| author | wenzelm | 
| Mon, 22 Sep 2014 10:18:41 +0200 | |
| changeset 58415 | 8392d221bd91 | 
| parent 57514 | bdc2c6b40bf2 | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28001diff
changeset | 1 | (* Title: HOL/ex/Sqrt.thy | 
| 45917 | 2 | Author: Markus Wenzel, Tobias Nipkow, TU Muenchen | 
| 13957 | 3 | *) | 
| 4 | ||
| 5 | header {*  Square roots of primes are irrational *}
 | |
| 6 | ||
| 15149 | 7 | theory Sqrt | 
| 32479 | 8 | imports Complex_Main "~~/src/HOL/Number_Theory/Primes" | 
| 15149 | 9 | begin | 
| 13957 | 10 | |
| 46495 | 11 | text {* The square root of any prime number (including 2) is irrational. *}
 | 
| 13957 | 12 | |
| 19086 | 13 | theorem sqrt_prime_irrational: | 
| 31712 | 14 | assumes "prime (p::nat)" | 
| 51708 | 15 | shows "sqrt p \<notin> \<rat>" | 
| 13957 | 16 | proof | 
| 31712 | 17 | from `prime p` have p: "1 < p" by (simp add: prime_nat_def) | 
| 51708 | 18 | assume "sqrt p \<in> \<rat>" | 
| 31712 | 19 | then obtain m n :: nat where | 
| 51708 | 20 | n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt p\<bar> = m / n" | 
| 30411 | 21 | and gcd: "gcd m n = 1" by (rule Rats_abs_nat_div_natE) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 22 | have eq: "m\<^sup>2 = p * n\<^sup>2" | 
| 13957 | 23 | proof - | 
| 51708 | 24 | from n and sqrt_rat have "m = \<bar>sqrt p\<bar> * n" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 25 | then have "m\<^sup>2 = (sqrt p)\<^sup>2 * n\<^sup>2" | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14305diff
changeset | 26 | by (auto simp add: power2_eq_square) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 27 | also have "(sqrt p)\<^sup>2 = p" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 28 | also have "\<dots> * n\<^sup>2 = p * n\<^sup>2" by simp | 
| 13957 | 29 | finally show ?thesis .. | 
| 30 | qed | |
| 31 | have "p dvd m \<and> p dvd n" | |
| 32 | proof | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 33 | from eq have "p dvd m\<^sup>2" .. | 
| 53598 
2bd8d459ebae
remove unneeded assumption from prime_dvd_power lemmas;
 huffman parents: 
53015diff
changeset | 34 | with `prime p` show "p dvd m" by (rule prime_dvd_power_nat) | 
| 13957 | 35 | then obtain k where "m = p * k" .. | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
53598diff
changeset | 36 | with eq have "p * n\<^sup>2 = p\<^sup>2 * k\<^sup>2" by (auto simp add: power2_eq_square ac_simps) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 37 | with p have "n\<^sup>2 = p * k\<^sup>2" by (simp add: power2_eq_square) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 38 | then have "p dvd n\<^sup>2" .. | 
| 53598 
2bd8d459ebae
remove unneeded assumption from prime_dvd_power lemmas;
 huffman parents: 
53015diff
changeset | 39 | with `prime p` show "p dvd n" by (rule prime_dvd_power_nat) | 
| 13957 | 40 | qed | 
| 27556 | 41 | then have "p dvd gcd m n" .. | 
| 13957 | 42 | with gcd have "p dvd 1" by simp | 
| 43 | then have "p \<le> 1" by (simp add: dvd_imp_le) | |
| 44 | with p show False by simp | |
| 45 | qed | |
| 46 | ||
| 51708 | 47 | corollary sqrt_2_not_rat: "sqrt 2 \<notin> \<rat>" | 
| 48 | using sqrt_prime_irrational[of 2] by simp | |
| 13957 | 49 | |
| 50 | subsection {* Variations *}
 | |
| 51 | ||
| 52 | text {*
 | |
| 53 | Here is an alternative version of the main proof, using mostly | |
| 54 | linear forward-reasoning. While this results in less top-down | |
