_divide_unit_factor +
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1317
  fixes normalize :: "'a \<Rightarrow> 'a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1318
  assumes unit_factor_mult_normalize [simp]: "unit_factor a * normalize a = a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1319
    and normalize_0 [simp]: "normalize 0 = 0"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1320
begin
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1321
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1322
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1323
  Class \<^class>\<open>normalization_semidom\<close> cultivates the idea that each integral
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1324
  domain can be split into equivalence classes whose representants are
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1325
  associated, i.e. divide each other. \<^const>\<open>normalize\<close> specifies a canonical
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1326
  representant for each equivalence class. The rationale behind this is that
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1327
  it is easier to reason about equality than equivalences, hence we prefer to
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1328
  think about equality of normalized values rather than associated elements.
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1329
\<close>
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1330
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1331
declare unit_factor_is_unit [iff]
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1332
  
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1333
lemma unit_factor_dvd [simp]: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1334
  by (rule unit_imp_dvd) simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1335
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1336
lemma unit_factor_self [simp]: "unit_factor a dvd a"
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1337
  by (cases "a = 0") simp_all
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1338
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1339
lemma normalize_mult_unit_factor [simp]: "normalize a * unit_factor a = a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1340
  using unit_factor_mult_normalize [of a] by (simp add: ac_simps)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1341
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1342
lemma normalize_eq_0_iff [simp]: "normalize a = 0 \<longleftrightarrow> a = 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1343
  (is "?lhs \<longleftrightarrow> ?rhs")
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1344
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1345
  assume ?lhs
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1346
  moreover have "unit_factor a * normalize a = a" by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1347
  ultimately show ?rhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1348
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1349
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1350
  then show ?lhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1351
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1352
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1353
lemma unit_factor_eq_0_iff [simp]: "unit_factor a = 0 \<longleftrightarrow> a = 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1354
  (is "?lhs \<longleftrightarrow> ?rhs")
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1355
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1356
  assume ?lhs
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1357
  moreover have "unit_factor a * normalize a = a" by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1358
  ultimately show ?rhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1359
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1360
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1361
  then show ?lhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1362
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1363
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1364
lemma div_unit_factor [simp]: "a div unit_factor a = normalize a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1365
proof (cases "a = 0")
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1366
  case True
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1367
  then show ?thesis by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1368
next
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1369
  case False
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1370
  then have "unit_factor a \<noteq> 0"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1371
    by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1372
  with nonzero_mult_div_cancel_left
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1373
  have "unit_factor a * normalize a div unit_factor a = normalize a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1374
    by blast
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1375
  then show ?thesis by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1376
qed
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1377
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1378
lemma normalize_div [simp]: "normalize a div a = 1 div unit_factor a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1379
proof (cases "a = 0")
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1380
  case True
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1381
  then show ?thesis by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1382
next
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1383
  case False
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1384
  have "normalize a div a = normalize a div (unit_factor a * normalize a)"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1385
    by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1386
  also have "\<dots> = 1 div unit_factor a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1387
    using False by (subst is_unit_div_mult_cancel_right) simp_all
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1388
  finally show ?thesis .
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1389
qed
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1390
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1391
lemma is_unit_normalize:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1392
  assumes "is_unit a"
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1393
  shows "normalize a = 1"
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1394
proof -
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1395
  from assms have "unit_factor a = a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1396
    by (rule is_unit_unit_factor)
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1397
  moreover from assms have "a \<noteq> 0"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1398
    by auto
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1399
  moreover have "normalize a = a div unit_factor a"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1400
    by simp
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1401
  ultimately show ?thesis
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  1402
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1403
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1404
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1405
lemma unit_factor_1 [simp]: "unit_factor 1 = 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1406
  by (rule is_unit_unit_factor) simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1407
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1408
lemma normalize_1 [simp]: "normalize 1 = 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1409
  by (rule is_unit_normalize) simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1410
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1411
lemma normalize_1_iff: "normalize a = 1 \<longleftrightarrow> is_unit a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1412
  (is "?lhs \<longleftrightarrow> ?rhs")
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1413
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1414
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1415
  then show ?lhs by (rule is_unit_normalize)
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1416
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1417
  assume ?lhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1418
  then have "unit_factor a * normalize a = unit_factor a * 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1419
    by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1420
  then have "unit_factor a = a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1421
    by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1422
  moreover
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1423
  from \<open>?lhs\<close> have "a \<noteq> 0" by auto
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1424
  then have "is_unit (unit_factor a)" by simp
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1425
  ultimately show ?rhs by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1426
qed
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1427
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1428
lemma div_normalize [simp]: "a div normalize a = unit_factor a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1429
proof (cases "a = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1430
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1431
  then show ?thesis by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1432
next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1433
  case False
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1434
  then have "normalize a \<noteq> 0" by simp
64240
eabf80376aab more standardized names
haftmann
parents: 64239
diff changeset
  1435
  with nonzero_mult_div_cancel_right
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1436
  have "unit_factor a * normalize a div normalize a = unit_factor a" by blast
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1437
  then show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1438
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1439
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1440
lemma mult_one_div_unit_factor [simp]: "a * (1 div unit_factor b) = a div unit_factor b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1441
  by (cases "b = 0") simp_all
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1442
63947
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1443
lemma inv_unit_factor_eq_0_iff [simp]:
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1444
  "1 div unit_factor a = 0 \<longleftrightarrow> a = 0"
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1445
  (is "?lhs \<longleftrightarrow> ?rhs")
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1446
proof
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1447
  assume ?lhs
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1448
  then have "a * (1 div unit_factor a) = a * 0"
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1449
    by simp
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1450
  then show ?rhs
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1451
    by simp
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1452
next
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1453
  assume ?rhs
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1454
  then show ?lhs by simp
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1455
qed
559f0882d6a6 more lemmas
haftmann
parents: 63924
diff changeset
  1456
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1457
lemma unit_factor_idem [simp]: "unit_factor (unit_factor a) = unit_factor a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1458
  by (cases "a = 0") (auto intro: is_unit_unit_factor)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1459
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1460
lemma normalize_unit_factor [simp]: "a \<noteq> 0 \<Longrightarrow> normalize (unit_factor a) = 1"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1461
  by (rule is_unit_normalize) simp
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1462
71398
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1463
lemma normalize_mult_unit_left [simp]:
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1464
  assumes "a dvd 1"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1465
  shows   "normalize (a * b) = normalize b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1466
proof (cases "b = 0")
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1467
  case False
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1468
  have "a * unit_factor b * normalize (a * b) = unit_factor (a * b) * normalize (a * b)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1469
    using assms by (subst unit_factor_mult_unit_left) auto
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1470
  also have "\<dots> = a * b" by simp
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1471
  also have "b = unit_factor b * normalize b" by simp
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1472
  hence "a * b = a * unit_factor b * normalize b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1473
    by (simp only: mult_ac)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1474
  finally show ?thesis
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1475
    using assms False by auto
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1476
qed auto
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1477
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1478
lemma normalize_mult_unit_right [simp]:
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1479
  assumes "b dvd 1"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1480
  shows   "normalize (a * b) = normalize a"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1481
  using assms by (subst mult.commute) auto
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1482
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1483
lemma normalize_idem [simp]: "normalize (normalize a) = normalize a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1484
proof (cases "a = 0")
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1485
  case False
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1486
  have "normalize a = normalize (unit_factor a * normalize a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1487
    by simp
71398
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1488
  also from False have "\<dots> = normalize (normalize a)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1489
    by (subst normalize_mult_unit_left) auto
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1490
  finally show ?thesis ..
