src/HOL/Probability/Borel_Space.thy
author hoelzl
Fri, 16 Jan 2015 10:59:15 +0100
changeset 59415 854fe701c984
parent 59361 fd5da2434be4
child 59587 8ea7b22525cb
permissions -rw-r--r--
tuned measurability proofs
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
42150
b0c0638c4aad tuned headers;
wenzelm
parents: 42067
diff changeset
     1
(*  Title:      HOL/Probability/Borel_Space.thy
42067
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     2
    Author:     Johannes Hölzl, TU München
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     3
    Author:     Armin Heller, TU München
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     4
*)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
     5
58876
1888e3cb8048 modernized header;
wenzelm
parents: 58656
diff changeset
     6
section {*Borel spaces*}
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
     7
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
     8
theory Borel_Space
50387
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
     9
imports
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
    10
  Measurable
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
    11
  "~~/src/HOL/Multivariate_Analysis/Multivariate_Analysis"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    12
begin
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    13
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    14
lemma topological_basis_trivial: "topological_basis {A. open A}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    15
  by (auto simp: topological_basis_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    16
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    17
lemma open_prod_generated: "open = generate_topology {A \<times> B | A B. open A \<and> open B}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    18
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    19
  have "{A \<times> B :: ('a \<times> 'b) set | A B. open A \<and> open B} = ((\<lambda>(a, b). a \<times> b) ` ({A. open A} \<times> {A. open A}))"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    20
    by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    21
  then show ?thesis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    22
    by (auto intro: topological_basis_prod topological_basis_trivial topological_basis_imp_subbasis)  
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    23
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    24
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
    25
subsection {* Generic Borel spaces *}
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    26
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    27
definition borel :: "'a::topological_space measure" where
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    28
  "borel = sigma UNIV {S. open S}"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    29
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    30
abbreviation "borel_measurable M \<equiv> measurable M borel"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    31
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    32
lemma in_borel_measurable:
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    33
   "f \<in> borel_measurable M \<longleftrightarrow>
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    34
    (\<forall>S \<in> sigma_sets UNIV {S. open S}. f -` S \<inter> space M \<in> sets M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    35
  by (auto simp add: measurable_def borel_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    36
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    37
lemma in_borel_measurable_borel:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    38
   "f \<in> borel_measurable M \<longleftrightarrow>
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    39
    (\<forall>S \<in> sets borel.
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    40
      f -` S \<inter> space M \<in> sets M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    41
  by (auto simp add: measurable_def borel_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    42
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    43
lemma space_borel[simp]: "space borel = UNIV"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    44
  unfolding borel_def by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    45
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    46
lemma space_in_borel[measurable]: "UNIV \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    47
  unfolding borel_def by auto
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    48
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
    49
lemma sets_borel: "sets borel = sigma_sets UNIV {S. open S}"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
    50
  unfolding borel_def by (rule sets_measure_of) simp
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
    51
50387
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
    52
lemma pred_Collect_borel[measurable (raw)]: "Measurable.pred borel P \<Longrightarrow> {x. P x} \<in> sets borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    53
  unfolding borel_def pred_def by auto
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    54
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
    55
lemma borel_open[measurable (raw generic)]:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    56
  assumes "open A" shows "A \<in> sets borel"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    57
proof -
44537
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
    58
  have "A \<in> {S. open S}" unfolding mem_Collect_eq using assms .
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    59
  thus ?thesis unfolding borel_def by auto
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    60
qed
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    61
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
    62
lemma borel_closed[measurable (raw generic)]:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    63
  assumes "closed A" shows "A \<in> sets borel"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    64
proof -
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    65
  have "space borel - (- A) \<in> sets borel"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    66
    using assms unfolding closed_def by (blast intro: borel_open)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    67
  thus ?thesis by simp
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    68
qed
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    69
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
    70
lemma borel_singleton[measurable]:
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
    71
  "A \<in> sets borel \<Longrightarrow> insert x A \<in> sets (borel :: 'a::t1_space measure)"
50244
de72bbe42190 qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents: 50104
diff changeset
    72
  unfolding insert_def by (rule sets.Un) auto
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    73
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
    74
lemma borel_comp[measurable]: "A \<in> sets borel \<Longrightarrow> - A \<in> sets borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    75
  unfolding Compl_eq_Diff_UNIV by simp
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
    76
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    77
lemma borel_measurable_vimage:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    78
  fixes f :: "'a \<Rightarrow> 'x::t2_space"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    79
  assumes borel[measurable]: "f \<in> borel_measurable M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    80
  shows "f -` {x} \<inter> space M \<in> sets M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
    81
  by simp
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    82
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    83
lemma borel_measurableI:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    84
  fixes f :: "'a \<Rightarrow> 'x\<Colon>topological_space"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    85
  assumes "\<And>S. open S \<Longrightarrow> f -` S \<inter> space M \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    86
  shows "f \<in> borel_measurable M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    87
  unfolding borel_def
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    88
proof (rule measurable_measure_of, simp_all)
44537
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
    89
  fix S :: "'x set" assume "open S" thus "f -` S \<inter> space M \<in> sets M"
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
    90
    using assms[of S] by simp
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
    91
qed
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    92
50021
d96a3f468203 add support for function application to measurability prover
hoelzl
parents: 50003
diff changeset
    93
lemma borel_measurable_const:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    94
  "(\<lambda>x. c) \<in> borel_measurable M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
    95
  by auto
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    96
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
    97
lemma borel_measurable_indicator:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    98
  assumes A: "A \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
    99
  shows "indicator A \<in> borel_measurable M"
46905
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 46884
diff changeset
   100
  unfolding indicator_def [abs_def] using A
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   101
  by (auto intro!: measurable_If_set)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   102
50096
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   103
lemma borel_measurable_count_space[measurable (raw)]:
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   104
  "f \<in> borel_measurable (count_space S)"
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   105
  unfolding measurable_def by auto
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   106
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   107
lemma borel_measurable_indicator'[measurable (raw)]:
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   108
  assumes [measurable]: "{x\<in>space M. f x \<in> A x} \<in> sets M"
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   109
  shows "(\<lambda>x. indicator (A x) (f x)) \<in> borel_measurable M"
50001
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   110
  unfolding indicator_def[abs_def]
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   111
  by (auto intro!: measurable_If)
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   112
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   113
lemma borel_measurable_indicator_iff:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   114
  "(indicator A :: 'a \<Rightarrow> 'x::{t1_space, zero_neq_one}) \<in> borel_measurable M \<longleftrightarrow> A \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   115
    (is "?I \<in> borel_measurable M \<longleftrightarrow> _")
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   116
proof
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   117
  assume "?I \<in> borel_measurable M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   118
  then have "?I -` {1} \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   119
    unfolding measurable_def by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   120
  also have "?I -` {1} \<inter> space M = A \<inter> space M"
46905
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 46884
diff changeset
   121
    unfolding indicator_def [abs_def] by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   122
  finally show "A \<inter> space M \<in> sets M" .
