src/Pure/net.ML
author paulson
Fri May 30 15:14:59 1997 +0200 (1997-05-30)
changeset 3365 86c0d1988622
parent 2836 148829646a51
child 3548 108d09eb3454
permissions -rw-r--r--
flushOut ensures that no recent error message are lost (not certain this is
necessary)
clasohm@1460
     1
(*  Title: 	net
clasohm@0
     2
    ID:         $Id$
clasohm@1460
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Discrimination nets: a data structure for indexing items
clasohm@0
     7
clasohm@0
     8
From the book 
clasohm@0
     9
    E. Charniak, C. K. Riesbeck, D. V. McDermott. 
clasohm@0
    10
    Artificial Intelligence Programming.
clasohm@0
    11
    (Lawrence Erlbaum Associates, 1980).  [Chapter 14]
nipkow@225
    12
nipkow@228
    13
match_term no longer treats abstractions as wildcards; instead they match 
nipkow@228
    14
only wildcards in patterns.  Requires operands to be beta-eta-normal.
clasohm@0
    15
*)
clasohm@0
    16
clasohm@0
    17
signature NET = 
clasohm@0
    18
  sig
clasohm@0
    19
  type key
clasohm@0
    20
  type 'a net
clasohm@0
    21
  exception DELETE and INSERT
clasohm@0
    22
  val delete: (key list * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    23
  val delete_term:   (term * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    24
  val empty: 'a net
clasohm@0
    25
  val insert: (key list * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    26
  val insert_term:   (term * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    27
  val lookup: 'a net * key list -> 'a list
clasohm@0
    28
  val match_term: 'a net -> term -> 'a list
clasohm@0
    29
  val key_of_term: term -> key list
clasohm@0
    30
  val unify_term: 'a net -> term -> 'a list
clasohm@0
    31
  end;
clasohm@0
    32
clasohm@0
    33
paulson@1500
    34
structure Net : NET = 
clasohm@0
    35
struct
clasohm@0
    36
clasohm@0
    37
datatype key = CombK | VarK | AtomK of string;
clasohm@0
    38
nipkow@225
    39
(*Bound variables*)
clasohm@0
    40
fun string_of_bound i = "*B*" ^ chr i;
clasohm@0
    41
nipkow@228
    42
(*Keys are preorder lists of symbols -- Combinations, Vars, Atoms.
nipkow@225
    43
  Any term whose head is a Var is regarded entirely as a Var.
nipkow@228
    44
  Abstractions are also regarded as Vars;  this covers eta-conversion
nipkow@228
    45
    and "near" eta-conversions such as %x.?P(?f(x)).
clasohm@0
    46
*)
clasohm@0
    47
fun add_key_of_terms (t, cs) = 
clasohm@0
    48
  let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs))
clasohm@1460
    49
	| rands (Const(c,_), cs) = AtomK c :: cs
clasohm@1460
    50
	| rands (Free(c,_),  cs) = AtomK c :: cs
clasohm@1460
    51
	| rands (Bound i,  cs)   = AtomK (string_of_bound i) :: cs
clasohm@0
    52
  in case (head_of t) of
nipkow@225
    53
      Var _ => VarK :: cs
nipkow@228
    54
    | Abs _ => VarK :: cs
nipkow@225
    55
    | _     => rands(t,cs)
clasohm@0
    56
  end;
clasohm@0
    57
nipkow@225
    58
(*convert a term to a list of keys*)
clasohm@0
    59
fun key_of_term t = add_key_of_terms (t, []);
clasohm@0
    60
clasohm@0
    61
clasohm@0
    62
(*Trees indexed by key lists: each arc is labelled by a key.
clasohm@0
    63
  Each node contains a list of items, and arcs to children.
clasohm@0
    64
  Keys in the association list (alist) are stored in ascending order.
clasohm@0
    65
  The empty key addresses the entire net.
clasohm@0
    66
  Lookup functions preserve order in items stored at same level.
clasohm@0
    67
*)
clasohm@0
    68
datatype 'a net = Leaf of 'a list
clasohm@1460
    69
		| Net of {comb: 'a net, 
clasohm@1460
    70
			  var: 'a net,
clasohm@1460
    71
			  alist: (string * 'a net) list};
clasohm@0
    72
clasohm@0
    73
val empty = Leaf[];
clasohm@0
    74
val emptynet = Net{comb=empty, var=empty, alist=[]};
clasohm@0
    75
clasohm@0
    76
clasohm@0
    77
(*** Insertion into a discrimination net ***)
clasohm@0
    78
clasohm@1460
    79
exception INSERT;	(*duplicate item in the net*)
clasohm@0
    80
clasohm@0
    81
clasohm@0
    82
(*Adds item x to the list at the node addressed by the keys.
clasohm@0
    83
  Creates node if not already present.
clasohm@0
    84
  eq is the equality test for items. 