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1491
qed auto
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1492
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1493
lemma unit_factor_normalize [simp]:
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1494
  assumes "a \<noteq> 0"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1495
  shows "unit_factor (normalize a) = 1"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1496
proof -
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1497
  from assms have *: "normalize a \<noteq> 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1498
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1499
  have "unit_factor (normalize a) * normalize (normalize a) = normalize a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1500
    by (simp only: unit_factor_mult_normalize)
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1501
  then have "unit_factor (normalize a) * normalize a = normalize a"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1502
    by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1503
  with * have "unit_factor (normalize a) * normalize a div normalize a = normalize a div normalize a"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1504
    by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1505
  with * show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1506
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1507
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1508
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1509
lemma normalize_dvd_iff [simp]: "normalize a dvd b \<longleftrightarrow> a dvd b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1510
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1511
  have "normalize a dvd b \<longleftrightarrow> unit_factor a * normalize a dvd b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1512
    using mult_unit_dvd_iff [of "unit_factor a" "normalize a" b]
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1513
      by (cases "a = 0") simp_all
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1514
  then show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1515
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1516
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1517
lemma dvd_normalize_iff [simp]: "a dvd normalize b \<longleftrightarrow> a dvd b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1518
proof -
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1519
  have "a dvd normalize  b \<longleftrightarrow> a dvd normalize b * unit_factor b"
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1520
    using dvd_mult_unit_iff [of "unit_factor b" a "normalize b"]
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1521
      by (cases "b = 0") simp_all
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1522
  then show ?thesis by simp
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1523
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1524
65811
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1525
lemma normalize_idem_imp_unit_factor_eq:
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1526
  assumes "normalize a = a"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1527
  shows "unit_factor a = of_bool (a \<noteq> 0)"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1528
proof (cases "a = 0")
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1529
  case True
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1530
  then show ?thesis
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1531
    by simp
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1532
next
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1533
  case False
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1534
  then show ?thesis
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1535
    using assms unit_factor_normalize [of a] by simp
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1536
qed
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1537
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1538
lemma normalize_idem_imp_is_unit_iff:
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1539
  assumes "normalize a = a"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1540
  shows "is_unit a \<longleftrightarrow> a = 1"
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1541
  using assms by (cases "a = 0") (auto dest: is_unit_normalize)
2653f1cd8775 more lemmas
haftmann
parents: 64848
diff changeset
  1542
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1543
lemma coprime_normalize_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1544
  "coprime (normalize a) b \<longleftrightarrow> coprime a b"
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  1545
  by (rule iffI; rule coprimeI) (auto intro: coprime_common_divisor)
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1546
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1547
lemma coprime_normalize_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1548
  "coprime a (normalize b) \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1549
  using coprime_normalize_left_iff [of b a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  1550
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1551
text \<open>
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1552
  We avoid an explicit definition of associated elements but prefer explicit
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1553
  normalisation instead. In theory we could define an abbreviation like \<^prop>\<open>associated a b \<longleftrightarrow> normalize a = normalize b\<close> but this is counterproductive
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1554
  without suggestive infix syntax, which we do not want to sacrifice for this
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1555
  purpose here.
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1556
\<close>
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1557
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1558
lemma associatedI:
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1559
  assumes "a dvd b" and "b dvd a"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1560
  shows "normalize a = normalize b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1561
proof (cases "a = 0 \<or> b = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1562
  case True
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1563
  with assms show ?thesis by auto
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1564
next
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1565
  case False
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1566
  from \<open>a dvd b\<close> obtain c where b: "b = a * c" ..
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1567
  moreover from \<open>b dvd a\<close> obtain d where a: "a = b * d" ..
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1568
  ultimately have "b * 1 = b * (c * d)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1569
    by (simp add: ac_simps)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1570
  with False have "1 = c * d"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1571
    unfolding mult_cancel_left by simp
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1572
  then have "is_unit c" and "is_unit d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1573
    by auto
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1574
  with a b show ?thesis
71398
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1575
    by (simp add: is_unit_normalize)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1576
qed
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1577
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1578
lemma associatedD1: "normalize a = normalize b \<Longrightarrow> a dvd b"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1579
  using dvd_normalize_iff [of _ b, symmetric] normalize_dvd_iff [of a _, symmetric]
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1580
  by simp
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1581
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1582
lemma associatedD2: "normalize a = normalize b \<Longrightarrow> b dvd a"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1583
  using dvd_normalize_iff [of _ a, symmetric] normalize_dvd_iff [of b _, symmetric]
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1584
  by simp
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1585
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1586
lemma associated_unit: "normalize a = normalize b \<Longrightarrow> is_unit a \<Longrightarrow> is_unit b"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1587
  using dvd_unit_imp_unit by (auto dest!: associatedD1 associatedD2)
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1588
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1589
lemma associated_iff_dvd: "normalize a = normalize b \<longleftrightarrow> a dvd b \<and> b dvd a"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1590
  (is "?lhs \<longleftrightarrow> ?rhs")
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1591
proof
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1592
  assume ?rhs
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1593
  then show ?lhs by (auto intro!: associatedI)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1594
next
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1595
  assume ?lhs
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1596
  then have "unit_factor a * normalize a = unit_factor a * normalize b"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1597
    by simp
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1598
  then have *: "normalize b * unit_factor a = a"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1599
    by (simp add: ac_simps)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1600
  show ?rhs
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1601
  proof (cases "a = 0 \<or> b = 0")
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1602
    case True
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1603
    with \<open>?lhs\<close> show ?thesis by auto
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1604
  next
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1605
    case False
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1606
    then have "b dvd normalize b * unit_factor a" and "normalize b * unit_factor a dvd b"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1607
      by (simp_all add: mult_unit_dvd_iff dvd_mult_unit_iff)
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1608
    with * show ?thesis by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1609
  qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1610
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1611
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1612
lemma associated_eqI:
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1613
  assumes "a dvd b" and "b dvd a"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1614
  assumes "normalize a = a" and "normalize b = b"
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1615
  shows "a = b"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1616
proof -
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1617
  from assms have "normalize a = normalize b"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60685
diff changeset
  1618
    unfolding associated_iff_dvd by simp
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1619
  with \<open>normalize a = a\<close> have "a = normalize b"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1620
    by simp
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1621
  with \<open>normalize b = b\<close> show "a = b"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1622
    by simp
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1623
qed
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1624
64591
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1625
lemma normalize_unit_factor_eqI:
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1626
  assumes "normalize a = normalize b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1627
    and "unit_factor a = unit_factor b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1628
  shows "a = b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1629
proof -
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1630
  from assms have "unit_factor a * normalize a = unit_factor b * normalize b"
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1631
    by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1632
  then show ?thesis
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1633
    by simp
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1634
qed
240a39af9ec4 restructured matter on polynomials and normalized fractions
haftmann
parents: 64290
diff changeset
  1635
71398
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1636
lemma normalize_mult_normalize_left [simp]: "normalize (normalize a * b) = normalize (a * b)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1637
  by (rule associated_eqI) (auto intro!: mult_dvd_mono)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1638
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1639
lemma normalize_mult_normalize_right [simp]: "normalize (a * normalize b) = normalize (a * b)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1640
  by (rule associated_eqI) (auto intro!: mult_dvd_mono)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1641
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1642
end
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60615
diff changeset
  1643
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1644
71398
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1645
class normalization_semidom_multiplicative = normalization_semidom +
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1646
  assumes unit_factor_mult: "unit_factor (a * b) = unit_factor a * unit_factor b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1647
begin
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1648
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1649
lemma normalize_mult: "normalize (a * b) = normalize a * normalize b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1650
proof (cases "a = 0 \<or> b = 0")
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1651
  case True
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1652
  then show ?thesis by auto
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1653
next
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1654
  case False
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1655
  have "unit_factor (a * b) * normalize (a * b) = a * b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1656
    by (rule unit_factor_mult_normalize)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1657
  then have "normalize (a * b) = a * b div unit_factor (a * b)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1658
    by simp
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1659
  also have "\<dots> = a * b div unit_factor (b * a)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1660
    by (simp add: ac_simps)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1661
  also have "\<dots> = a * b div unit_factor b div unit_factor a"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1662
    using False by (simp add: unit_factor_mult is_unit_div_mult2_eq [symmetric])
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1663
  also have "\<dots> = a * (b div unit_factor b) div unit_factor a"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1664
    using False by (subst unit_div_mult_swap) simp_all
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1665
  also have "\<dots> = normalize a * normalize b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1666
    using False
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1667
    by (simp add: mult.commute [of a] mult.commute [of "normalize a"] unit_div_mult_swap [symmetric])
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1668
  finally show ?thesis .