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   123
next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   124
  assume "A \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   125
  moreover have "?I \<in> borel_measurable M \<longleftrightarrow>
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   126
    (indicator (A \<inter> space M) :: 'a \<Rightarrow> 'x) \<in> borel_measurable M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   127
    by (intro measurable_cong) (auto simp: indicator_def)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   128
  ultimately show "?I \<in> borel_measurable M" by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   129
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   130
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   131
lemma borel_measurable_subalgebra:
41545
9c869baf1c66 tuned formalization of subalgebra
hoelzl
parents: 41097
diff changeset
   132
  assumes "sets N \<subseteq> sets M" "space N = space M" "f \<in> borel_measurable N"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   133
  shows "f \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   134
  using assms unfolding measurable_def by auto
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   135
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   136
lemma borel_measurable_restrict_space_iff_ereal:
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   137
  fixes f :: "'a \<Rightarrow> ereal"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   138
  assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   139
  shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   140
    (\<lambda>x. f x * indicator \<Omega> x) \<in> borel_measurable M"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   141
  by (subst measurable_restrict_space_iff)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   142
     (auto simp: indicator_def if_distrib[where f="\<lambda>x. a * x" for a] cong del: if_cong)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   143
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   144
lemma borel_measurable_restrict_space_iff:
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   145
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   146
  assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   147
  shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   148
    (\<lambda>x. indicator \<Omega> x *\<^sub>R f x) \<in> borel_measurable M"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   149
  by (subst measurable_restrict_space_iff)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57447
diff changeset
   150
     (auto simp: indicator_def if_distrib[where f="\<lambda>x. x *\<^sub>R a" for a] ac_simps cong del: if_cong)
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   151
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   152
lemma cbox_borel[measurable]: "cbox a b \<in> sets borel"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   153
  by (auto intro: borel_closed)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   154
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   155
lemma box_borel[measurable]: "box a b \<in> sets borel"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   156
  by (auto intro: borel_open)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   157
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   158
lemma borel_compact: "compact (A::'a::t2_space set) \<Longrightarrow> A \<in> sets borel"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   159
  by (auto intro: borel_closed dest!: compact_imp_closed)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   160
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   161
lemma second_countable_borel_measurable:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   162
  fixes X :: "'a::second_countable_topology set set"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   163
  assumes eq: "open = generate_topology X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   164
  shows "borel = sigma UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   165
  unfolding borel_def
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   166
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   167
  interpret X: sigma_algebra UNIV "sigma_sets UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   168
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   169
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   170
  fix S :: "'a set" assume "S \<in> Collect open"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   171
  then have "generate_topology X S"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   172
    by (auto simp: eq)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   173
  then show "S \<in> sigma_sets UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   174
  proof induction
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   175
    case (UN K)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   176
    then have K: "\<And>k. k \<in> K \<Longrightarrow> open k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   177
      unfolding eq by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   178
    from ex_countable_basis obtain B :: "'a set set" where
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   179
      B:  "\<And>b. b \<in> B \<Longrightarrow> open b" "\<And>X. open X \<Longrightarrow> \<exists>b\<subseteq>B. (\<Union>b) = X" and "countable B"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   180
      by (auto simp: topological_basis_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   181
    from B(2)[OF K] obtain m where m: "\<And>k. k \<in> K \<Longrightarrow> m k \<subseteq> B" "\<And>k. k \<in> K \<Longrightarrow> (\<Union>m k) = k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   182
      by metis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   183
    def U \<equiv> "(\<Union>k\<in>K. m k)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   184
    with m have "countable U"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   185
      by (intro countable_subset[OF _ `countable B`]) auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   186
    have "\<Union>U = (\<Union>A\<in>U. A)" by simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   187
    also have "\<dots> = \<Union>K"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   188
      unfolding U_def UN_simps by (simp add: m)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   189
    finally have "\<Union>U = \<Union>K" .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   190
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   191
    have "\<forall>b\<in>U. \<exists>k\<in>K. b \<subseteq> k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   192
      using m by (auto simp: U_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   193
    then obtain u where u: "\<And>b. b \<in> U \<Longrightarrow> u b \<in> K" and "\<And>b. b \<in> U \<Longrightarrow> b \<subseteq> u b"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   194
      by metis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   195
    then have "(\<Union>b\<in>U. u b) \<subseteq> \<Union>K" "\<Union>U \<subseteq> (\<Union>b\<in>U. u b)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   196
      by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   197
    then have "\<Union>K = (\<Union>b\<in>U. u b)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   198
      unfolding `\<Union>U = \<Union>K` by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   199
    also have "\<dots> \<in> sigma_sets UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   200
      using u UN by (intro X.countable_UN' `countable U`) auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   201
    finally show "\<Union>K \<in> sigma_sets UNIV X" .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   202
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   203
qed (auto simp: eq intro: generate_topology.Basis)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   204
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   205
lemma borel_measurable_continuous_on_restrict:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   206
  fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   207
  assumes f: "continuous_on A f"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   208
  shows "f \<in> borel_measurable (restrict_space borel A)"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   209
proof (rule borel_measurableI)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   210
  fix S :: "'b set" assume "open S"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   211
  with f obtain T where "f -` S \<inter> A = T \<inter> A" "open T"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   212
    by (metis continuous_on_open_invariant)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   213
  then show "f -` S \<inter> space (restrict_space borel A) \<in> sets (restrict_space borel A)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   214
    by (force simp add: sets_restrict_space space_restrict_space)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   215
qed
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   216
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   217
lemma borel_measurable_continuous_on1: "continuous_on UNIV f \<Longrightarrow> f \<in> borel_measurable borel"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   218
  by (drule borel_measurable_continuous_on_restrict) simp
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   219
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   220
lemma borel_measurable_continuous_on_if:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   221
  "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> continuous_on (- A) g \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   222
    (\<lambda>x. if x \<in> A then f x else g x) \<in> borel_measurable borel"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   223
  by (auto simp add: measurable_If_restrict_space_iff Collect_neg_eq
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   224
           intro!: borel_measurable_continuous_on_restrict)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   225
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   226
lemma borel_measurable_continuous_countable_exceptions:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   227
  fixes f :: "'a::t1_space \<Rightarrow> 'b::topological_space"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   228
  assumes X: "countable X"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   229
  assumes "continuous_on (- X) f"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   230
  shows "f \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   231
proof (rule measurable_discrete_difference[OF _ X])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   232
  have "X \<in> sets borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   233
    by (rule sets.countable[OF _ X]) auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   234
  then show "(\<lambda>x. if x \<in> X then undefined else f x) \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   235
    by (intro borel_measurable_continuous_on_if assms continuous_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   236
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   237
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   238
lemma borel_measurable_continuous_on:
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   239
  assumes f: "continuous_on UNIV f" and g: "g \<in> borel_measurable M"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   240
  shows "(\<lambda>x. f (g x)) \<in> borel_measurable M"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   241
  using measurable_comp[OF g borel_measurable_continuous_on1[OF f]] by (simp add: comp_def)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   242
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   243
lemma borel_measurable_continuous_on_indicator:
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   244
  fixes f g :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   245
  shows "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable borel"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   246
  by (subst borel_measurable_restrict_space_iff[symmetric])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   247
     (auto intro: borel_measurable_continuous_on_restrict)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   248
50245
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   249
lemma borel_eq_countable_basis:
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   250
  fixes B::"'a::topological_space set set"
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   251
  assumes "countable B"
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   252
  assumes "topological_basis B"
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   253
  shows "borel = sigma UNIV B"
50087
635d73673b5e regularity of measures, therefore:
immler
parents: 50021
diff changeset
   254
  unfolding borel_def
635d73673b5e regularity of measures, therefore:
immler
parents: 50021
diff changeset
   255
proof (intro sigma_eqI sigma_sets_eqI, safe)
50245
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   256
  interpret countable_basis using assms by unfold_locales
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   257
  fix X::"'a set" assume "open X"
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   258
  from open_countable_basisE[OF this] guess B' . note B' = this
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   259
  then show "X \<in> sigma_sets UNIV B"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   260
    by (blast intro: sigma_sets_UNION `countable B` countable_subset)
50087
635d73673b5e regularity of measures, therefore:
immler
parents: 50021
diff changeset
   261
next
50245
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   262
  fix b assume "b \<in> B"
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   263
  hence "open b" by (rule topological_basis_open[OF assms(2)])
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   264
  thus "b \<in> sigma_sets UNIV (Collect open)" by auto
50087
635d73673b5e regularity of measures, therefore:
immler
parents: 50021
diff changeset
   265
qed simp_all
635d73673b5e regularity of measures, therefore:
immler
parents: 50021
diff changeset
   266
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   267
lemma borel_measurable_Pair[measurable (raw)]:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   268
  fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   269
  assumes f[measurable]: "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   270
  assumes g[measurable]: "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   271
  shows "(\<lambda>x. (f x, g x)) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   272
proof (subst borel_eq_countable_basis)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   273
  let ?B = "SOME B::'b set set. countable B \<and> topological_basis B"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   274
  let ?C = "SOME B::'c set set. countable B \<and> topological_basis B"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   275
  let ?P = "(\<lambda>(b, c). b \<times> c) ` (?B \<times> ?C)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   276
  show "countable ?P" "topological_basis ?P"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   277
    by (auto intro!: countable_basis topological_basis_prod is_basis)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   278
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   279
  show "(\<lambda>x. (f x, g x)) \<in> measurable M (sigma UNIV ?P)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   280
  proof (rule measurable_measure_of)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   281
    fix S assume "S \<in> ?P"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   282
    then obtain b c where "b \<in> ?B" "c \<in> ?C" and S: "S = b \<times> c" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   283
    then have borel: "open b" "open c"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   284
      by (auto intro: is_basis topological_basis_open)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   285
    have "(\<lambda>x. (f x, g x)) -` S \<inter> space M = (f -` b \<inter> space M) \<inter> (g -` c \<inter> space M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   286
      unfolding S by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   287
    also have "\<dots> \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   288
      using borel by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   289
    finally show "(\<lambda>x. (f x, g x)) -` S \<inter> space M \<in> sets M" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   290
  qed auto
39087
96984bf6fa5b Measurable on euclidean space is equiv. to measurable components
hoelzl
parents: 39083
diff changeset
   291
qed
96984bf6fa5b Measurable on euclidean space is equiv. to measurable components
hoelzl
parents: 39083
diff changeset
   292
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   293
lemma borel_measurable_continuous_Pair:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   294
  fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   295
  assumes [measurable]: "f \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   296
  assumes [measurable]: "g \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   297
  assumes H: "continuous_on UNIV (\<lambda>x. H (fst x) (snd x))"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   298
  shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   299
proof -
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   300
  have eq: "(\<lambda>x. H (f x) (g x)) = (\<lambda>x. (\<lambda>x. H (fst x) (snd x)) (f x, g x))" by auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   301
  show ?thesis
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   302
    unfolding eq by (rule borel_measurable_continuous_on[OF H]) auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   303
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   304
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   305
subsection {* Borel spaces on order topologies *}
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   306
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   307
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   308
lemma borel_Iio:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   309