clasohm@0
    85
  The empty list of keys generates a Leaf node, others a Net node.
clasohm@0
    86
*)
clasohm@0
    87
fun insert ((keys,x), net, eq) =
clasohm@0
    88
  let fun ins1 ([], Leaf xs) = 
clasohm@0
    89
            if gen_mem eq (x,xs) then  raise INSERT  else Leaf(x::xs)
clasohm@0
    90
        | ins1 (keys, Leaf[]) = ins1 (keys, emptynet)   (*expand empty...*)
clasohm@0
    91
        | ins1 (CombK :: keys, Net{comb,var,alist}) =
clasohm@1460
    92
	    Net{comb=ins1(keys,comb), var=var, alist=alist}
clasohm@1460
    93
	| ins1 (VarK :: keys, Net{comb,var,alist}) =
clasohm@1460
    94
	    Net{comb=comb, var=ins1(keys,var), alist=alist}
clasohm@1460
    95
	| ins1 (AtomK a :: keys, Net{comb,var,alist}) =
clasohm@1460
    96
	    let fun newpair net = (a, ins1(keys,net)) 
clasohm@1460
    97
		fun inslist [] = [newpair empty]
clasohm@1460
    98
		  | inslist((b: string, netb) :: alist) =
clasohm@1460
    99
		      if a=b then newpair netb :: alist
clasohm@1460
   100
		      else if a<b then (*absent, ins1ert in alist*)
clasohm@1460
   101
			  newpair empty :: (b,netb) :: alist
clasohm@1460
   102
		      else (*a>b*) (b,netb) :: inslist alist
clasohm@1460
   103
	    in  Net{comb=comb, var=var, alist= inslist alist}  end
clasohm@0
   104
  in  ins1 (keys,net)  end;
clasohm@0
   105
clasohm@0
   106
fun insert_term ((t,x), net, eq) = insert((key_of_term t, x), net, eq);
clasohm@0
   107
clasohm@0
   108
(*** Deletion from a discrimination net ***)
clasohm@0
   109
clasohm@1460
   110
exception DELETE;	(*missing item in the net*)
clasohm@0
   111
clasohm@0
   112
(*Create a new Net node if it would be nonempty*)
clasohm@0
   113
fun newnet {comb=Leaf[], var=Leaf[], alist=[]} = empty
clasohm@0
   114
  | newnet {comb,var,alist} = Net{comb=comb, var=var, alist=alist};
clasohm@0
   115
clasohm@0
   116
(*add new (b,net) pair to the alist provided net is nonempty*)
clasohm@0
   117
fun conspair((b, Leaf[]), alist) = alist
clasohm@0
   118
  | conspair((b, net), alist)    = (b, net) :: alist;
clasohm@0
   119
clasohm@0
   120
(*Deletes item x from the list at the node addressed by the keys.
clasohm@0
   121
  Raises DELETE if absent.  Collapses the net if possible.
clasohm@0
   122
  eq is the equality test for items. *)
clasohm@0
   123
fun delete ((keys, x), net, eq) = 
clasohm@0
   124
  let fun del1 ([], Leaf xs) =
clasohm@0
   125
            if gen_mem eq (x,xs) then Leaf (gen_rem eq (xs,x))
clasohm@0
   126
            else raise DELETE
clasohm@1460
   127
	| del1 (keys, Leaf[]) = raise DELETE
clasohm@1460
   128
	| del1 (CombK :: keys, Net{comb,var,alist}) =
clasohm@1460
   129
	    newnet{comb=del1(keys,comb), var=var, alist=alist}
clasohm@1460
   130
	| del1 (VarK :: keys, Net{comb,var,alist}) =
clasohm@1460
   131
	    newnet{comb=comb, var=del1(keys,var), alist=alist}
clasohm@1460
   132
	| del1 (AtomK a :: keys, Net{comb,var,alist}) =
clasohm@1460
   133
	    let fun newpair net = (a, del1(keys,net)) 
clasohm@1460
   134
		fun dellist [] = raise DELETE
clasohm@1460
   135
		  | dellist((b: string, netb) :: alist) =
clasohm@1460
   136
		      if a=b then conspair(newpair netb, alist)
clasohm@1460
   137
		      else if a<b then (*absent*) raise DELETE
clasohm@1460
   138
		      else (*a>b*)  (b,netb) :: dellist alist
clasohm@1460
   139
	    in  newnet{comb=comb, var=var, alist= dellist alist}  end
clasohm@0
   140
  in  del1 (keys,net)  end;
clasohm@0
   141
clasohm@0
   142
fun delete_term ((t,x), net, eq) = delete((key_of_term t, x), net, eq);
clasohm@0
   143
clasohm@0
   144
(*** Retrieval functions for discrimination nets ***)
clasohm@0
   145
clasohm@0
   146
exception OASSOC;
clasohm@0
   147
clasohm@0
   148
(*Ordered association list lookup*)
clasohm@0
   149