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1669
qed
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1670
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1671
lemma dvd_unit_factor_div:
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1672
  assumes "b dvd a"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1673
  shows "unit_factor (a div b) = unit_factor a div unit_factor b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1674
proof -
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1675
  from assms have "a = a div b * b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1676
    by simp
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1677
  then have "unit_factor a = unit_factor (a div b * b)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1678
    by simp
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1679
  then show ?thesis
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1680
    by (cases "b = 0") (simp_all add: unit_factor_mult)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1681
qed
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1682
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1683
lemma dvd_normalize_div:
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1684
  assumes "b dvd a"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1685
  shows "normalize (a div b) = normalize a div normalize b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1686
proof -
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1687
  from assms have "a = a div b * b"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1688
    by simp
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1689
  then have "normalize a = normalize (a div b * b)"
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1690
    by simp
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1691
  then show ?thesis
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1692
    by (cases "b = 0") (simp_all add: normalize_mult)
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1693
qed
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1694
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1695
end
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1696
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1697
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1698
e0237f2eb49d Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents: 71167
diff changeset
  1699
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1700
text \<open>Syntactic division remainder operator\<close>
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1701
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1702
class modulo = dvd + divide +
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1703
  fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "mod" 70)
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1704
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1705
text \<open>Arbitrary quotient and remainder partitions\<close>
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1706
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1707
class semiring_modulo = comm_semiring_1_cancel + divide + modulo +
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1708
  assumes div_mult_mod_eq: "a div b * b + a mod b = a"
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1709
begin
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1710
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1711
lemma mod_div_decomp:
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1712
  fixes a b
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1713
  obtains q r where "q = a div b" and "r = a mod b"
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1714
    and "a = q * b + r"
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1715
proof -
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1716
  from div_mult_mod_eq have "a = a div b * b + a mod b" by simp
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1717
  moreover have "a div b = a div b" ..
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1718
  moreover have "a mod b = a mod b" ..
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1719
  note that ultimately show thesis by blast
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1720
qed
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1721
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1722
lemma mult_div_mod_eq: "b * (a div b) + a mod b = a"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1723
  using div_mult_mod_eq [of a b] by (simp add: ac_simps)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1724
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1725
lemma mod_div_mult_eq: "a mod b + a div b * b = a"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1726
  using div_mult_mod_eq [of a b] by (simp add: ac_simps)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1727
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1728
lemma mod_mult_div_eq: "a mod b + b * (a div b) = a"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1729
  using div_mult_mod_eq [of a b] by (simp add: ac_simps)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1730
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1731
lemma minus_div_mult_eq_mod: "a - a div b * b = a mod b"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1732
  by (rule add_implies_diff [symmetric]) (fact mod_div_mult_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1733
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1734
lemma minus_mult_div_eq_mod: "a - b * (a div b) = a mod b"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1735
  by (rule add_implies_diff [symmetric]) (fact mod_mult_div_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1736
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1737
lemma minus_mod_eq_div_mult: "a - a mod b = a div b * b"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1738
  by (rule add_implies_diff [symmetric]) (fact div_mult_mod_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1739
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1740
lemma minus_mod_eq_mult_div: "a - a mod b = b * (a div b)"
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1741
  by (rule add_implies_diff [symmetric]) (fact mult_div_mod_eq)
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1742
70902
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1743
lemma mod_0_imp_dvd [dest!]:
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1744
  "b dvd a" if "a mod b = 0"
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1745
proof -
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1746
  have "b dvd (a div b) * b" by simp
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1747
  also have "(a div b) * b = a"
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1748
    using div_mult_mod_eq [of a b] by (simp add: that)
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1749
  finally show ?thesis .
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1750
qed
cb161182ce7f generalized
haftmann
parents: 70817
diff changeset
  1751
68253
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1752
lemma [nitpick_unfold]:
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1753
  "a mod b = a - a div b * b"
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1754
  by (fact minus_div_mult_eq_mod [symmetric])
a8660a39e304 grouped material on numeral division
haftmann
parents: 68252
diff changeset
  1755
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1756
end
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1757
64164
38c407446400 separate type class for arbitrary quotient and remainder partitions
haftmann
parents: 63950
diff changeset
  1758
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1759
subsection \<open>Quotient and remainder in integral domains\<close>
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1760
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1761
class semidom_modulo = algebraic_semidom + semiring_modulo
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1762
begin
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1763
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1764
lemma mod_0 [simp]: "0 mod a = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1765
  using div_mult_mod_eq [of 0 a] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1766
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1767
lemma mod_by_0 [simp]: "a mod 0 = a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1768
  using div_mult_mod_eq [of a 0] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1769
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1770
lemma mod_by_1 [simp]:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1771
  "a mod 1 = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1772
proof -
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1773
  from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1774
  then have "a + a mod 1 = a + 0" by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1775
  then show ?thesis by (rule add_left_imp_eq)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1776
qed
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1777
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1778
lemma mod_self [simp]:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1779
  "a mod a = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1780
  using div_mult_mod_eq [of a a] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1781
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1782
lemma dvd_imp_mod_0 [simp]:
67084
haftmann
parents: 67051
diff changeset
  1783
  "b mod a = 0" if "a dvd b"
haftmann
parents: 67051
diff changeset
  1784
  using that minus_div_mult_eq_mod [of b a] by simp
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1785
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1786
lemma mod_eq_0_iff_dvd:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1787
  "a mod b = 0 \<longleftrightarrow> b dvd a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1788
  by (auto intro: mod_0_imp_dvd)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1789
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1790
lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1791
  "a dvd b \<longleftrightarrow> b mod a = 0"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1792
  by (simp add: mod_eq_0_iff_dvd)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1793
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1794
lemma dvd_mod_iff: 
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1795
  assumes "c dvd b"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1796
  shows "c dvd a mod b \<longleftrightarrow> c dvd a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1797
proof -
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1798
  from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" 
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1799
    by (simp add: dvd_add_right_iff)
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1800
  also have "(a div b) * b + a mod b = a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1801
    using div_mult_mod_eq [of a b] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1802
  finally show ?thesis .
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1803
qed
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1804
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1805
lemma dvd_mod_imp_dvd:
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1806
  assumes "c dvd a mod b" and "c dvd b"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1807
  shows "c dvd a"
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1808
  using assms dvd_mod_iff [of c b a] by simp
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1809
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1810
lemma dvd_minus_mod [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1811
  "b dvd a - a mod b"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1812
  by (simp add: minus_mod_eq_div_mult)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1813
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1814
lemma cancel_div_mod_rules:
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1815
  "((a div b) * b + a mod b) + c = a + c"
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1816
  "(b * (a div b) + a mod b) + c = a + c"
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1817
  by (simp_all add: div_mult_mod_eq mult_div_mod_eq)
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1818
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1819
end
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1820
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1821
class idom_modulo = idom + semidom_modulo
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1822
begin
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1823
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1824
subclass idom_divide ..
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1825
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1826
lemma div_diff [simp]:
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1827
  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c"
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1828
  using div_add [of _  _ "- b"] by (simp add: dvd_neg_div)
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1829
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1830
end
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1831
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1832
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1833
subsection \<open>Interlude: basic tool support for algebraic and arithmetic calculations\<close>
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1834
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1835
named_theorems arith "arith facts -- only ground formulas"
69605
a96320074298 isabelle update -u path_cartouches;
wenzelm
parents: 69593
diff changeset
  1836
ML_file \<open>Tools/arith_data.ML\<close>
a96320074298 isabelle update -u path_cartouches;
wenzelm
parents: 69593
diff changeset
  1837
a96320074298 isabelle update -u path_cartouches;
wenzelm
parents: 69593
diff changeset
  1838
ML_file \<open>~~/src/Provers/Arith/cancel_div_mod.ML\<close>
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1839
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1840
ML \<open>
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1841
structure Cancel_Div_Mod_Ring = Cancel_Div_Mod
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1842
(
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1843
  val div_name = \<^const_name>\<open>divide\<close>;
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  1844
  val mod_name = \<^const_name>\<open>modulo\<close>;
66810
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1845
  val mk_binop = HOLogic.mk_binop;
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1846
  val mk_sum = Arith_Data.mk_sum;
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1847
  val dest_sum = Arith_Data.dest_sum;
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1848
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1849
  val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1850
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1851
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1852
    @{thms diff_conv_add_uminus add_0_left add_0_right ac_simps})
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1853
)
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1854
\<close>
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1855
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1856
simproc_setup cancel_div_mod_int ("(a::'a::semidom_modulo) + b") =
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1857
  \<open>K Cancel_Div_Mod_Ring.proc\<close>
cc2b490f9dc4 generalized simproc
haftmann
parents: 66808
diff changeset
  1858
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1859
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1860
subsection \<open>Ordered semirings and rings\<close>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1861
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1862
text \<open>
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1863
  The theory of partially ordered rings is taken from the books:
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1864
    \<^item> \<^emph>\<open>Lattice Theory\<close> by Garret Birkhoff, American Mathematical Society, 1979
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1865
    \<^item> \<^emph>\<open>Partially Ordered Algebraic Systems\<close>, Pergamon Press, 1963
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1866
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1867
  Most of the used notions can also be looked up in
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1868
    \<^item> \<^url>\<open>http://www.mathworld.com\<close> by Eric Weisstein et. al.