  "borel = sigma UNIV (range lessThan :: 'a::{linorder_topology, second_countable_topology} set set)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   310
  unfolding second_countable_borel_measurable[OF open_generated_order]
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   311
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   312
  from countable_dense_setE guess D :: "'a set" . note D = this
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   313
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   314
  interpret L: sigma_algebra UNIV "sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   315
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   316
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   317
  fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   318
  then obtain y where "A = {y <..} \<or> A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   319
    by blast
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   320
  then show "A \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   321
  proof
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   322
    assume A: "A = {y <..}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   323
    show ?thesis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   324
    proof cases
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   325
      assume "\<forall>x>y. \<exists>d. y < d \<and> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   326
      with D(2)[of "{y <..< x}" for x] have "\<forall>x>y. \<exists>d\<in>D. y < d \<and> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   327
        by (auto simp: set_eq_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   328
      then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. y < d}. {..< d})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   329
        by (auto simp: A) (metis less_asym)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   330
      also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   331
        using D(1) by (intro L.Diff L.top L.countable_INT'') auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   332
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   333
    next
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   334
      assume "\<not> (\<forall>x>y. \<exists>d. y < d \<and> d < x)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   335
      then obtain x where "y < x"  "\<And>d. y < d \<Longrightarrow> \<not> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   336
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   337
      then have "A = UNIV - {..< x}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   338
        unfolding A by (auto simp: not_less[symmetric])
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   339
      also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   340
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   341
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   342
    qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   343
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   344
qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   345
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   346
lemma borel_Ioi:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   347
  "borel = sigma UNIV (range greaterThan :: 'a::{linorder_topology, second_countable_topology} set set)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   348
  unfolding second_countable_borel_measurable[OF open_generated_order]
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   349
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   350
  from countable_dense_setE guess D :: "'a set" . note D = this
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   351
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   352
  interpret L: sigma_algebra UNIV "sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   353
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   354
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   355
  fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   356
  then obtain y where "A = {y <..} \<or> A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   357
    by blast
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   358
  then show "A \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   359
  proof
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   360
    assume A: "A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   361
    show ?thesis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   362
    proof cases
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   363
      assume "\<forall>x<y. \<exists>d. x < d \<and> d < y"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   364
      with D(2)[of "{x <..< y}" for x] have "\<forall>x<y. \<exists>d\<in>D. x < d \<and> d < y"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   365
        by (auto simp: set_eq_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   366
      then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. d < y}. {d <..})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   367
        by (auto simp: A) (metis less_asym)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   368
      also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   369
        using D(1) by (intro L.Diff L.top L.countable_INT'') auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   370
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   371
    next
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   372
      assume "\<not> (\<forall>x<y. \<exists>d. x < d \<and> d < y)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   373
      then obtain x where "x < y"  "\<And>d. y > d \<Longrightarrow> x \<ge> d"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   374
        by (auto simp: not_less[symmetric])
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   375
      then have "A = UNIV - {x <..}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   376
        unfolding A Compl_eq_Diff_UNIV[symmetric] by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   377
      also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   378
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   379
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   380
    qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   381
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   382
qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   383
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   384
lemma borel_measurableI_less:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   385
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   386
  shows "(\<And>y. {x\<in>space M. f x < y} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   387
  unfolding borel_Iio
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   388
  by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   389
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   390
lemma borel_measurableI_greater:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   391
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   392
  shows "(\<And>y. {x\<in>space M. y < f x} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   393
  unfolding borel_Ioi
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   394
  by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   395
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   396
lemma borel_measurable_SUP[measurable (raw)]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   397
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   398
  assumes [simp]: "countable I"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   399
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   400
  shows "(\<lambda>x. SUP i:I. F i x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   401
  by (rule borel_measurableI_greater) (simp add: less_SUP_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   402
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   403
lemma borel_measurable_INF[measurable (raw)]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   404
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   405
  assumes [simp]: "countable I"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   406
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   407
  shows "(\<lambda>x. INF i:I. F i x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   408
  by (rule borel_measurableI_less) (simp add: INF_less_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   409
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   410
lemma borel_measurable_lfp[consumes 1, case_names continuity step]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   411
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   412
  assumes "Order_Continuity.continuous F"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   413
  assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   414
  shows "lfp F \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   415
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   416
  { fix i have "((F ^^ i) bot) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   417
      by (induct i) (auto intro!: *) }
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   418
  then have "(\<lambda>x. SUP i. (F ^^ i) bot x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   419
    by measurable
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   420
  also have "(\<lambda>x. SUP i. (F ^^ i) bot x) = (SUP i. (F ^^ i) bot)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   421
    by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   422
  also have "(SUP i. (F ^^ i) bot) = lfp F"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   423
    by (rule continuous_lfp[symmetric]) fact
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   424
  finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   425
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   426
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   427
lemma borel_measurable_gfp[consumes 1, case_names continuity step]:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   428
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   429
  assumes "Order_Continuity.down_continuous F"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   430
  assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   431
  shows "gfp F \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   432
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   433
  { fix i have "((F ^^ i) top) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   434
      by (induct i) (auto intro!: * simp: bot_fun_def) }
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   435
  then have "(\<lambda>x. INF i. (F ^^ i) top x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   436
    by measurable
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   437
  also have "(\<lambda>x. INF i. (F ^^ i) top x) = (INF i. (F ^^ i) top)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   438
    by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   439
  also have "\<dots> = gfp F"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   440
    by (rule down_continuous_gfp[symmetric]) fact
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   441
  finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   442
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   443
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
   444
subsection {* Borel spaces on euclidean spaces *}
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   445
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   446
lemma borel_measurable_inner[measurable (raw)]:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   447
  fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_inner}"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   448
  assumes "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   449
  assumes "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   450
  shows "(\<lambda>x. f x \<bullet> g x) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   451
  using assms
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
   452
  by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   453
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   454
lemma [measurable]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   455
  fixes a b :: "'a\<Colon>linorder_topology"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   456
  shows lessThan_borel: "{..< a} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   457
    and greaterThan_borel: "{a <..} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   458
    and greaterThanLessThan_borel: "{a<..<b} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   459
    and atMost_borel: "{..a} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   460
    and atLeast_borel: "{a..} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   461
    and atLeastAtMost_borel: "{a..b} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   462
    and greaterThanAtMost_borel: "{a<..b} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   463
    and atLeastLessThan_borel: "{a..<b} \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   464
  unfolding greaterThanAtMost_def atLeastLessThan_def
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   465
  by (blast intro: borel_open borel_closed open_lessThan open_greaterThan open_greaterThanLessThan
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   466
                   closed_atMost closed_atLeast closed_atLeastAtMost)+
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   467
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   468
notation
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   469
  eucl_less (infix "<e" 50)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   470
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   471
lemma box_oc: "{x. a <e x \<and> x \<le> b} = {x. a <e x} \<inter> {..b}"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   472
  and box_co: "{x. a \<le> x \<and> x <e b} = {a..} \<inter> {x. x <e b}"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   473
  by auto
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   474
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   475
lemma eucl_ivals[measurable]:
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   476
  fixes a b :: "'a\<Colon>ordered_euclidean_space"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   477
  shows "{x. x <e a} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   478
    and "{x. a <e x} \<in> sets borel"
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   479
    and "{..a} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   480
    and "{a..} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   481
    and "{a..b} \<in> sets borel"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   482
    and  "{x. a <e x \<and> x \<le> b} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   483
    and "{x. a \<le> x \<and>  x <e b} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   484
  unfolding box_oc box_co
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   485
  by (auto intro: borel_open borel_closed)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   486
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   487
lemma open_Collect_less:
53216
ad2e09c30aa8 renamed inner_dense_linorder to dense_linorder
hoelzl
parents: 51683
diff changeset
   488
  fixes f g :: "'i::topological_space \<Rightarrow> 'a :: {dense_linorder, linorder_topology}"
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   489
  assumes "continuous_on UNIV f"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   490
  assumes "continuous_on UNIV g"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   491
  shows "open {x. f x < g x}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   492
proof -
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   493
  have "open (\<Union>y. {x \<in> UNIV. f x \<in> {..< y}} \<inter> {x \<in> UNIV. g x \<in> {y <..}})" (is "open ?X")
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   494
    by (intro open_UN ballI open_Int continuous_open_preimage assms) auto
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   495
  also have "?X = {x. f x < g x}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   496
    by (auto intro: dense)
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   497
  finally show ?thesis .
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   498
qed
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   499
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   500
lemma closed_Collect_le:
53216
ad2e09c30aa8 renamed inner_dense_linorder to dense_linorder
hoelzl
parents: 51683
diff changeset
   501
  fixes f g :: "'i::topological_space \<Rightarrow> 'a :: {dense_linorder, linorder_topology}"
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   502
  assumes f: "continuous_on UNIV f"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   503
  assumes g: "continuous_on UNIV g"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   504
  shows "closed {x. f x \<le> g x}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   505
  using open_Collect_less[OF g f] unfolding not_less[symmetric] Collect_neg_eq open_closed .
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   506
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   507
lemma borel_measurable_less[measurable]:
53216
ad2e09c30aa8 renamed inner_dense_linorder to dense_linorder
hoelzl
parents: 51683
diff changeset
   508
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, dense_linorder, linorder_topology}"
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   509
  assumes "f \<in> borel_measurable M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   510
  assumes "g \<in> borel_measurable M"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   511
  shows "{w \<in> space M. f w < g w} \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   512
proof -
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   513
  have "{w \<in> space M. f w < g w} = (\<lambda>x. (f x, g x)) -` {x. fst x < snd x} \<inter> space M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   514
    by auto
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   515
  also have "\<dots> \<in> sets M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   516
    by (intro measurable_sets[OF borel_measurable_Pair borel_open, OF assms open_Collect_less]
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
   517
              continuous_intros)
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   518
  finally show ?thesis .