fun oassoc ([], a: string) = raise OASSOC
clasohm@0
   150
  | oassoc ((b,x)::pairs, a) =
clasohm@0
   151
      if b<a then oassoc(pairs,a)
clasohm@0
   152
      else if a=b then x
clasohm@0
   153
      else raise OASSOC;
clasohm@0
   154
clasohm@0
   155
(*Return the list of items at the given node, [] if no such node*)
clasohm@0
   156
fun lookup (Leaf(xs), []) = xs
clasohm@1460
   157
  | lookup (Leaf _, _::_) = []	(*non-empty keys and empty net*)
clasohm@0
   158
  | lookup (Net{comb,var,alist}, CombK :: keys) = lookup(comb,keys)
clasohm@0
   159
  | lookup (Net{comb,var,alist}, VarK :: keys) = lookup(var,keys)
clasohm@0
   160
  | lookup (Net{comb,var,alist}, AtomK a :: keys) = 
clasohm@0
   161
      lookup(oassoc(alist,a),keys)  handle  OASSOC => [];
clasohm@0
   162
clasohm@0
   163
clasohm@0
   164
(*Skipping a term in a net.  Recursively skip 2 levels if a combination*)
clasohm@0
   165
fun net_skip (Leaf _, nets) = nets
clasohm@0
   166
  | net_skip (Net{comb,var,alist}, nets) = 
clasohm@0
   167
    foldr net_skip 
clasohm@0
   168
          (net_skip (comb,[]), 
clasohm@1460
   169
	   foldr (fn ((_,net), nets) => net::nets) (alist, var::nets));
clasohm@0
   170
clasohm@0
   171
(** Matching and Unification**)
clasohm@0
   172
clasohm@0
   173
(*conses the linked net, if present, to nets*)
clasohm@0
   174
fun look1 (alist, a) nets =
clasohm@0
   175
       oassoc(alist,a) :: nets  handle  OASSOC => nets;
clasohm@0
   176
clasohm@0
   177
(*Return the nodes accessible from the term (cons them before nets) 
clasohm@0
   178
  "unif" signifies retrieval for unification rather than matching.
clasohm@0
   179
  Var in net matches any term.
nipkow@225
   180
  Abs or Var in object: if "unif", regarded as wildcard, 
nipkow@225
   181
                                   else matches only a variable in net.
nipkow@225
   182
*)
clasohm@0
   183
fun matching unif t (net,nets) =
clasohm@0
   184
  let fun rands _ (Leaf _, nets) = nets
clasohm@1460
   185
	| rands t (Net{comb,alist,...}, nets) =
clasohm@1460
   186
	    case t of 
clasohm@1460
   187
		f$t => foldr (matching unif t) (rands f (comb,[]), nets)
clasohm@1460
   188
	      | Const(c,_) => look1 (alist, c) nets
clasohm@1460
   189
	      | Free(c,_)  => look1 (alist, c) nets
clasohm@1460
   190
	      | Bound i    => look1 (alist, string_of_bound i) nets
clasohm@1460
   191
	      | _      	   => nets
clasohm@0
   192
  in 
clasohm@0
   193
     case net of
clasohm@1460
   194
	 Leaf _ => nets
clasohm@0
   195
       | Net{var,...} =>
paulson@2836
   196
	     let val etat = Pattern.eta_contract_atom t
paulson@2836
   197
	     in case (head_of etat) of
paulson@2836
   198
		 Var _ => if unif then net_skip (net,nets)
paulson@2836
   199
			  else var::nets	   (*only matches Var in net*)
paulson@2836
   200
  (*If "unif" then a var instantiation in the abstraction could allow
paulson@2836
   201
    an eta-reduction, so regard the abstraction as a wildcard.*)
paulson@2836
   202
	       | Abs _ => if unif then net_skip (net,nets)
paulson@2836
   203
			  else var::nets	   (*only a Var can match*)
paulson@2836
   204
	       | _ => rands etat (net, var::nets)  (*var could match also*)
paulson@2836
   205
	     end
clasohm@0
   206
  end;
clasohm@0
   207
paulson@2672
   208
fun extract_leaves l = List.concat (map (fn Leaf(xs) => xs) l);
clasohm@0
   209
nipkow@225
   210
(*return items whose key could match t, WHICH MUST BE BETA-ETA NORMAL*)
clasohm@0
   211
fun match_term net t = 
clasohm@0
   212
    extract_leaves (matching false t (net,[]));
clasohm@0
   213
clasohm@0
   214
(*return items whose key could unify with t*)
clasohm@0
   215
fun unify_term net t = 
clasohm@0
   216
    extract_leaves (matching true t (net,[]));
clasohm@0
   217
clasohm@0
   218
end;