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1869
    \<^item> \<^emph>\<open>Algebra I\<close> by van der Waerden, Springer
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  1870
\<close>
66807
c3631f32dfeb tuned structure
haftmann
parents: 66793
diff changeset
  1871
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1872
class ordered_semiring = semiring + ordered_comm_monoid_add +
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  1873
  assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  1874
  assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1875
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1876
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1877
lemma mult_mono: "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1878
  apply (erule (1) mult_right_mono [THEN order_trans])
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1879
  apply (erule (1) mult_left_mono)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1880
  done
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1881
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1882
lemma mult_mono': "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1883
  by (rule mult_mono) (fast intro: order_trans)+
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1884
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1885
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
  1886
74007
df976eefcba0 A few new lemmas and simplifications
paulson <lp15@cam.ac.uk>
parents: 73545
diff changeset
  1887
lemma mono_mult:
df976eefcba0 A few new lemmas and simplifications
paulson <lp15@cam.ac.uk>
parents: 73545
diff changeset
  1888
  fixes a :: "'a::ordered_semiring" 
df976eefcba0 A few new lemmas and simplifications
paulson <lp15@cam.ac.uk>
parents: 73545
diff changeset
  1889
  shows "a \<ge> 0 \<Longrightarrow> mono ((*) a)"
df976eefcba0 A few new lemmas and simplifications
paulson <lp15@cam.ac.uk>
parents: 73545
diff changeset
  1890
  by (simp add: mono_def mult_left_mono)
df976eefcba0 A few new lemmas and simplifications
paulson <lp15@cam.ac.uk>
parents: 73545
diff changeset
  1891
62377
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1892
class ordered_semiring_0 = semiring_0 + ordered_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1893
begin
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1894
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1895
lemma mult_nonneg_nonneg [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1896
  using mult_left_mono [of 0 b a] by simp
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1897
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1898
lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1899
  using mult_left_mono [of b 0 a] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1900
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1901
lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1902
  using mult_right_mono [of a 0 b] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1903
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1904
text \<open>Legacy -- use @{thm [source] mult_nonpos_nonneg}.\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1905
lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1906
  by (drule mult_right_mono [of b 0]) auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1907
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  1908
lemma split_mult_neg_le: "(0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b) \<Longrightarrow> a * b \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1909
  by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1910
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1911
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1912
62377
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1913
class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1914
begin
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1915
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1916
subclass semiring_0_cancel ..
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1917
62377
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1918
subclass ordered_semiring_0 ..
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1919
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1920
end
ace69956d018 moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
hoelzl
parents: 62376
diff changeset
  1921
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  1922
class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1923
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1924
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  1925
subclass ordered_cancel_semiring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  1926
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  1927
subclass ordered_cancel_comm_monoid_add ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1928
63456
3365c8ec67bd sharing simp rules between ordered monoids and rings
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63359
diff changeset
  1929
subclass ordered_ab_semigroup_monoid_add_imp_le ..
3365c8ec67bd sharing simp rules between ordered monoids and rings
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63359
diff changeset
  1930
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1931
lemma mult_left_less_imp_less: "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1932
  by (force simp add: mult_left_mono not_le [symmetric])
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1933
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1934
lemma mult_right_less_imp_less: "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1935
  by (force simp add: mult_right_mono not_le [symmetric])
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
  1936
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1937
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1938
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1939
class zero_less_one = order + zero + one +
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1940
  assumes zero_less_one [simp]: "0 < 1"
73545
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1941
begin
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1942
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1943
subclass zero_neq_one
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1944
  by standard (simp add: less_imp_neq)
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1945
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1946
lemma zero_le_one [simp]:
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1947
  \<open>0 \<le> 1\<close> by (rule less_imp_le) simp
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1948
fc72e5ebf9de subclass relation
haftmann
parents: 73535
diff changeset
  1949
end
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1950
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  1951
class linordered_semiring_1 = linordered_semiring + semiring_1 + zero_less_one
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1952
begin
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1953
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1954
lemma convex_bound_le:
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1955
  assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1956
  shows "u * x + v * y \<le> a"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1957
proof-
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1958
  from assms have "u * x + v * y \<le> u * a + v * a"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1959
    by (simp add: add_mono mult_left_mono)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1960
  with assms show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1961
    unfolding distrib_right[symmetric] by simp
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1962
qed
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1963
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  1964
end
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  1965
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  1966
class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
  1967
  assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
  1968
  assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1969
begin
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
  1970
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1971
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
  1972
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  1973
subclass linordered_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  1974
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  1975
  fix a b c :: 'a
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1976
  assume *: "a \<le> b" "0 \<le> c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1977
  then show "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1978
    unfolding le_less
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1979
    using mult_strict_left_mono by (cases "c = 0") auto
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  1980
  from * show "a * c \<le> b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1981
    unfolding le_less
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  1982
    using mult_strict_right_mono by (cases "c = 0") auto
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1983
qed
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  1984
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1985
lemma mult_left_le_imp_le: "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1986
  by (auto simp add: mult_strict_left_mono _not_less [symmetric])
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  1987
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1988
lemma mult_right_le_imp_le: "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1989
  by (auto simp add: mult_strict_right_mono not_less [symmetric])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1990
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  1991
lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1992
  using mult_strict_left_mono [of 0 b a] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1993
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1994
lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1995
  using mult_strict_left_mono [of b 0 a] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1996
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1997
lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  1998
  using mult_strict_right_mono [of a 0 b] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1999
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2000
text \<open>Legacy -- use @{thm [source] mult_neg_pos}.\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2001
lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2002
  by (drule mult_strict_right_mono [of b 0]) auto
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2003
71697
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2004
lemma zero_less_mult_pos: 
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2005
  assumes "0 < a * b" "0 < a" shows "0 < b"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2006
proof (cases "b \<le> 0")
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2007
  case True
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2008
  then show ?thesis
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2009
    using assms by (auto simp: le_less dest: less_not_sym mult_pos_neg [of a b])
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2010
qed (auto simp add: le_less not_less)
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2011
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2012
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2013
lemma zero_less_mult_pos2: 
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2014
  assumes "0 < b * a" "0 < a" shows "0 < b"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2015
proof (cases "b \<le> 0")
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2016
  case True
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2017
  then show ?thesis
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2018
    using assms by (auto simp: le_less dest: less_not_sym mult_pos_neg2 [of a b])
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2019
qed (auto simp add: le_less not_less)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2020
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2021
text \<open>Strict monotonicity in both arguments\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2022
lemma mult_strict_mono:
71697
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2023
  assumes "a < b" "c < d" "0 < b" "0 \<le> c"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2024
  shows "a * c < b * d"
71697
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2025
proof (cases "c = 0")
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2026
  case True
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2027
  with assms show ?thesis
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2028
    by simp
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2029
next
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2030
  case False
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2031
  with assms have "a*c < b*c"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2032
    by (simp add: mult_strict_right_mono [OF \<open>a < b\<close>])
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2033
  also have "\<dots> < b*d"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2034
    by (simp add: assms mult_strict_left_mono)
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2035
  finally show ?thesis .