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   519
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   520
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   521
lemma
53216
ad2e09c30aa8 renamed inner_dense_linorder to dense_linorder
hoelzl
parents: 51683
diff changeset
   522
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, dense_linorder, linorder_topology}"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   523
  assumes f[measurable]: "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   524
  assumes g[measurable]: "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   525
  shows borel_measurable_le[measurable]: "{w \<in> space M. f w \<le> g w} \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   526
    and borel_measurable_eq[measurable]: "{w \<in> space M. f w = g w} \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   527
    and borel_measurable_neq: "{w \<in> space M. f w \<noteq> g w} \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   528
  unfolding eq_iff not_less[symmetric]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   529
  by measurable
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   530
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   531
lemma 
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   532
  fixes i :: "'a::{second_countable_topology, real_inner}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   533
  shows hafspace_less_borel: "{x. a < x \<bullet> i} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   534
    and hafspace_greater_borel: "{x. x \<bullet> i < a} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   535
    and hafspace_less_eq_borel: "{x. a \<le> x \<bullet> i} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   536
    and hafspace_greater_eq_borel: "{x. x \<bullet> i \<le> a} \<in> sets borel"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   537
  by simp_all
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   538
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   539
subsection "Borel space equals sigma algebras over intervals"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   540
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   541
lemma borel_sigma_sets_subset:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   542
  "A \<subseteq> sets borel \<Longrightarrow> sigma_sets UNIV A \<subseteq> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   543
  using sets.sigma_sets_subset[of A borel] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   544
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   545
lemma borel_eq_sigmaI1:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   546
  fixes F :: "'i \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   547
  assumes borel_eq: "borel = sigma UNIV X"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   548
  assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV (F ` A))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   549
  assumes F: "\<And>i. i \<in> A \<Longrightarrow> F i \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   550
  shows "borel = sigma UNIV (F ` A)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   551
  unfolding borel_def
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   552
proof (intro sigma_eqI antisym)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   553
  have borel_rev_eq: "sigma_sets UNIV {S::'a set. open S} = sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   554
    unfolding borel_def by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   555
  also have "\<dots> = sigma_sets UNIV X"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   556
    unfolding borel_eq by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   557
  also have "\<dots> \<subseteq> sigma_sets UNIV (F`A)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   558
    using X by (intro sigma_algebra.sigma_sets_subset[OF sigma_algebra_sigma_sets]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   559
  finally show "sigma_sets UNIV {S. open S} \<subseteq> sigma_sets UNIV (F`A)" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   560
  show "sigma_sets UNIV (F`A) \<subseteq> sigma_sets UNIV {S. open S}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   561
    unfolding borel_rev_eq using F by (intro borel_sigma_sets_subset) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   562
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   563
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   564
lemma borel_eq_sigmaI2:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   565
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   566
    and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   567
  assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`B)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   568
  assumes X: "\<And>i j. (i, j) \<in> B \<Longrightarrow> G i j \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   569
  assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   570
  shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   571
  using assms
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   572
  by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` B" and F="(\<lambda>(i, j). F i j)"]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   573
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   574
lemma borel_eq_sigmaI3:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   575
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   576
  assumes borel_eq: "borel = sigma UNIV X"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   577
  assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   578
  assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   579
  shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   580
  using assms by (intro borel_eq_sigmaI1[where X=X and F="(\<lambda>(i, j). F i j)"]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   581
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   582
lemma borel_eq_sigmaI4:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   583
  fixes F :: "'i \<Rightarrow> 'a::topological_space set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   584
    and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   585
  assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`A)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   586
  assumes X: "\<And>i j. (i, j) \<in> A \<Longrightarrow> G i j \<in> sets (sigma UNIV (range F))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   587
  assumes F: "\<And>i. F i \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   588
  shows "borel = sigma UNIV (range F)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   589
  using assms by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` A" and F=F]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   590
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   591
lemma borel_eq_sigmaI5:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   592
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and G :: "'l \<Rightarrow> 'a::topological_space set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   593
  assumes borel_eq: "borel = sigma UNIV (range G)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   594
  assumes X: "\<And>i. G i \<in> sets (sigma UNIV (range (\<lambda>(i, j). F i j)))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   595
  assumes F: "\<And>i j. F i j \<in> sets borel"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   596
  shows "borel = sigma UNIV (range (\<lambda>(i, j). F i j))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   597
  using assms by (intro borel_eq_sigmaI1[where X="range G" and F="(\<lambda>(i, j). F i j)"]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   598
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   599
lemma borel_eq_box:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   600
  "borel = sigma UNIV (range (\<lambda> (a, b). box a b :: 'a \<Colon> euclidean_space set))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   601
    (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   602
proof (rule borel_eq_sigmaI1[OF borel_def])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   603
  fix M :: "'a set" assume "M \<in> {S. open S}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   604
  then have "open M" by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   605
  show "M \<in> ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   606
    apply (subst open_UNION_box[OF `open M`])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   607
    apply (safe intro!: sets.countable_UN' countable_PiE countable_Collect)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   608
    apply (auto intro: countable_rat)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   609
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   610
qed (auto simp: box_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   611
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   612
lemma halfspace_gt_in_halfspace:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   613
  assumes i: "i \<in> A"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   614
  shows "{x\<Colon>'a. a < x \<bullet> i} \<in> 
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   615
    sigma_sets UNIV ((\<lambda> (a, i). {x\<Colon>'a\<Colon>euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> A))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   616
  (is "?set \<in> ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   617
proof -
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   618
  interpret sigma_algebra UNIV ?SIGMA
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   619
    by (intro sigma_algebra_sigma_sets) simp_all
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   620
  have *: "?set = (\<Union>n. UNIV - {x\<Colon>'a. x \<bullet> i < a + 1 / real (Suc n)})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   621
  proof (safe, simp_all add: not_less)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   622
    fix x :: 'a assume "a < x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   623
    with reals_Archimedean[of "x \<bullet> i - a"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   624
    obtain n where "a + 1 / real (Suc n) < x \<bullet> i"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   625
      by (auto simp: field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   626
    then show "\<exists>n. a + 1 / real (Suc n) \<le> x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   627
      by (blast intro: less_imp_le)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   628
  next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   629
    fix x n
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   630
    have "a < a + 1 / real (Suc n)" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   631
    also assume "\<dots> \<le> x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   632
    finally show "a < x" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   633
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   634
  show "?set \<in> ?SIGMA" unfolding *
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   635
    by (auto del: Diff intro!: Diff i)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   636
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   637
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   638
lemma borel_eq_halfspace_less:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   639
  "borel = sigma UNIV ((\<lambda>(a, i). {x::'a::euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   640
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   641
proof (rule borel_eq_sigmaI2[OF borel_eq_box])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   642
  fix a b :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   643
  have "box a b = {x\<in>space ?SIGMA. \<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   644
    by (auto simp: box_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   645
  also have "\<dots> \<in> sets ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   646
    by (intro sets.sets_Collect_conj sets.sets_Collect_finite_All sets.sets_Collect_const)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   647
       (auto intro!: halfspace_gt_in_halfspace countable_PiE countable_rat)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   648
  finally show "box a b \<in> sets ?SIGMA" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   649
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   650
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   651
lemma borel_eq_halfspace_le:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   652
  "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. x \<bullet> i \<le> a}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   653
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   654
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   655
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   656
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   657
  have *: "{x::'a. x\<bullet>i < a} = (\<Union>n. {x. x\<bullet>i \<le> a - 1/real (Suc n)})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   658
  proof (safe, simp_all)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   659
    fix x::'a assume *: "x\<bullet>i < a"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   660
    with reals_Archimedean[of "a - x\<bullet>i"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   661
    obtain n where "x \<bullet> i < a - 1 / (real (Suc n))"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   662
      by (auto simp: field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   663
    then show "\<exists>n. x \<bullet> i \<le> a - 1 / (real (Suc n))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   664
      by (blast intro: less_imp_le)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   665
  next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   666
    fix x::'a and n
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   667
    assume "x\<bullet>i \<le> a - 1 / real (Suc n)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   668
    also have "\<dots> < a" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   669
    finally show "x\<bullet>i < a" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   670
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   671
  show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   672
    by (intro sets.countable_UN) (auto intro: i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   673
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   674
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   675
lemma borel_eq_halfspace_ge:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   676
  "borel = sigma UNIV ((\<lambda> (a, i). {x\<Colon>'a\<Colon>euclidean_space. a \<le> x \<bullet> i}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   677
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   678
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   679
  fix a :: real and i :: 'a assume i: "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   680
  have *: "{x::'a. x\<bullet>i < a} = space ?SIGMA - {x::'a. a \<le> x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   681
  show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   682
    using i by (intro sets.compl_sets) auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   683
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   684
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   685
lemma borel_eq_halfspace_greater:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   686
  "borel = sigma UNIV ((\<lambda> (a, i). {x\<Colon>'a\<Colon>euclidean_space. a < x \<bullet> i}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   687
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   688
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   689
  fix a :: real and i :: 'a assume "(a, i) \<in> (UNIV \<times> Basis)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   690
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   691
  have *: "{x::'a. x\<bullet>i \<le> a} = space ?SIGMA - {x::'a. a < x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   692
  show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   693
    by (intro sets.compl_sets) (auto intro: i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   694
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   695
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   696
lemma borel_eq_atMost:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   697
  "borel = sigma UNIV (range (\<lambda>a. {..a\<Colon>'a\<Colon>ordered_euclidean_space}))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   698
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   699
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   700
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   701
  then have "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   702
  then have *: "{x::'a. x\<bullet>i \<le> a} = (\<Union>k::nat. {.. (\<Sum>n\<in>Basis. (if n = i then a else real k)*\<^sub>R n)})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   703
  proof (safe, simp_all add: eucl_le[where 'a='a] split: split_if_asm)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   704
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   705
    from real_arch_simple[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"] guess k::nat ..