| 55 | structure, it is probably closer to proofs seen in mathematics. | |
| 56 | *} | |
| 57 | ||
| 19086 | 58 | theorem | 
| 31712 | 59 | assumes "prime (p::nat)" | 
| 51708 | 60 | shows "sqrt p \<notin> \<rat>" | 
| 13957 | 61 | proof | 
| 31712 | 62 | from `prime p` have p: "1 < p" by (simp add: prime_nat_def) | 
| 51708 | 63 | assume "sqrt p \<in> \<rat>" | 
| 31712 | 64 | then obtain m n :: nat where | 
| 51708 | 65 | n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt p\<bar> = m / n" | 
| 30411 | 66 | and gcd: "gcd m n = 1" by (rule Rats_abs_nat_div_natE) | 
| 51708 | 67 | from n and sqrt_rat have "m = \<bar>sqrt p\<bar> * n" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 68 | then have "m\<^sup>2 = (sqrt p)\<^sup>2 * n\<^sup>2" | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14305diff
changeset | 69 | by (auto simp add: power2_eq_square) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 70 | also have "(sqrt p)\<^sup>2 = p" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 71 | also have "\<dots> * n\<^sup>2 = p * n\<^sup>2" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 72 | finally have eq: "m\<^sup>2 = p * n\<^sup>2" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 73 | then have "p dvd m\<^sup>2" .. | 
| 53598 
2bd8d459ebae
remove unneeded assumption from prime_dvd_power lemmas;
 huffman parents: 
53015diff
changeset | 74 | with `prime p` have dvd_m: "p dvd m" by (rule prime_dvd_power_nat) | 
| 13957 | 75 | then obtain k where "m = p * k" .. | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
53598diff
changeset | 76 | with eq have "p * n\<^sup>2 = p\<^sup>2 * k\<^sup>2" by (auto simp add: power2_eq_square ac_simps) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 77 | with p have "n\<^sup>2 = p * k\<^sup>2" by (simp add: power2_eq_square) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 78 | then have "p dvd n\<^sup>2" .. | 
| 53598 
2bd8d459ebae
remove unneeded assumption from prime_dvd_power lemmas;
 huffman parents: 
53015diff
changeset | 79 | with `prime p` have "p dvd n" by (rule prime_dvd_power_nat) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31712diff
changeset | 80 | with dvd_m have "p dvd gcd m n" by (rule gcd_greatest_nat) | 
| 13957 | 81 | with gcd have "p dvd 1" by simp | 
| 82 | then have "p \<le> 1" by (simp add: dvd_imp_le) | |
| 83 | with p show False by simp | |
| 84 | qed | |
| 85 | ||
| 45917 | 86 | |
| 46495 | 87 | text {* Another old chestnut, which is a consequence of the irrationality of 2. *}
 | 
| 45917 | 88 | |
| 89 | lemma "\<exists>a b::real. a \<notin> \<rat> \<and> b \<notin> \<rat> \<and> a powr b \<in> \<rat>" (is "EX a b. ?P a b") | |
| 90 | proof cases | |
| 91 | assume "sqrt 2 powr sqrt 2 \<in> \<rat>" | |
| 46495 | 92 | then have "?P (sqrt 2) (sqrt 2)" | 
| 51708 | 93 | by (metis sqrt_2_not_rat) | 
| 46495 | 94 | then show ?thesis by blast | 
| 45917 | 95 | next | 
| 96 | assume 1: "sqrt 2 powr sqrt 2 \<notin> \<rat>" | |
| 97 | have "(sqrt 2 powr sqrt 2) powr sqrt 2 = 2" | |
| 46495 | 98 | using powr_realpow [of _ 2] | 
| 99 | by (simp add: powr_powr power2_eq_square [symmetric]) | |
| 100 | then have "?P (sqrt 2 powr sqrt 2) (sqrt 2)" | |
| 51708 | 101 | by (metis 1 Rats_number_of sqrt_2_not_rat) | 
| 46495 | 102 | then show ?thesis by blast | 
| 45917 | 103 | qed | 
| 104 | ||
| 13957 | 105 | end |