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2036
qed
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2037
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2038
text \<open>This weaker variant has more natural premises\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2039
lemma mult_strict_mono':
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2040
  assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2041
  shows "a * c < b * d"
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  2042
  using assms by (auto simp add: mult_strict_mono)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2043
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2044
lemma mult_less_le_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2045
  assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2046
  shows "a * c < b * d"
71697
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2047
proof -
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2048
  have "a * c < b * c"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2049
    by (simp add: assms mult_strict_right_mono)
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2050
  also have "... \<le> b * d"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2051
    by (intro mult_left_mono) (use assms in auto)
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2052
  finally show ?thesis .
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2053
qed
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2054
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2055
lemma mult_le_less_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2056
  assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2057
  shows "a * c < b * d"
71697
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2058
proof -
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2059
  have "a * c \<le> b * c"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2060
    by (simp add: assms mult_right_mono)
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2061
  also have "... < b * d"
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2062
    by (intro mult_strict_left_mono) (use assms in auto)
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2063
  finally show ?thesis .
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2064
qed
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2065
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2066
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2067
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2068
class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 + zero_less_one
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2069
begin
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2070
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2071
subclass linordered_semiring_1 ..
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2072
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2073
lemma convex_bound_lt:
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2074
  assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2075
  shows "u * x + v * y < a"
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2076
proof -
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2077
  from assms have "u * x + v * y < u * a + v * a"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2078
    by (cases "u = 0") (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2079
  with assms show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2080
    unfolding distrib_right[symmetric] by simp
36622
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2081
qed
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2082
e393a91f86df Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents: 36348
diff changeset
  2083
end
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2084
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2085
class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add +
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2086
  assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2087
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
  2088
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2089
subclass ordered_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2090
proof
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
  2091
  fix a b c :: 'a
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2092
  assume "a \<le> b" "0 \<le> c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2093
  then show "c * a \<le> c * b" by (rule comm_mult_left_mono)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2094
  then show "a * c \<le> b * c" by (simp only: mult.commute)
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
  2095
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2096
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2097
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2098
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2099
class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2100
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2101
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2102
subclass comm_semiring_0_cancel ..
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2103
subclass ordered_comm_semiring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2104
subclass ordered_cancel_semiring ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2105
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2106
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2107
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2108
class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add +
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 37767
diff changeset
  2109
  assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2110
begin
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2111
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  2112
subclass linordered_semiring_strict
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2113
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2114
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2115
  assume "a < b" "0 < c"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2116
  then show "c * a < c * b"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2117
    by (rule comm_mult_strict_left_mono)
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2118
  then show "a * c < b * c"
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2119
    by (simp only: mult.commute)
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2120
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
  2121
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2122
subclass ordered_cancel_comm_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2123
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2124
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2125
  assume "a \<le> b" "0 \<le> c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2126
  then show "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2127
    unfolding le_less
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2128
    using mult_strict_left_mono by (cases "c = 0") auto
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
  2129
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
  2130
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2131
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2132
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2133
class ordered_ring = ring + ordered_cancel_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2134
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2135
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2136
subclass ordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  2137
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2138
lemma less_add_iff1: "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2139
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2140
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2141
lemma less_add_iff2: "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2142
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2143
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2144
lemma le_add_iff1: "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2145
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2146
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2147
lemma le_add_iff2: "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2148
  by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2149
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2150
lemma mult_left_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b"
71697
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2151
  by (auto dest: mult_left_mono [of _ _ "- c"])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2152
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2153
lemma mult_right_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c"
71697
34ff9ca387c0 fixed more nasty proofs
paulson <lp15@cam.ac.uk>
parents: 71398
diff changeset
  2154
  by (auto dest: mult_right_mono [of _ _ "- c"])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2155
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2156
lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2157
  using mult_right_mono_neg [of a 0 b] by simp
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2158
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2159
lemma split_mult_pos_le: "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2160
  by (auto simp add: mult_nonpos_nonpos)
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2161
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
  2162
end
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  2163
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2164
class abs_if = minus + uminus + ord + zero + abs +
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2165
  assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2166
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2167
class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2168
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2169
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2170
subclass ordered_ring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2171
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2172
subclass ordered_ab_group_add_abs
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2173
proof
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2174
  fix a b
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2175
  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2176
    by (auto simp add: abs_if not_le not_less algebra_simps
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2177
        simp del: add.commute dest: add_neg_neg add_nonneg_nonneg)
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2178
qed (auto simp: abs_if)
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2179
35631
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2180
lemma zero_le_square [simp]: "0 \<le> a * a"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2181
  using linear [of 0 a] by (auto simp add: mult_nonpos_nonpos)
35631
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2182
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2183
lemma not_square_less_zero [simp]: "\<not> (a * a < 0)"
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2184
  by (simp add: not_less)
0b8a5fd339ab generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents: 35302
diff changeset
  2185
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61799
diff changeset
  2186
proposition abs_eq_iff: "\<bar>x\<bar> = \<bar>y\<bar> \<longleftrightarrow> x = y \<or> x = -y"
62390
842917225d56 more canonical names
nipkow
parents: 62378
diff changeset
  2187
  by (auto simp add: abs_if split: if_split_asm)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  2188
64848
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2189
lemma abs_eq_iff':
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2190
  "\<bar>a\<bar> = b \<longleftrightarrow> b \<ge> 0 \<and> (a = b \<or> a = - b)"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2191
  by (cases "a \<ge> 0") auto
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2192
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2193
lemma eq_abs_iff':
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2194
  "a = \<bar>b\<bar> \<longleftrightarrow> a \<ge> 0 \<and> (b = a \<or> b = - a)"
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2195
  using abs_eq_iff' [of b a] by auto
c50db2128048 slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
haftmann
parents: 64713
diff changeset
  2196
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2197
lemma sum_squares_ge_zero: "0 \<le> x * x + y * y"
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2198
  by (intro add_nonneg_nonneg zero_le_square)
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2199
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2200
lemma not_sum_squares_lt_zero: "\<not> x * x + y * y < 0"
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2201
  by (simp add: not_less sum_squares_ge_zero)
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2202
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2203
end
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
  2204
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  2205
class linordered_ring_strict = ring + linordered_semiring_strict
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2206
  + ordered_ab_group_add + abs_if
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2207
begin
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  2208
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2209
subclass linordered_ring ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2210
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2211
lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2212
  using mult_strict_left_mono [of b a "- c"] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2213
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2214
lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2215
  using mult_strict_right_mono [of b a "- c"] by simp
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2216
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2217
lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2218
  using mult_strict_right_mono_neg [of a 0 b] by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2219
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2220
subclass ring_no_zero_divisors
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  2221
proof
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2222
  fix a b
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2223
  assume "a \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2224
  then have a: "a < 0 \<or> 0 < a" by (simp add: neq_iff)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2225
  assume "b \<noteq> 0"
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2226
  then have b: "b < 0 \<or> 0 < b" by (simp add: neq_iff)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2227
  have "a * b < 0 \<or> 0 < a * b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2228
  proof (cases "a < 0")
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2229
    case True
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2230
    show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2231
    proof (cases "b < 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2232
      case True
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2233
      with \<open>a < 0\<close> show ?thesis by (auto dest: mult_neg_neg)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2234
    next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2235
      case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2236
      with b have "0 < b" by auto
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2237
      with \<open>a < 0\<close> show ?thesis by (auto dest: mult_strict_right_mono)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2238
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2239
  next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2240
    case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2241
    with a have "0 < a" by auto
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2242
    show ?thesis
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2243
    proof (cases "b < 0")
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2244
      case True
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2245
      with \<open>0 < a\<close> show ?thesis
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2246
        by (auto dest: mult_strict_right_mono_neg)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2247
    next
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2248
      case False
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2249
      with b have "0 < b" by auto
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2250
      with \<open>0 < a\<close> show ?thesis by auto
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2251
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2252
  qed
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2253
  then show "a * b \<noteq> 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2254
    by (simp add: neq_iff)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2255
qed
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2256
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2257
lemma zero_less_mult_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2258
  "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56217
diff changeset
  2259
  by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases])
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2260
     (auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2)
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
  2261
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2262
lemma zero_le_mult_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2263
  "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56217
diff changeset
  2264
  by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2265
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2266