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   706
    then have "\<And>i. i \<in> Basis \<Longrightarrow> x\<bullet>i \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   707
      by (subst (asm) Max_le_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   708
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   709
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   710
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   711
  show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   712
    by (intro sets.countable_UN) auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   713
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   714
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   715
lemma borel_eq_greaterThan:
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   716
  "borel = sigma UNIV (range (\<lambda>a\<Colon>'a\<Colon>ordered_euclidean_space. {x. a <e x}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   717
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   718
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   719
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   720
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   721
  have "{x::'a. x\<bullet>i \<le> a} = UNIV - {x::'a. a < x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   722
  also have *: "{x::'a. a < x\<bullet>i} =
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   723
      (\<Union>k::nat. {x. (\<Sum>n\<in>Basis. (if n = i then a else -real k) *\<^sub>R n) <e x})" using i
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   724
  proof (safe, simp_all add: eucl_less_def split: split_if_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   725
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   726
    from reals_Archimedean2[of "Max ((\<lambda>i. -x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   727
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   728
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   729
      then have "-x\<bullet>i < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   730
        using k by (subst (asm) Max_less_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   731
      then have "- real k < x\<bullet>i" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   732
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> -real k < x \<bullet> ia"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   733
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   734
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   735
  finally show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   736
    apply (simp only:)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   737
    apply (intro sets.countable_UN sets.Diff)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   738
    apply (auto intro: sigma_sets_top)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   739
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   740
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   741
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   742
lemma borel_eq_lessThan:
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   743
  "borel = sigma UNIV (range (\<lambda>a\<Colon>'a\<Colon>ordered_euclidean_space. {x. x <e a}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   744
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   745
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_ge])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   746
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   747
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   748
  have "{x::'a. a \<le> x\<bullet>i} = UNIV - {x::'a. x\<bullet>i < a}" by auto
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   749
  also have *: "{x::'a. x\<bullet>i < a} = (\<Union>k::nat. {x. x <e (\<Sum>n\<in>Basis. (if n = i then a else real k) *\<^sub>R n)})" using `i\<in> Basis`
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   750
  proof (safe, simp_all add: eucl_less_def split: split_if_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   751
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   752
    from reals_Archimedean2[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   753
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   754
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   755
      then have "x\<bullet>i < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   756
        using k by (subst (asm) Max_less_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   757
      then have "x\<bullet>i < real k" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   758
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   759
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   760
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   761
  finally show "{x. a \<le> x\<bullet>i} \<in> ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   762
    apply (simp only:)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   763
    apply (intro sets.countable_UN sets.Diff)
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   764
    apply (auto intro: sigma_sets_top )
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   765
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   766
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   767
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   768
lemma borel_eq_atLeastAtMost:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   769
  "borel = sigma UNIV (range (\<lambda>(a,b). {a..b} \<Colon>'a\<Colon>ordered_euclidean_space set))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   770
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   771
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   772
  fix a::'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   773
  have *: "{..a} = (\<Union>n::nat. {- real n *\<^sub>R One .. a})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   774
  proof (safe, simp_all add: eucl_le[where 'a='a])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   775
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   776
    from real_arch_simple[of "Max ((\<lambda>i. - x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   777
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   778
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   779
      with k have "- x\<bullet>i \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   780
        by (subst (asm) Max_le_iff) (auto simp: field_simps)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   781
      then have "- real k \<le> x\<bullet>i" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   782
    then show "\<exists>n::nat. \<forall>i\<in>Basis. - real n \<le> x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   783
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   784
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   785
  show "{..a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   786
    by (intro sets.countable_UN)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   787
       (auto intro!: sigma_sets_top)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   788
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   789
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   790
lemma borel_sigma_sets_Ioc: "borel = sigma UNIV (range (\<lambda>(a, b). {a <.. b::real}))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   791
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   792
  fix i :: real
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   793
  have "{..i} = (\<Union>j::nat. {-j <.. i})"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   794
    by (auto simp: minus_less_iff reals_Archimedean2)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   795
  also have "\<dots> \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   796
    by (intro sets.countable_nat_UN) auto 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   797
  finally show "{..i} \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))" .
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   798
qed simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   799
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   800
lemma eucl_lessThan: "{x::real. x <e a} = lessThan a"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   801
  by (simp add: eucl_less_def lessThan_def)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   802
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   803
lemma borel_eq_atLeastLessThan:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   804
  "borel = sigma UNIV (range (\<lambda>(a, b). {a ..< b :: real}))" (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   805
proof (rule borel_eq_sigmaI5[OF borel_eq_lessThan])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   806
  have move_uminus: "\<And>x y::real. -x \<le> y \<longleftrightarrow> -y \<le> x" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   807
  fix x :: real
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   808
  have "{..<x} = (\<Union>i::nat. {-real i ..< x})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   809
    by (auto simp: move_uminus real_arch_simple)
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   810
  then show "{y. y <e x} \<in> ?SIGMA"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   811
    by (auto intro: sigma_sets.intros(2-) simp: eucl_lessThan)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   812
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   813
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   814
lemma borel_eq_closed: "borel = sigma UNIV (Collect closed)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   815
  unfolding borel_def
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   816
proof (intro sigma_eqI sigma_sets_eqI, safe)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   817
  fix x :: "'a set" assume "open x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   818
  hence "x = UNIV - (UNIV - x)" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   819
  also have "\<dots> \<in> sigma_sets UNIV (Collect closed)"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   820
    by (force intro: sigma_sets.Compl simp: `open x`)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   821
  finally show "x \<in> sigma_sets UNIV (Collect closed)" by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   822
next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   823
  fix x :: "'a set" assume "closed x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   824
  hence "x = UNIV - (UNIV - x)" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   825
  also have "\<dots> \<in> sigma_sets UNIV (Collect open)"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   826
    by (force intro: sigma_sets.Compl simp: `closed x`)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   827
  finally show "x \<in> sigma_sets UNIV (Collect open)" by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   828
qed simp_all
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   829
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   830
lemma borel_measurable_halfspacesI:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   831
  fixes f :: "'a \<Rightarrow> 'c\<Colon>euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   832
  assumes F: "borel = sigma UNIV (F ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   833
  and S_eq: "\<And>a i. S a i = f -` F (a,i) \<inter> space M" 
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   834
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a::real. S a i \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   835
proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   836
  fix a :: real and i :: 'b assume i: "i \<in> Basis" and f: "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   837
  then show "S a i \<in> sets M" unfolding assms
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   838
    by (auto intro!: measurable_sets simp: assms(1))
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   839
next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   840
  assume a: "\<forall>i\<in>Basis. \<forall>a. S a i \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   841
  then show "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   842
    by (auto intro!: measurable_measure_of simp: S_eq F)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   843
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   844
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   845
lemma borel_measurable_iff_halfspace_le:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   846
  fixes f :: "'a \<Rightarrow> 'c\<Colon>euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   847
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i \<le> a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   848
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_le]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   849
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   850
lemma borel_measurable_iff_halfspace_less:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   851
  fixes f :: "'a \<Rightarrow> 'c\<Colon>euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   852
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i < a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   853
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_less]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   854
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   855
lemma borel_measurable_iff_halfspace_ge:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   856
  fixes f :: "'a \<Rightarrow> 'c\<Colon>euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   857
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a \<le> f w \<bullet> i} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   858
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_ge]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   859
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   860
lemma borel_measurable_iff_halfspace_greater:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   861
  fixes f :: "'a \<Rightarrow> 'c\<Colon>euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   862
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a < f w \<bullet> i} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   863
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_greater]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   864
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   865
lemma borel_measurable_iff_le:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   866
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w \<le> a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   867
  using borel_measurable_iff_halfspace_le[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   868
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   869
lemma borel_measurable_iff_less:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   870
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w < a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   871
  using borel_measurable_iff_halfspace_less[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   872
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   873
lemma borel_measurable_iff_ge:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   874
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a \<le> f w} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   875
  using borel_measurable_iff_halfspace_ge[where 'c=real]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   876
  by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   877
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   878
lemma borel_measurable_iff_greater:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   879
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a < f w} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   880
  using borel_measurable_iff_halfspace_greater[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   881
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   882
lemma borel_measurable_euclidean_space:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   883
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   884
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   885
proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   886
  assume f: "\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   887
  then show "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   888
    by (subst borel_measurable_iff_halfspace_le) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   889
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   890
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   891
subsection "Borel measurable operators"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   892
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
   893
lemma borel_measurable_norm[measurable]: "norm \<in> borel_measurable borel"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
   894
  by (intro borel_measurable_continuous_on1 continuous_intros)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
   895
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   896
lemma borel_measurable_sgn [measurable]: "(sgn::'a::real_normed_vector \<Rightarrow> 'a) \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   897
  by (rule borel_measurable_continuous_countable_exceptions[where X="{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   898
     (auto intro!: continuous_on_sgn continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   899
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   900
lemma borel_measurable_uminus[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   901
  fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   902
  assumes g: "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   903
