src/Pure/net.ML
author clasohm
Thu Sep 16 12:20:38 1993 +0200 (1993-09-16)
changeset 0 a5a9c433f639
child 225 76f60e6400e8
permissions -rw-r--r--
Initial revision
clasohm@0
     1
(*  Title: 	net
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Discrimination nets: a data structure for indexing items
clasohm@0
     7
clasohm@0
     8
From the book 
clasohm@0
     9
    E. Charniak, C. K. Riesbeck, D. V. McDermott. 
clasohm@0
    10
    Artificial Intelligence Programming.
clasohm@0
    11
    (Lawrence Erlbaum Associates, 1980).  [Chapter 14]
clasohm@0
    12
*)
clasohm@0
    13
clasohm@0
    14
signature NET = 
clasohm@0
    15
  sig
clasohm@0
    16
  type key
clasohm@0
    17
  type 'a net
clasohm@0
    18
  exception DELETE and INSERT
clasohm@0
    19
  val delete: (key list * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    20
  val delete_term:   (term * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    21
  val empty: 'a net
clasohm@0
    22
  val insert: (key list * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    23
  val insert_term:   (term * 'a) * 'a net * ('a*'a -> bool) -> 'a net
clasohm@0
    24
  val lookup: 'a net * key list -> 'a list
clasohm@0
    25
  val match_term: 'a net -> term -> 'a list
clasohm@0
    26
  val key_of_term: term -> key list
clasohm@0
    27
  val unify_term: 'a net -> term -> 'a list
clasohm@0
    28
  end;
clasohm@0
    29
clasohm@0
    30
clasohm@0
    31
functor NetFun () : NET = 
clasohm@0
    32
struct
clasohm@0
    33
clasohm@0
    34
datatype key = CombK | VarK | AtomK of string;
clasohm@0
    35
clasohm@0
    36
(*Only 'loose' bound variables could arise, since Abs nodes are skipped*)
clasohm@0
    37
fun string_of_bound i = "*B*" ^ chr i;
clasohm@0
    38
clasohm@0
    39
(*Keys are preorder lists of symbols -- constants, Vars, bound vars, ...
clasohm@0
    40
  Any term whose head is a Var is regarded entirely as a Var;
clasohm@0
    41
  abstractions are also regarded as Vars (to cover eta-conversion)
clasohm@0
    42
*)
clasohm@0
    43
fun add_key_of_terms (t, cs) = 
clasohm@0
    44
  let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs))
clasohm@0
    45
	| rands (Const(c,_), cs) = AtomK c :: cs
clasohm@0
    46
	| rands (Free(c,_),  cs) = AtomK c :: cs
clasohm@0
    47
	| rands (Bound i,  cs) = AtomK (string_of_bound i) :: cs
clasohm@0
    48
  in case (head_of t) of
clasohm@0
    49
      Var _       => VarK :: cs
clasohm@0
    50
    | Abs (_,_,t) => VarK :: cs
clasohm@0
    51
    | _ => rands(t,cs)
clasohm@0
    52
  end;
clasohm@0
    53
clasohm@0
    54
(*convert a term to a key -- a list of keys*)
clasohm@0
    55
fun key_of_term t = add_key_of_terms (t, []);
clasohm@0
    56
clasohm@0
    57
clasohm@0
    58
(*Trees indexed by key lists: each arc is labelled by a key.
clasohm@0
    59
  Each node contains a list of items, and arcs to children.
clasohm@0
    60
  Keys in the association list (alist) are stored in ascending order.
clasohm@0
    61
  The empty key addresses the entire net.
clasohm@0
    62
  Lookup functions preserve order in items stored at same level.
clasohm@0
    63
*)
clasohm@0
    64
datatype 'a net = Leaf of 'a list
clasohm@0
    65
		| Net of {comb: 'a net, 
clasohm@0
    66
			  var: 'a net,
clasohm@0
    67
			  alist: (string * 'a net) list};
clasohm@0
    68
clasohm@0
    69
val empty = Leaf[];
clasohm@0
    70
val emptynet = Net{comb=empty, var=empty, alist=[]};
clasohm@0
    71
clasohm@0
    72
clasohm@0
    73
(*** Insertion into a discrimination net ***)
clasohm@0
    74
clasohm@0
    75
exception INSERT;	(*duplicate item in the net*)
clasohm@0
    76
clasohm@0
    77
clasohm@0
    78
(*Adds item x to the list at the node addressed by the keys.
clasohm@0
    79
  Creates node if not already present.
clasohm@0
    80
  eq is the equality test for items. 