lemma mult_less_0_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2267
  "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2268
  using zero_less_mult_iff [of "- a" b] by auto
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2269
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2270
lemma mult_le_0_iff [algebra_split_simps, field_split_simps]:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70347
diff changeset
  2271
  "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2272
  using zero_le_mult_iff [of "- a" b] by auto
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2273
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2274
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68253
diff changeset
  2275
  Cancellation laws for \<^term>\<open>c * a < c * b\<close> and \<^term>\<open>a * c < b * c\<close>,
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2276
  also with the relations \<open>\<le>\<close> and equality.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2277
\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2278
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2279
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2280
  These ``disjunction'' versions produce two cases when the comparison is
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2281
  an assumption, but effectively four when the comparison is a goal.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2282
\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2283
71699
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2284
lemma mult_less_cancel_right_disj: "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2285
proof (cases "c = 0")
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2286
  case False
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2287
  show ?thesis (is "?lhs \<longleftrightarrow> ?rhs")
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2288
  proof
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2289
    assume ?lhs
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2290
    then have "c < 0 \<Longrightarrow> b < a" "c > 0 \<Longrightarrow> b > a"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2291
      by (auto simp flip: not_le intro: mult_right_mono mult_right_mono_neg)
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2292
    with False show ?rhs 
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2293
      by (auto simp add: neq_iff)
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2294
  next
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2295
    assume ?rhs
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2296
    with False show ?lhs 
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2297
      by (auto simp add: mult_strict_right_mono mult_strict_right_mono_neg)
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2298
  qed
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2299
qed auto
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2300
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2301
lemma mult_less_cancel_left_disj: "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2302
proof (cases "c = 0")
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2303
  case False
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2304
  show ?thesis (is "?lhs \<longleftrightarrow> ?rhs")
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2305
  proof
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2306
    assume ?lhs
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2307
    then have "c < 0 \<Longrightarrow> b < a" "c > 0 \<Longrightarrow> b > a"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2308
      by (auto simp flip: not_le intro: mult_left_mono mult_left_mono_neg)
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2309
    with False show ?rhs 
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2310
      by (auto simp add: neq_iff)
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2311
  next
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2312
    assume ?rhs
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2313
    with False show ?lhs 
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2314
      by (auto simp add: mult_strict_left_mono mult_strict_left_mono_neg)
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2315
  qed
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2316
qed auto
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2317
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2318
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2319
  The ``conjunction of implication'' lemmas produce two cases when the
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2320
  comparison is a goal, but give four when the comparison is an assumption.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2321
\<close>
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2322
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2323
lemma mult_less_cancel_right: "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2324
  using mult_less_cancel_right_disj [of a c b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2325
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2326
lemma mult_less_cancel_left: "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2327
  using mult_less_cancel_left_disj [of c a b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2328
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2329
lemma mult_le_cancel_right: "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2330
  by (simp add: not_less [symmetric] mult_less_cancel_right_disj)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2331
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2332
lemma mult_le_cancel_left: "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2333
  by (simp add: not_less [symmetric] mult_less_cancel_left_disj)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2334
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2335
lemma mult_le_cancel_left_pos: "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2336
  by (auto simp: mult_le_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2337
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2338
lemma mult_le_cancel_left_neg: "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2339
  by (auto simp: mult_le_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2340
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2341
lemma mult_less_cancel_left_pos: "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2342
  by (auto simp: mult_less_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2343
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2344
lemma mult_less_cancel_left_neg: "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2345
  by (auto simp: mult_less_cancel_left)
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  2346
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2347
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2348
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2349
lemmas mult_sign_intros =
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2350
  mult_nonneg_nonneg mult_nonneg_nonpos
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2351
  mult_nonpos_nonneg mult_nonpos_nonpos
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2352
  mult_pos_pos mult_pos_neg
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  2353
  mult_neg_pos mult_neg_neg
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2354
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2355
class ordered_comm_ring = comm_ring + ordered_comm_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2356
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2357
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2358
subclass ordered_ring ..
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2359
subclass ordered_cancel_comm_semiring ..
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2360
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  2361
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2362
67689
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2363
class linordered_nonzero_semiring = ordered_comm_semiring + monoid_mult + linorder + zero_less_one +
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2364
  assumes add_mono1: "a < b \<Longrightarrow> a + 1 < b + 1"
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2365
begin
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2366
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2367
subclass zero_neq_one
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  2368
  by standard
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2369
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2370
subclass comm_semiring_1
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2371
  by standard (rule mult_1_left)
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2372
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2373
lemma zero_le_one [simp]: "0 \<le> 1"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2374
  by (rule zero_less_one [THEN less_imp_le])
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2375
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2376
lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2377
  by (simp add: not_le)
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2379
lemma not_one_less_zero [simp]: "\<not> 1 < 0"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2380
  by (simp add: not_less)
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2381
73535
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2382
lemma of_bool_less_eq_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2383
  \<open>of_bool P \<le> of_bool Q \<longleftrightarrow> (P \<longrightarrow> Q)\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2384
  by auto
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2385
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2386
lemma of_bool_less_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2387
  \<open>of_bool P < of_bool Q \<longleftrightarrow> \<not> P \<and> Q\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2388
  by auto
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2389
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2390
lemma mult_left_le: "c \<le> 1 \<Longrightarrow> 0 \<le> a \<Longrightarrow> a * c \<le> a"
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2391
  using mult_left_mono[of c 1 a] by simp
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2392
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2393
lemma mult_le_one: "a \<le> 1 \<Longrightarrow> 0 \<le> b \<Longrightarrow> b \<le> 1 \<Longrightarrow> a * b \<le> 1"
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2394
  using mult_mono[of a 1 b 1] by simp
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2395
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2396
lemma zero_less_two: "0 < 1 + 1"
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2397
  using add_pos_pos[OF zero_less_one zero_less_one] .
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2398
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2399
end
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2400
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2401
class linordered_semidom = semidom + linordered_comm_semiring_strict + zero_less_one +
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2402
  assumes le_add_diff_inverse2 [simp]: "b \<le> a \<Longrightarrow> a - b + b = a"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2403
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2404
67689
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2405
subclass linordered_nonzero_semiring 
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2406
proof
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2407
  show "a + 1 < b + 1" if "a < b" for a b
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  2408
  proof (rule ccontr)
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  2409
    assume "\<not> a + 1 < b + 1"
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  2410
    moreover with that have "a + 1 < b + 1"
75455
91c16c5ad3e9 tidied auto / simp with null arguments
paulson <lp15@cam.ac.uk>
parents: 75087
diff changeset
  2411
      by simp
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  2412
    ultimately show False
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 75543
diff changeset
  2413
      by contradiction
67689
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2414
  qed
2c38ffd6ec71 type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
paulson <lp15@cam.ac.uk>
parents: 67234
diff changeset
  2415
qed
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2416
73535
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2417
lemma zero_less_eq_of_bool [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2418
  \<open>0 \<le> of_bool P\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2419
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2420
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2421
lemma zero_less_of_bool_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2422
  \<open>0 < of_bool P \<longleftrightarrow> P\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2423
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2424
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2425
lemma of_bool_less_eq_one [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2426
  \<open>of_bool P \<le> 1\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2427
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2428
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2429
lemma of_bool_less_one_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2430
  \<open>of_bool P < 1 \<longleftrightarrow> \<not> P\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2431
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2432
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2433
lemma of_bool_or_iff [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2434
  \<open>of_bool (P \<or> Q) = max (of_bool P) (of_bool Q)\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2435
  by (simp add: max_def)
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2436
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2437
text \<open>Addition is the inverse of subtraction.\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2438
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2439
lemma le_add_diff_inverse [simp]: "b \<le> a \<Longrightarrow> b + (a - b) = a"
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2440
  by (frule le_add_diff_inverse2) (simp add: add.commute)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2441
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2442
lemma add_diff_inverse: "\<not> a < b \<Longrightarrow> b + (a - b) = a"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60529
diff changeset
  2443
  by simp
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2444
71699
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2445
lemma add_le_imp_le_diff: 
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2446
  assumes "i + k \<le> n" shows "i \<le> n - k"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2447
proof -
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2448
  have "n - (i + k) + i + k = n"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2449
    by (simp add: assms add.assoc)
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2450
  with assms add_implies_diff have "i + k \<le> n - k + k"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2451
    by fastforce
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2452
  then show ?thesis
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2453
    by simp
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2454
qed
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2455
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2456
lemma add_le_add_imp_diff_le:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2457
  assumes 1: "i + k \<le> n"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2458
    and 2: "n \<le> j + k"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2459
  shows "i + k \<le> n \<Longrightarrow> n \<le> j + k \<Longrightarrow> n - k \<le> j"
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2460
proof -
71699
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2461
  have "n - (i + k) + i + k = n"
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2462
    using 1 by (simp add: add.assoc)
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2463
  moreover have "n - k = n - k - i + i"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2464
    using 1 by (simp add: add_le_imp_le_diff)
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2465
  ultimately show ?thesis
71699
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2466
    using 2 add_le_imp_le_diff [of "n-k" k "j + k"]
8e5c20e4e11a a few more applys
paulson <lp15@cam.ac.uk>
parents: 71697
diff changeset
  2467
    by (simp add: add.commute diff_diff_add)
60615
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2468
qed
e5fa1d5d3952 Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents: 60570
diff changeset
  2469
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2470
lemma less_1_mult: "1 < m \<Longrightarrow> 1 < n \<Longrightarrow> 1 < m * n"
62378
85ed00c1fe7c generalize more theorems to support enat and ennreal
hoelzl
parents: 62377
diff changeset
  2471
  using mult_strict_mono [of 1 m 1 n] by (simp add: less_trans [OF zero_less_one])
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58952
diff changeset
  2472
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2473
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2474
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2475
class linordered_idom = comm_ring_1 + linordered_comm_semiring_strict +
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2476
  ordered_ab_group_add + abs_if + sgn +
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2477
  assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2478
begin
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2479
35043
07dbdf60d5ad dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents: 35032
diff changeset
  2480
subclass linordered_ring_strict ..