  shows "(\<lambda>x. - g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
   904
  by (rule borel_measurable_continuous_on[OF _ g]) (intro continuous_intros)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   905
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   906
lemma borel_measurable_add[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   907
  fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   908
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   909
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   910
  shows "(\<lambda>x. f x + g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
   911
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   912
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   913
lemma borel_measurable_setsum[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   914
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   915
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   916
  shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   917
proof cases
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   918
  assume "finite S"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   919
  thus ?thesis using assms by induct auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   920
qed simp
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   921
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   922
lemma borel_measurable_diff[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   923
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   924
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   925
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   926
  shows "(\<lambda>x. f x - g x) \<in> borel_measurable M"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
   927
  using borel_measurable_add [of f M "- g"] assms by (simp add: fun_Compl_def)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   928
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   929
lemma borel_measurable_times[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   930
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_algebra}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   931
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   932
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   933
  shows "(\<lambda>x. f x * g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
   934
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   935
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   936
lemma borel_measurable_setprod[measurable (raw)]:
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   937
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, real_normed_field}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   938
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   939
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   940
proof cases
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   941
  assume "finite S"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   942
  thus ?thesis using assms by induct auto
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   943
qed simp
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   944
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   945
lemma borel_measurable_dist[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   946
  fixes g f :: "'a \<Rightarrow> 'b::{second_countable_topology, metric_space}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   947
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   948
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   949
  shows "(\<lambda>x. dist (f x) (g x)) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
   950
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   951
  
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   952
lemma borel_measurable_scaleR[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   953
  fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   954
  assumes f: "f \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   955
  assumes g: "g \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   956
  shows "(\<lambda>x. f x *\<^sub>R g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
   957
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   958
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   959
lemma affine_borel_measurable_vector:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   960
  fixes f :: "'a \<Rightarrow> 'x::real_normed_vector"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   961
  assumes "f \<in> borel_measurable M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   962
  shows "(\<lambda>x. a + b *\<^sub>R f x) \<in> borel_measurable M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   963
proof (rule borel_measurableI)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   964
  fix S :: "'x set" assume "open S"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   965
  show "(\<lambda>x. a + b *\<^sub>R f x) -` S \<inter> space M \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   966
  proof cases
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   967
    assume "b \<noteq> 0"
44537
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
   968
    with `open S` have "open ((\<lambda>x. (- a + x) /\<^sub>R b) ` S)" (is "open ?S")
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
   969
      using open_affinity [of S "inverse b" "- a /\<^sub>R b"]
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
   970
      by (auto simp: algebra_simps)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   971
    hence "?S \<in> sets borel" by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   972
    moreover
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   973
    from `b \<noteq> 0` have "(\<lambda>x. a + b *\<^sub>R f x) -` S = f -` ?S"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   974
      apply auto by (rule_tac x="a + b *\<^sub>R f x" in image_eqI, simp_all)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   975
    ultimately show ?thesis using assms unfolding in_borel_measurable_borel
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   976
      by auto
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   977
  qed simp
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   978
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   979
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   980
lemma borel_measurable_const_scaleR[measurable (raw)]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   981
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. b *\<^sub>R f x ::'a::real_normed_vector) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   982
  using affine_borel_measurable_vector[of f M 0 b] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   983
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   984
lemma borel_measurable_const_add[measurable (raw)]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   985
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. a + f x ::'a::real_normed_vector) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   986
  using affine_borel_measurable_vector[of f M a 1] by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   987
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   988
lemma borel_measurable_inverse[measurable (raw)]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   989
  fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   990
  assumes f: "f \<in> borel_measurable M"
35692
f1315bbf1bc9 Moved theorems in Lebesgue to the right places
hoelzl
parents: 35582
diff changeset
   991
  shows "(\<lambda>x. inverse (f x)) \<in> borel_measurable M"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   992
  apply (rule measurable_compose[OF f])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   993
  apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   994
  apply (auto intro!: continuous_on_inverse continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   995
  done
35692
f1315bbf1bc9 Moved theorems in Lebesgue to the right places
hoelzl
parents: 35582
diff changeset
   996
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   997
lemma borel_measurable_divide[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   998
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   999
    (\<lambda>x. f x / g x::'b::{second_countable_topology, real_normed_div_algebra}) \<in> borel_measurable M"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1000
  by (simp add: divide_inverse)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1001
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1002
lemma borel_measurable_max[measurable (raw)]:
53216
ad2e09c30aa8 renamed inner_dense_linorder to dense_linorder
hoelzl
parents: 51683
diff changeset
  1003
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. max (g x) (f x) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1004
  by (simp add: max_def)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1005
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1006
lemma borel_measurable_min[measurable (raw)]:
53216
ad2e09c30aa8 renamed inner_dense_linorder to dense_linorder
hoelzl
parents: 51683
diff changeset
  1007
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. min (g x) (f x) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1008
  by (simp add: min_def)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1009
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1010
lemma borel_measurable_Min[measurable (raw)]:
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1011
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Min ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1012
proof (induct I rule: finite_induct)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1013
  case (insert i I) then show ?case
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1014
    by (cases "I = {}") auto
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1015
qed auto
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1016
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1017
lemma borel_measurable_Max[measurable (raw)]:
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1018
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Max ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1019
proof (induct I rule: finite_induct)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1020
  case (insert i I) then show ?case
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1021
    by (cases "I = {}") auto
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1022
qed auto
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1023
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1024
lemma borel_measurable_abs[measurable (raw)]:
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1025
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. \<bar>f x :: real\<bar>) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1026
  unfolding abs_real_def by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1027
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1028
lemma borel_measurable_nth[measurable (raw)]:
41026
bea75746dc9d folding on arbitrary Lebesgue integrable functions
hoelzl
parents: 41025
diff changeset
  1029
  "(\<lambda>x::real^'n. x $ i) \<in> borel_measurable borel"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1030
  by (simp add: cart_eq_inner_axis)
41026
bea75746dc9d folding on arbitrary Lebesgue integrable functions
hoelzl
parents: 41025
diff changeset
  1031
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1032
lemma convex_measurable:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1033
  fixes A :: "'a :: euclidean_space set"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1034
  shows "X \<in> borel_measurable M \<Longrightarrow> X ` space M \<subseteq> A \<Longrightarrow> open A \<Longrightarrow> convex_on A q \<Longrightarrow> 
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1035
    (\<lambda>x. q (X x)) \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1036
  by (rule measurable_compose[where f=X and N="restrict_space borel A"])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1037
     (auto intro!: borel_measurable_continuous_on_restrict convex_on_continuous measurable_restrict_space2)
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1038
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1039
lemma borel_measurable_ln[measurable (raw)]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1040
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1041
  shows "(\<lambda>x. ln (f x)) \<in> borel_measurable M"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1042
  apply (rule measurable_compose[OF f])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1043
  apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1044
  apply (auto intro!: continuous_on_ln continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1045
  done
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1046
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1047
lemma borel_measurable_log[measurable (raw)]:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1048
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. log (g x) (f x)) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1049
  unfolding log_def by auto
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1050
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 57514
diff changeset
  1051
lemma borel_measurable_exp[measurable]:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 57514
diff changeset
  1052
  "(exp::'a::{real_normed_field,banach}\<Rightarrow>'a) \<in> borel_measurable borel"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51351
diff changeset
  1053
  by (intro borel_measurable_continuous_on1 continuous_at_imp_continuous_on ballI isCont_exp)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50387
diff changeset
  1054
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1055
lemma measurable_real_floor[measurable]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1056
  "(floor :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1057
proof -
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1058
  have "\<And>a x. \<lfloor>x\<rfloor> = a \<longleftrightarrow> (real a \<le> x \<and> x < real (a + 1))"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1059
    by (auto intro: floor_eq2)
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1060
  then show ?thesis
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1061
    by (auto simp: vimage_def measurable_count_space_eq2_countable)
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1062
qed
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1063
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1064
lemma measurable_real_natfloor[measurable]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1065
  "(natfloor :: real \<Rightarrow> nat) \<in> measurable borel (count_space UNIV)"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1066
  by (simp add: natfloor_def[abs_def])
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1067
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1068
lemma measurable_real_ceiling[measurable]:
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1069
  "(ceiling :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1070
  unfolding ceiling_def[abs_def] by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1071
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1072
lemma borel_measurable_real_floor: "(\<lambda>x::real. real \<lfloor>x\<rfloor>) \<in> borel_measurable borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1073
  by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1074
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1075
lemma borel_measurable_real_natfloor:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1076
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. real (natfloor (f x))) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1077
  by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1078
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1079
lemma borel_measurable_root [measurable]: "root n \<in> borel_measurable borel"
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1080
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1081
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1082
lemma borel_measurable_sqrt [measurable]: "sqrt \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1083
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1084
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1085
lemma borel_measurable_power [measurable (raw)]:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1086
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1087
  assumes f: "f \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1088
  shows "(\<lambda>x. (f x) ^ n) \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1089
  by (intro borel_measurable_continuous_on [OF _ f] continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1090
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1091
lemma borel_measurable_Re [measurable]: "Re \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1092
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1093
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1094
lemma borel_measurable_Im [measurable]: "Im \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1095
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1096
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1097
lemma borel_measurable_of_real [measurable]: "(of_real :: _ \<Rightarrow> (_::real_normed_algebra)) \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1098
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1099
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1100
lemma borel_measurable_sin [measurable]: "sin \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1101
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1102