clasohm@0
    81
  The empty list of keys generates a Leaf node, others a Net node.
clasohm@0
    82
*)
clasohm@0
    83
fun insert ((keys,x), net, eq) =
clasohm@0
    84
  let fun ins1 ([], Leaf xs) = 
clasohm@0
    85
            if gen_mem eq (x,xs) then  raise INSERT  else Leaf(x::xs)
clasohm@0
    86
        | ins1 (keys, Leaf[]) = ins1 (keys, emptynet)   (*expand empty...*)
clasohm@0
    87
        | ins1 (CombK :: keys, Net{comb,var,alist}) =
clasohm@0
    88
	    Net{comb=ins1(keys,comb), var=var, alist=alist}
clasohm@0
    89
	| ins1 (VarK :: keys, Net{comb,var,alist}) =
clasohm@0
    90
	    Net{comb=comb, var=ins1(keys,var), alist=alist}
clasohm@0
    91
	| ins1 (AtomK a :: keys, Net{comb,var,alist}) =
clasohm@0
    92
	    let fun newpair net = (a, ins1(keys,net)) 
clasohm@0
    93
		fun inslist [] = [newpair empty]
clasohm@0
    94
		  | inslist((b: string, netb) :: alist) =
clasohm@0
    95
		      if a=b then newpair netb :: alist
clasohm@0
    96
		      else if a<b then (*absent, ins1ert in alist*)
clasohm@0
    97
			  newpair empty :: (b,netb) :: alist
clasohm@0
    98
		      else (*a>b*) (b,netb) :: inslist alist
clasohm@0
    99
	    in  Net{comb=comb, var=var, alist= inslist alist}  end
clasohm@0
   100
  in  ins1 (keys,net)  end;
clasohm@0
   101
clasohm@0
   102
fun insert_term ((t,x), net, eq) = insert((key_of_term t, x), net, eq);
clasohm@0
   103
clasohm@0
   104
(*** Deletion from a discrimination net ***)
clasohm@0
   105
clasohm@0
   106
exception DELETE;	(*missing item in the net*)
clasohm@0
   107
clasohm@0
   108
(*Create a new Net node if it would be nonempty*)
clasohm@0
   109
fun newnet {comb=Leaf[], var=Leaf[], alist=[]} = empty
clasohm@0
   110
  | newnet {comb,var,alist} = Net{comb=comb, var=var, alist=alist};
clasohm@0
   111
clasohm@0
   112
(*add new (b,net) pair to the alist provided net is nonempty*)
clasohm@0
   113
fun conspair((b, Leaf[]), alist) = alist
clasohm@0
   114
  | conspair((b, net), alist)    = (b, net) :: alist;
clasohm@0
   115
clasohm@0
   116
(*Deletes item x from the list at the node addressed by the keys.
clasohm@0
   117
  Raises DELETE if absent.  Collapses the net if possible.
clasohm@0
   118
  eq is the equality test for items. *)
clasohm@0
   119
fun delete ((keys, x), net, eq) = 
clasohm@0
   120
  let fun del1 ([], Leaf xs) =
clasohm@0
   121
            if gen_mem eq (x,xs) then Leaf (gen_rem eq (xs,x))
clasohm@0
   122
            else raise DELETE
clasohm@0
   123
	| del1 (keys, Leaf[]) = raise DELETE
clasohm@0
   124
	| del1 (CombK :: keys, Net{comb,var,alist}) =
clasohm@0
   125
	    newnet{comb=del1(keys,comb), var=var, alist=alist}
clasohm@0
   126
	| del1 (VarK :: keys, Net{comb,var,alist}) =
clasohm@0
   127
	    newnet{comb=comb, var=del1(keys,var), alist=alist}
clasohm@0
   128
	| del1 (AtomK a :: keys, Net{comb,var,alist}) =
clasohm@0
   129
	    let fun newpair net = (a, del1(keys,net)) 
clasohm@0
   130
		fun dellist [] = raise DELETE
clasohm@0
   131
		  | dellist((b: string, netb) :: alist) =
clasohm@0
   132
		      if a=b then conspair(newpair netb, alist)
clasohm@0
   133
		      else if a<b then (*absent*) raise DELETE
clasohm@0
   134
		      else (*a>b*)  (b,netb) :: dellist alist
clasohm@0
   135
	    in  newnet{comb=comb, var=var, alist= dellist alist}  end
clasohm@0
   136
  in  del1 (keys,net)  end;
clasohm@0
   137
clasohm@0
   138
fun delete_term ((t,x), net, eq) = delete((key_of_term t, x), net, eq);
clasohm@0
   139
clasohm@0
   140