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2481
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2482
subclass linordered_semiring_1_strict
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2483
proof
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2484
  have "0 \<le> 1 * 1"
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2485
    by (fact zero_le_square)
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2486
  then show "0 < 1" 
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2487
    by (simp add: le_less)
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2488
qed
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2489
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2490
subclass ordered_comm_ring ..
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  2491
subclass idom ..
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2492
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2493
subclass linordered_semidom
66937
a1a4a5e2933a rule out pathologic instances
haftmann
parents: 66816
diff changeset
  2494
  by standard simp
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2495
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2496
subclass idom_abs_sgn
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2497
  by standard
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2498
    (auto simp add: sgn_if abs_if zero_less_mult_iff)
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2499
73535
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2500
lemma abs_bool_eq [simp]:
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2501
  \<open>\<bar>of_bool P\<bar> = of_bool P\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2502
  by simp
0f33c7031ec9 new lemmas
haftmann
parents: 71699
diff changeset
  2503
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2504
lemma linorder_neqE_linordered_idom:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2505
  assumes "x \<noteq> y"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2506
  obtains "x < y" | "y < x"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2507
  using assms by (rule neqE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  2508
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2509
text \<open>These cancellation simp rules also produce two cases when the comparison is a goal.\<close>
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2510
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2511
lemma mult_le_cancel_right1: "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2512
  using mult_le_cancel_right [of 1 c b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2513
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2514
lemma mult_le_cancel_right2: "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2515
  using mult_le_cancel_right [of a c 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2516
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2517
lemma mult_le_cancel_left1: "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2518
  using mult_le_cancel_left [of c 1 b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2519
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2520
lemma mult_le_cancel_left2: "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2521
  using mult_le_cancel_left [of c a 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2522
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2523
lemma mult_less_cancel_right1: "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2524
  using mult_less_cancel_right [of 1 c b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2525
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2526
lemma mult_less_cancel_right2: "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2527
  using mult_less_cancel_right [of a c 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2528
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2529
lemma mult_less_cancel_left1: "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2530
  using mult_less_cancel_left [of c 1 b] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2531
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2532
lemma mult_less_cancel_left2: "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2533
  using mult_less_cancel_left [of c a 1] by simp
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  2534
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2535
lemma sgn_0_0: "sgn a = 0 \<longleftrightarrow> a = 0"
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2536
  by (fact sgn_eq_0_iff)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  2537
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2538
lemma sgn_1_pos: "sgn a = 1 \<longleftrightarrow> a > 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2539
  unfolding sgn_if by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  2540
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2541
lemma sgn_1_neg: "sgn a = - 1 \<longleftrightarrow> a < 0"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2542
  unfolding sgn_if by auto
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  2543
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2544
lemma sgn_pos [simp]: "0 < a \<Longrightarrow> sgn a = 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2545
  by (simp only: sgn_1_pos)
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2546
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2547
lemma sgn_neg [simp]: "a < 0 \<Longrightarrow> sgn a = - 1"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2548
  by (simp only: sgn_1_neg)
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2549
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2550
lemma abs_sgn: "\<bar>k\<bar> = k * sgn k"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2551
  unfolding sgn_if abs_if by auto
29700
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  2552
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2553
lemma sgn_greater [simp]: "0 < sgn a \<longleftrightarrow> 0 < a"
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2554
  unfolding sgn_if by auto
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2555
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2556
lemma sgn_less [simp]: "sgn a < 0 \<longleftrightarrow> a < 0"
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2557
  unfolding sgn_if by auto
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  2558
64239
de5cd9217d4c added lemma
haftmann
parents: 64164
diff changeset
  2559
lemma abs_sgn_eq_1 [simp]:
de5cd9217d4c added lemma
haftmann
parents: 64164
diff changeset
  2560
  "a \<noteq> 0 \<Longrightarrow> \<bar>sgn a\<bar> = 1"
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2561
  by simp
64239
de5cd9217d4c added lemma
haftmann
parents: 64164
diff changeset
  2562
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2563
lemma abs_sgn_eq: "\<bar>sgn a\<bar> = (if a = 0 then 0 else 1)"
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2564
  by (simp add: sgn_if)
2230b7047376 generalized some lemmas;
haftmann
parents: 61944
diff changeset
  2565
64713
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2566
lemma sgn_mult_self_eq [simp]:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2567
  "sgn a * sgn a = of_bool (a \<noteq> 0)"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2568
  by (cases "a > 0") simp_all
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2569
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2570
lemma abs_mult_self_eq [simp]:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2571
  "\<bar>a\<bar> * \<bar>a\<bar> = a * a"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2572
  by (cases "a > 0") simp_all
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2573
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2574
lemma same_sgn_sgn_add:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2575
  "sgn (a + b) = sgn a" if "sgn b = sgn a"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2576
proof (cases a 0 rule: linorder_cases)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2577
  case equal
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2578
  with that show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2579
    by simp
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2580
next
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2581
  case less
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2582
  with that have "b < 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2583
    by (simp add: sgn_1_neg)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2584
  with \<open>a < 0\<close> have "a + b < 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2585
    by (rule add_neg_neg)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2586
  with \<open>a < 0\<close> show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2587
    by simp
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2588
next
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2589
  case greater
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2590
  with that have "b > 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2591
    by (simp add: sgn_1_pos)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2592
  with \<open>a > 0\<close> have "a + b > 0"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2593
    by (rule add_pos_pos)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2594
  with \<open>a > 0\<close> show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2595
    by simp
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2596
qed
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2597
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2598
lemma same_sgn_abs_add:
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2599
  "\<bar>a + b\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" if "sgn b = sgn a"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2600
proof -
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2601
  have "a + b = sgn a * \<bar>a\<bar> + sgn b * \<bar>b\<bar>"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2602
    by (simp add: sgn_mult_abs)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2603
  also have "\<dots> = sgn a * (\<bar>a\<bar> + \<bar>b\<bar>)"
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2604
    using that by (simp add: algebra_simps)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2605
  finally show ?thesis
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2606
    by (auto simp add: abs_mult)
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2607
qed
9638c07283bc more facts on sgn, abs
haftmann
parents: 64592
diff changeset
  2608
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2609
lemma sgn_not_eq_imp:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2610
  "sgn a = - sgn b" if "sgn b \<noteq> sgn a" and "sgn a \<noteq> 0" and "sgn b \<noteq> 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2611
  using that by (cases "a < 0") (auto simp add: sgn_0_0 sgn_1_pos sgn_1_neg)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66810
diff changeset
  2612
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2613
lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k"
29949
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  2614
  by (simp add: abs_if)
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  2615
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2616
lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k"
29949
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  2617
  by (simp add: abs_if)
29653
ece6a0e9f8af added lemma abs_sng
haftmann
parents: 29465
diff changeset
  2618
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2619
lemma dvd_if_abs_eq: "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2620
  by (subst abs_dvd_iff [symmetric]) simp
33676
802f5e233e48 moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents: 33364
diff changeset
  2621
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2622