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1103
lemma borel_measurable_cos [measurable]: "cos \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1104
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1105
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1106
lemma borel_measurable_arctan [measurable]: "arctan \<in> borel_measurable borel"
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1107
  by (intro borel_measurable_continuous_on1 continuous_intros)
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1108
57259
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1109
lemma borel_measurable_complex_iff:
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1110
  "f \<in> borel_measurable M \<longleftrightarrow>
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1111
    (\<lambda>x. Re (f x)) \<in> borel_measurable M \<and> (\<lambda>x. Im (f x)) \<in> borel_measurable M"
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1112
  apply auto
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1113
  apply (subst fun_complex_eq)
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1114
  apply (intro borel_measurable_add)
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1115
  apply auto
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1116
  done
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1117
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1118
subsection "Borel space on the extended reals"
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1119
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1120
lemma borel_measurable_ereal[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1121
  assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1122
  using continuous_on_ereal f by (rule borel_measurable_continuous_on)
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1123
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1124
lemma borel_measurable_real_of_ereal[measurable (raw)]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1125
  fixes f :: "'a \<Rightarrow> ereal" 
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1126
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1127
  shows "(\<lambda>x. real (f x)) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1128
  apply (rule measurable_compose[OF f])
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1129
  apply (rule borel_measurable_continuous_countable_exceptions[of "{\<infinity>, -\<infinity> }"])
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1130
  apply (auto intro: continuous_on_real simp: Compl_eq_Diff_UNIV)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1131
  done
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1132
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1133
lemma borel_measurable_ereal_cases:
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1134
  fixes f :: "'a \<Rightarrow> ereal" 
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1135
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1136
  assumes H: "(\<lambda>x. H (ereal (real (f x)))) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1137
  shows "(\<lambda>x. H (f x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1138
proof -
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1139
  let ?F = "\<lambda>x. if f x = \<infinity> then H \<infinity> else if f x = - \<infinity> then H (-\<infinity>) else H (ereal (real (f x)))"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1140
  { fix x have "H (f x) = ?F x" by (cases "f x") auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1141
  with f H show ?thesis by simp
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1142
qed
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1143
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1144
lemma
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1145
  fixes f :: "'a \<Rightarrow> ereal" assumes f[measurable]: "f \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1146
  shows borel_measurable_ereal_abs[measurable(raw)]: "(\<lambda>x. \<bar>f x\<bar>) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1147
    and borel_measurable_ereal_inverse[measurable(raw)]: "(\<lambda>x. inverse (f x) :: ereal) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1148
    and borel_measurable_uminus_ereal[measurable(raw)]: "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1149
  by (auto simp del: abs_real_of_ereal simp: borel_measurable_ereal_cases[OF f] measurable_If)
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1150
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1151
lemma borel_measurable_uminus_eq_ereal[simp]:
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1152
  "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M" (is "?l = ?r")
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1153
proof
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1154
  assume ?l from borel_measurable_uminus_ereal[OF this] show ?r by simp
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1155
qed auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1156
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1157
lemma set_Collect_ereal2:
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1158
  fixes f g :: "'a \<Rightarrow> ereal" 
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1159
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1160
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1161
  assumes H: "{x \<in> space M. H (ereal (real (f x))) (ereal (real (g x)))} \<in> sets M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1162
    "{x \<in> space borel. H (-\<infinity>) (ereal x)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1163
    "{x \<in> space borel. H (\<infinity>) (ereal x)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1164
    "{x \<in> space borel. H (ereal x) (-\<infinity>)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1165
    "{x \<in> space borel. H (ereal x) (\<infinity>)} \<in> sets borel"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1166
  shows "{x \<in> space M. H (f x) (g x)} \<in> sets M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1167
proof -
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1168
  let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = -\<infinity> then H y (-\<infinity>) else H y (ereal (real (g x)))"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1169
  let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = -\<infinity> then ?G (-\<infinity>) x else ?G (ereal (real (f x))) x"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1170
  { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1171
  note * = this
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1172
  from assms show ?thesis
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1173
    by (subst *) (simp del: space_borel split del: split_if)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1174
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1175
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1176
lemma borel_measurable_ereal_iff:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1177
  shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1178
proof
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1179
  assume "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1180
  from borel_measurable_real_of_ereal[OF this]
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1181
  show "f \<in> borel_measurable M" by auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1182
qed auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1183
59353
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1184
lemma borel_measurable_erealD[measurable_dest]:
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1185
  "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<Longrightarrow> g \<in> measurable N M \<Longrightarrow> (\<lambda>x. f (g x)) \<in> borel_measurable N"
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1186
  unfolding borel_measurable_ereal_iff by simp
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1187
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1188
lemma borel_measurable_ereal_iff_real:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
  1189
  fixes f :: "'a \<Rightarrow> ereal"
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
  1190
  shows "f \<in> borel_measurable M \<longleftrightarrow>
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1191
    ((\<lambda>x. real (f x)) \<in> borel_measurable M \<and> f -` {\<infinity>} \<inter> space M \<in> sets M \<and> f -` {-\<infinity>} \<inter> space M \<in> sets M)"
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1192
proof safe
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1193
  assume *: "(\<lambda>x. real (f x)) \<in> borel_measurable M" "f -` {\<infinity>} \<inter> space M \<in> sets M" "f -` {-\<infinity>} \<inter> space M \<in> sets M"
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1194
  have "f -` {\<infinity>} \<inter> space M = {x\<in>space M. f x = \<infinity>}" "f -` {-\<infinity>} \<inter> space M = {x\<in>space M. f x = -\<infinity>}" by auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1195
  with * have **: "{x\<in>space M. f x = \<infinity>} \<in> sets M" "{x\<in>space M. f x = -\<infinity>} \<in> sets M" by simp_all
46731
5302e932d1e5 avoid undeclared variables in let bindings;
wenzelm
parents: 45288
diff changeset
  1196
  let ?f = "\<lambda>x. if f x = \<infinity> then \<infinity> else if f x = -\<infinity> then -\<infinity> else ereal (real (f x))"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1197
  have "?f \<in> borel_measurable M" using * ** by (intro measurable_If) auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1198
  also have "?f = f" by (auto simp: fun_eq_iff ereal_real)
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1199
  finally show "f \<in> borel_measurable M" .
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1200
qed simp_all
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1201
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1202
lemma borel_measurable_ereal_iff_Iio:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1203
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..< a} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1204
  by (auto simp: borel_Iio measurable_iff_measure_of)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1205
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1206
lemma borel_measurable_ereal_iff_Ioi:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1207
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a <..} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1208
  by (auto simp: borel_Ioi measurable_iff_measure_of)
35582
b16d99a72dc9 Add Lebesgue integral and probability space.
hoelzl
parents: 35347
diff changeset
  1209
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1210
lemma vimage_sets_compl_iff:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1211
  "f -` A \<inter> space M \<in> sets M \<longleftrightarrow> f -` (- A) \<inter> space M \<in> sets M"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1212
proof -
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1213
  { fix A assume "f -` A \<inter> space M \<in> sets M"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1214
    moreover have "f -` (- A) \<inter> space M = space M - f -` A \<inter> space M" by auto
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1215
    ultimately have "f -` (- A) \<inter> space M \<in> sets M" by auto }
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1216
  from this[of A] this[of "-A"] show ?thesis
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1217
    by (metis double_complement)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1218
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1219
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1220
lemma borel_measurable_iff_Iic_ereal:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1221
  "(f::'a\<Rightarrow>ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..a} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1222
  unfolding borel_measurable_ereal_iff_Ioi vimage_sets_compl_iff[where A="{a <..}" for a] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1223
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1224
lemma borel_measurable_iff_Ici_ereal:
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1225
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a..} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1226
  unfolding borel_measurable_ereal_iff_Iio vimage_sets_compl_iff[where A="{..< a}" for a] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1227
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1228
lemma borel_measurable_ereal2:
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1229
  fixes f g :: "'a \<Rightarrow> ereal" 
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1230
  assumes f: "f \<in> borel_measurable M"
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1231
  assumes g: "g \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1232
  assumes H: "(\<lambda>x. H (ereal (real (f x))) (ereal (real (g x)))) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1233
    "(\<lambda>x. H (-\<infinity>) (ereal (real (g x)))) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1234
    "(\<lambda>x. H (\<infinity>) (ereal (real (g x)))) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1235
    "(\<lambda>x. H (ereal (real (f x))) (-\<infinity>)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1236
    "(\<lambda>x. H (ereal (real (f x))) (\<infinity>)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1237
  shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1238
proof -
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1239
  let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = - \<infinity> then H y (-\<infinity>) else H y (ereal (real (g x)))"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1240
  let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = - \<infinity> then ?G (-\<infinity>) x else ?G (ereal (real (f x))) x"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1241
  { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1242
  note * = this
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1243
  from assms show ?thesis unfolding * by simp
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1244
qed
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1245
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1246
lemma
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1247
  fixes f :: "'a \<Rightarrow> ereal" assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1248
  shows borel_measurable_ereal_eq_const: "{x\<in>space M. f x = c} \<in> sets M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1249
    and borel_measurable_ereal_neq_const: "{x\<in>space M. f x \<noteq> c} \<in> sets M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1250
  using f by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1251
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1252
lemma [measurable(raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1253
  fixes f :: "'a \<Rightarrow> ereal"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1254
  assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1255
  shows borel_measurable_ereal_add: "(\<lambda>x. f x + g x) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1256
    and borel_measurable_ereal_times: "(\<lambda>x. f x * g x) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1257
    and borel_measurable_ereal_min: "(\<lambda>x. min (g x) (f x)) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1258
    and borel_measurable_ereal_max: "(\<lambda>x. max (g x) (f x)) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1259
  by (simp_all add: borel_measurable_ereal2 min_def max_def)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1260
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1261
lemma [measurable(raw)]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1262
  fixes f g :: "'a \<Rightarrow> ereal"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1263
  assumes "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1264
  assumes "g \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1265
  shows borel_measurable_ereal_diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1266
    and borel_measurable_ereal_divide: "(\<lambda>x. f x / g x) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1267
  using assms by (simp_all add: minus_ereal_def divide_ereal_def)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1268
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1269
lemma borel_measurable_ereal_setsum[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1270
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
41096
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1271
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1272
  shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1273
  using assms by (induction S rule: infinite_finite_induct) auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1274
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1275
lemma borel_measurable_ereal_setprod[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1276
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1277
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
41096
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1278
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1279
  using assms by (induction S rule: infinite_finite_induct) auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1280
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1281
lemma [measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1282
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1283
  assumes "\<And>i. f i \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1284
  shows borel_measurable_liminf: "(\<lambda>x. liminf (\<lambda>i. f i x)) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1285