(*** Retrieval functions for discrimination nets ***)
clasohm@0
   141
clasohm@0
   142
exception OASSOC;
clasohm@0
   143
clasohm@0
   144
(*Ordered association list lookup*)
clasohm@0
   145
fun oassoc ([], a: string) = raise OASSOC
clasohm@0
   146
  | oassoc ((b,x)::pairs, a) =
clasohm@0
   147
      if b<a then oassoc(pairs,a)
clasohm@0
   148
      else if a=b then x
clasohm@0
   149
      else raise OASSOC;
clasohm@0
   150
clasohm@0
   151
(*Return the list of items at the given node, [] if no such node*)
clasohm@0
   152
fun lookup (Leaf(xs), []) = xs
clasohm@0
   153
  | lookup (Leaf _, _::_) = []	(*non-empty keys and empty net*)
clasohm@0
   154
  | lookup (Net{comb,var,alist}, CombK :: keys) = lookup(comb,keys)
clasohm@0
   155
  | lookup (Net{comb,var,alist}, VarK :: keys) = lookup(var,keys)
clasohm@0
   156
  | lookup (Net{comb,var,alist}, AtomK a :: keys) = 
clasohm@0
   157
      lookup(oassoc(alist,a),keys)  handle  OASSOC => [];
clasohm@0
   158
clasohm@0
   159
clasohm@0
   160
(*Skipping a term in a net.  Recursively skip 2 levels if a combination*)
clasohm@0
   161
fun net_skip (Leaf _, nets) = nets
clasohm@0
   162
  | net_skip (Net{comb,var,alist}, nets) = 
clasohm@0
   163
    foldr net_skip 
clasohm@0
   164
          (net_skip (comb,[]), 
clasohm@0
   165
	   foldr (fn ((_,net), nets) => net::nets) (alist, var::nets));
clasohm@0
   166
clasohm@0
   167
(** Matching and Unification**)
clasohm@0
   168
clasohm@0
   169
(*conses the linked net, if present, to nets*)
clasohm@0
   170
fun look1 (alist, a) nets =
clasohm@0
   171
       oassoc(alist,a) :: nets  handle  OASSOC => nets;
clasohm@0
   172
clasohm@0
   173
(*Return the nodes accessible from the term (cons them before nets) 
clasohm@0
   174
  "unif" signifies retrieval for unification rather than matching.
clasohm@0
   175
  Var in net matches any term.
clasohm@0
   176
  Abs in object (and Var if "unif") regarded as wildcard.
clasohm@0
   177
  If not "unif", Var in object only matches a variable in net.*)
clasohm@0
   178
fun matching unif t (net,nets) =
clasohm@0
   179
  let fun rands _ (Leaf _, nets) = nets
clasohm@0
   180
	| rands t (Net{comb,alist,...}, nets) =
clasohm@0
   181
	    case t of 
clasohm@0
   182
		(f$t) => foldr (matching unif t) (rands f (comb,[]), nets)
clasohm@0
   183
	      | (Const(c,_)) => look1 (alist, c) nets
clasohm@0
   184
	      | (Free(c,_))  => look1 (alist, c) nets
clasohm@0
   185
	      | (Bound i)    => look1 (alist, string_of_bound i) nets
clasohm@0
   186
  in 
clasohm@0
   187
     case net of
clasohm@0
   188
	 Leaf _ => nets
clasohm@0
   189
       | Net{var,...} =>
clasohm@0
   190
	   case (head_of t) of
clasohm@0
   191
	       Var _      => if unif then net_skip (net,nets)
clasohm@0
   192
			     else var::nets	   (*only matches Var in net*)
clasohm@0
   193
	     | Abs(_,_,u) => net_skip (net,nets)   (*could match anything*)
clasohm@0
   194
	     | _ => rands t (net, var::nets)	   (*var could match also*)
clasohm@0
   195
  end;
clasohm@0
   196
clasohm@0
   197
val extract_leaves = flat o map (fn Leaf(xs) => xs);
clasohm@0
   198
clasohm@0
   199
(*return items whose key could match t*)
clasohm@0
   200
fun match_term net t = 
clasohm@0
   201
    extract_leaves (matching false t (net,[]));
clasohm@0
   202
clasohm@0
   203
(*return items whose key could unify with t*)
clasohm@0
   204
fun unify_term net t = 
clasohm@0
   205
    extract_leaves (matching true t (net,[]));
clasohm@0
   206
clasohm@0
   207
end;