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2623
  The following lemmas can be proven in more general structures, but
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2624
  are dangerous as simp rules in absence of @{thm neg_equal_zero},
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2625
  @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2626
\<close>
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2627
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2628
lemma equation_minus_iff_1 [simp, no_atp]: "1 = - a \<longleftrightarrow> a = - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2629
  by (fact equation_minus_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2630
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2631
lemma minus_equation_iff_1 [simp, no_atp]: "- a = 1 \<longleftrightarrow> a = - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2632
  by (subst minus_equation_iff, auto)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2633
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2634
lemma le_minus_iff_1 [simp, no_atp]: "1 \<le> - b \<longleftrightarrow> b \<le> - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2635
  by (fact le_minus_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2636
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2637
lemma minus_le_iff_1 [simp, no_atp]: "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2638
  by (fact minus_le_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2639
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2640
lemma less_minus_iff_1 [simp, no_atp]: "1 < - b \<longleftrightarrow> b < - 1"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2641
  by (fact less_minus_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2642
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2643
lemma minus_less_iff_1 [simp, no_atp]: "- a < 1 \<longleftrightarrow> - 1 < a"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2644
  by (fact minus_less_iff)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54250
diff changeset
  2645
66793
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2646
lemma add_less_zeroD:
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2647
  shows "x+y < 0 \<Longrightarrow> x<0 \<or> y<0"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2648
  by (auto simp: not_less intro: le_less_trans [of _ "x+y"])
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 65811
diff changeset
  2649
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  2650
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2651
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2652
text \<open>Reasoning about inequalities with division\<close>
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2653
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2654
context linordered_semidom
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2655
begin
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2656
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2657
lemma less_add_one: "a < a + 1"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2658
proof -
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2659
  have "a + 0 < a + 1"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2660
    by (blast intro: zero_less_one add_strict_left_mono)
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2661
  then show ?thesis by simp
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2662
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2663
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2664
end
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  2665
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2666
context linordered_idom
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2667
begin
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2668
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2669
lemma mult_right_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x"
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59832
diff changeset
  2670
  by (rule mult_left_le)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2671
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2672
lemma mult_left_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2673
  by (auto simp add: mult_le_cancel_right2)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2674
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2675
end
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2676
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2677
text \<open>Absolute Value\<close>
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2678
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2679
context linordered_idom
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2680
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2681
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2682
lemma mult_sgn_abs: "sgn x * \<bar>x\<bar> = x"
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2683
  by (fact sgn_mult_abs)
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2684
64290
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2685
lemma abs_one: "\<bar>1\<bar> = 1"
fb5c74a58796 suitable logical type class for abs, sgn
haftmann
parents: 64242
diff changeset
  2686
  by (fact abs_1)
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2687
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2688
end
24491
8d194c9198ae added constant sgn
nipkow
parents: 24427
diff changeset
  2689
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2690
class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs +
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2691
  assumes abs_eq_mult:
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2692
    "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2693
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34146
diff changeset
  2694
context linordered_idom
30961
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2695
begin
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2696
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2697
subclass ordered_ring_abs
63588
d0e2bad67bd4 misc tuning and modernization;
wenzelm
parents: 63456
diff changeset
  2698
  by standard (auto simp: abs_if not_less mult_less_0_iff)
30961
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2699
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  2700
lemma abs_mult_self: "\<bar>a\<bar> * \<bar>a\<bar> = a * a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66937
diff changeset
  2701
  by (fact abs_mult_self_eq)
30961
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2702
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2703
lemma abs_mult_less:
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2704
  assumes ac: "\<bar>a\<bar> < c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2705
    and bd: "\<bar>b\<bar> < d"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2706
  shows "\<bar>a\<bar> * \<bar>b\<bar> < c * d"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2707
proof -
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2708
  from ac have "0 < c"
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2709
    by (blast intro: le_less_trans abs_ge_zero)
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2710
  with bd show ?thesis by (simp add: ac mult_strict_mono)
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2711
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2712
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2713
lemma abs_less_iff: "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2714
  by (simp add: less_le abs_le_iff) (auto simp add: abs_if)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2715
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2716
lemma abs_mult_pos: "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>"
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2717
  by (simp add: abs_mult)
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2718
75543
1910054f8c39 some additional lemmas and a little tidying up
paulson <lp15@cam.ac.uk>
parents: 75455
diff changeset
  2719
lemma abs_mult_pos': "0 \<le> x \<Longrightarrow> x * \<bar>y\<bar> = \<bar>x * y\<bar>"
1910054f8c39 some additional lemmas and a little tidying up
paulson <lp15@cam.ac.uk>
parents: 75455
diff changeset
  2720
  by (simp add: abs_mult)
1910054f8c39 some additional lemmas and a little tidying up
paulson <lp15@cam.ac.uk>
parents: 75455
diff changeset
  2721
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2722
lemma abs_diff_less_iff: "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r"
51520
e9b361845809 move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents: 50420
diff changeset
  2723
  by (auto simp add: diff_less_eq ac_simps abs_less_iff)
e9b361845809 move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents: 50420
diff changeset
  2724
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2725
lemma abs_diff_le_iff: "\<bar>x - a\<bar> \<le> r \<longleftrightarrow> a - r \<le> x \<and> x \<le> a + r"
59865
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59833
diff changeset
  2726
  by (auto simp add: diff_le_eq ac_simps abs_le_iff)
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59833
diff changeset
  2727
62626
de25474ce728 Contractible sets. Also removal of obsolete theorems and refactoring
paulson <lp15@cam.ac.uk>
parents: 62608
diff changeset
  2728
lemma abs_add_one_gt_zero: "0 < 1 + \<bar>x\<bar>"
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2729
  by (auto simp: abs_if not_less intro: zero_less_one add_strict_increasing less_trans)
62626
de25474ce728 Contractible sets. Also removal of obsolete theorems and refactoring
paulson <lp15@cam.ac.uk>
parents: 62608
diff changeset
  2730
36301
72f4d079ebf8 more localization; factored out lemmas for division_ring
haftmann
parents: 35828
diff changeset
  2731
end
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2732
70145
f07b8fb99818 more document structure
haftmann
parents: 70144
diff changeset
  2733
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2734
subsection \<open>Dioids\<close>
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2735
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2736
text \<open>
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2737
  Dioids are the alternative extensions of semirings, a semiring can
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2738
  either be a ring or a dioid but never both.
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2739
\<close>
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2740
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2741
class dioid = semiring_1 + canonically_ordered_monoid_add
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2742
begin
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2743
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2744
subclass ordered_semiring
63325
1086d56cde86 misc tuning and modernization;
wenzelm
parents: 63040
diff changeset
  2745
  by standard (auto simp: le_iff_add distrib_left distrib_right)
62376
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2746
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2747
end
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2748
85f38d5f8807 Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents: 62366
diff changeset
  2749
59557
ebd8ecacfba6 establish unique preferred fact names
haftmann
parents: 59555
diff changeset
  2750
hide_fact (open) comm_mult_left_mono comm_mult_strict_left_mono distrib
ebd8ecacfba6 establish unique preferred fact names
haftmann
parents: 59555
diff changeset
  2751
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51520
diff changeset
  2752
code_identifier
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51520
diff changeset
  2753
  code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2754
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2755
end