    and borel_measurable_limsup: "(\<lambda>x. limsup (\<lambda>i. f i x)) \<in> borel_measurable M"
56212
3253aaf73a01 consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
haftmann
parents: 54775
diff changeset
  1286
  unfolding liminf_SUP_INF limsup_INF_SUP using assms by auto
35692
f1315bbf1bc9 Moved theorems in Lebesgue to the right places
hoelzl
parents: 35582
diff changeset
  1287
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 50096
diff changeset
  1288
lemma sets_Collect_eventually_sequentially[measurable]:
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1289
  "(\<And>i. {x\<in>space M. P x i} \<in> sets M) \<Longrightarrow> {x\<in>space M. eventually (P x) sequentially} \<in> sets M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1290
  unfolding eventually_sequentially by simp
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1291
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1292
lemma sets_Collect_ereal_convergent[measurable]: 
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1293
  fixes f :: "nat \<Rightarrow> 'a => ereal"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1294
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1295
  shows "{x\<in>space M. convergent (\<lambda>i. f i x)} \<in> sets M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1296
  unfolding convergent_ereal by auto
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1297
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1298
lemma borel_measurable_extreal_lim[measurable (raw)]:
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1299
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1300
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1301
  shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1302
proof -
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1303
  have "\<And>x. lim (\<lambda>i. f i x) = (if convergent (\<lambda>i. f i x) then limsup (\<lambda>i. f i x) else (THE i. False))"
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51106
diff changeset
  1304
    by (simp add: lim_def convergent_def convergent_limsup_cl)
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1305
  then show ?thesis
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1306
    by simp
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1307
qed
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1308
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1309
lemma borel_measurable_ereal_LIMSEQ:
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1310
  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1311
  assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) ----> u' x"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1312
  and u: "\<And>i. u i \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1313
  shows "u' \<in> borel_measurable M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1314
proof -
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1315
  have "\<And>x. x \<in> space M \<Longrightarrow> u' x = liminf (\<lambda>n. u n x)"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1316
    using u' by (simp add: lim_imp_Liminf[symmetric])
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1317
  with u show ?thesis by (simp cong: measurable_cong)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1318
qed
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1319
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1320
lemma borel_measurable_extreal_suminf[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1321
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1322
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1323
  shows "(\<lambda>x. (\<Sum>i. f i x)) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1324
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1325
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1326
subsection {* LIMSEQ is borel measurable *}
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1327
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1328
lemma borel_measurable_LIMSEQ:
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1329
  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> real"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1330
  assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) ----> u' x"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1331
  and u: "\<And>i. u i \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1332
  shows "u' \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1333
proof -
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1334
  have "\<And>x. x \<in> space M \<Longrightarrow> liminf (\<lambda>n. ereal (u n x)) = ereal (u' x)"
46731
5302e932d1e5 avoid undeclared variables in let bindings;
wenzelm
parents: 45288
diff changeset
  1335
    using u' by (simp add: lim_imp_Liminf)
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1336
  moreover from u have "(\<lambda>x. liminf (\<lambda>n. ereal (u n x))) \<in> borel_measurable M"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1337
    by auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1338
  ultimately show ?thesis by (simp cong: measurable_cong add: borel_measurable_ereal_iff)
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1339
qed
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1340
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1341
lemma borel_measurable_LIMSEQ_metric:
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1342
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: metric_space"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1343
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1344
  assumes lim: "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. f i x) ----> g x"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1345
  shows "g \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1346
  unfolding borel_eq_closed
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1347
proof (safe intro!: measurable_measure_of)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1348
  fix A :: "'b set" assume "closed A" 
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1349
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1350
  have [measurable]: "(\<lambda>x. infdist (g x) A) \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1351
  proof (rule borel_measurable_LIMSEQ)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1352
    show "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. infdist (f i x) A) ----> infdist (g x) A"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1353
      by (intro tendsto_infdist lim)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1354
    show "\<And>i. (\<lambda>x. infdist (f i x) A) \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1355
      by (intro borel_measurable_continuous_on[where f="\<lambda>x. infdist x A"]
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1356
        continuous_at_imp_continuous_on ballI continuous_infdist isCont_ident) auto
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1357
  qed
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1358
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1359
  show "g -` A \<inter> space M \<in> sets M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1360
  proof cases
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1361
    assume "A \<noteq> {}"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1362
    then have "\<And>x. infdist x A = 0 \<longleftrightarrow> x \<in> A"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1363
      using `closed A` by (simp add: in_closed_iff_infdist_zero)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1364
    then have "g -` A \<inter> space M = {x\<in>space M. infdist (g x) A = 0}"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1365
      by auto
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1366
    also have "\<dots> \<in> sets M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1367
      by measurable
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1368
    finally show ?thesis .
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1369
  qed simp
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1370
qed auto
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1371
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1372
lemma sets_Collect_Cauchy[measurable]: 
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1373
  fixes f :: "nat \<Rightarrow> 'a => 'b::{metric_space, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1374
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1375
  shows "{x\<in>space M. Cauchy (\<lambda>i. f i x)} \<in> sets M"
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1376
  unfolding metric_Cauchy_iff2 using f by auto
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1377
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1378
lemma borel_measurable_lim[measurable (raw)]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1379
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1380
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1381
  shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1382
proof -
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1383
  def u' \<equiv> "\<lambda>x. lim (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1384
  then have *: "\<And>x. lim (\<lambda>i. f i x) = (if Cauchy (\<lambda>i. f i x) then u' x else (THE x. False))"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1385
    by (auto simp: lim_def convergent_eq_cauchy[symmetric])
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1386
  have "u' \<in> borel_measurable M"
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1387
  proof (rule borel_measurable_LIMSEQ_metric)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1388
    fix x
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1389
    have "convergent (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1390
      by (cases "Cauchy (\<lambda>i. f i x)")
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1391
         (auto simp add: convergent_eq_cauchy[symmetric] convergent_def)
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1392
    then show "(\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0) ----> u' x"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1393
      unfolding u'_def 
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1394
      by (rule convergent_LIMSEQ_iff[THEN iffD1])
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1395
  qed measurable
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1396
  then show ?thesis
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1397
    unfolding * by measurable
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1398
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1399
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1400
lemma borel_measurable_suminf[measurable (raw)]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1401
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1402
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1403
  shows "(\<lambda>x. suminf (\<lambda>i. f i x)) \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1404
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1405
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1406
lemma borel_measurable_sup[measurable (raw)]:
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1407
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1408
    (\<lambda>x. sup (f x) (g x)::ereal) \<in> borel_measurable M"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1409
  by simp
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1410
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1411
(* Proof by Jeremy Avigad and Luke Serafin *)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1412
lemma isCont_borel:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1413
  fixes f :: "'b::metric_space \<Rightarrow> 'a::metric_space"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1414
  shows "{x. isCont f x} \<in> sets borel"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1415
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1416
  let ?I = "\<lambda>j. inverse(real (Suc j))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1417
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1418
  { fix x
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1419
    have "isCont f x = (\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1420
      unfolding continuous_at_eps_delta
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1421
    proof safe
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1422
      fix i assume "\<forall>e>0. \<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1423
      moreover have "0 < ?I i / 2"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1424
        by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1425
      ultimately obtain d where d: "0 < d" "\<And>y. dist x y < d \<Longrightarrow> dist (f y) (f x) < ?I i / 2"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1426
        by (metis dist_commute)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1427
      then obtain j where j: "?I j < d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1428
        by (metis reals_Archimedean)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1429
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1430
      show "\<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1431
      proof (safe intro!: exI[where x=j])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1432
        fix y z assume *: "dist x y < ?I j" "dist x z < ?I j"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1433
        have "dist (f y) (f z) \<le> dist (f y) (f x) + dist (f z) (f x)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1434
          by (rule dist_triangle2)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1435
        also have "\<dots> < ?I i / 2 + ?I i / 2"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1436
          by (intro add_strict_mono d less_trans[OF _ j] *)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1437
        also have "\<dots> \<le> ?I i"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1438
          by (simp add: field_simps real_of_nat_Suc)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1439
        finally show "dist (f y) (f z) \<le> ?I i"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1440
          by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1441
      qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1442
    next
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1443
      fix e::real assume "0 < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1444
      then obtain n where n: "?I n < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1445
        by (metis reals_Archimedean)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1446
      assume "\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1447
      from this[THEN spec, of "Suc n"]
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1448
      obtain j where j: "\<And>y z. dist x y < ?I j \<Longrightarrow> dist x z < ?I j \<Longrightarrow> dist (f y) (f z) \<le> ?I (Suc n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1449
        by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1450
      
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1451
      show "\<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1452
      proof (safe intro!: exI[of _ "?I j"])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1453
        fix y assume "dist y x < ?I j"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1454
        then have "dist (f y) (f x) \<le> ?I (Suc n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1455
          by (intro j) (auto simp: dist_commute)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1456
        also have "?I (Suc n) < ?I n"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1457
          by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1458
        also note n
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1459
        finally show "dist (f y) (f x) < e" .
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1460
      qed simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1461
    qed }
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1462
  note * = this
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1463
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1464
  have **: "\<And>e y. open {x. dist x y < e}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1465
    using open_ball by (simp_all add: ball_def dist_commute)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1466
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1467
  have "{x\<in>space borel. isCont f x} \<in> sets borel"
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1468
    unfolding *
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1469
    apply (intro sets.sets_Collect_countable_All sets.sets_Collect_countable_Ex)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1470
    apply (simp add: Collect_all_eq)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1471
    apply (intro borel_closed closed_INT ballI closed_Collect_imp open_Collect_conj **)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1472
    apply auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1473
    done
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1474
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1475
    by simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1476
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1477
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1478
no_notation
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1479
  eucl_less (infix "<e" 50)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1480
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1481
end