31974
|
1 |
(* Title: FOL/ex/Prolog.thy
|
1473
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
0
|
3 |
Copyright 1992 University of Cambridge
|
|
4 |
*)
|
|
5 |
|
17245
|
6 |
header {* First-Order Logic: PROLOG examples *}
|
|
7 |
|
|
8 |
theory Prolog
|
|
9 |
imports FOL
|
|
10 |
begin
|
|
11 |
|
|
12 |
typedecl 'a list
|
|
13 |
arities list :: ("term") "term"
|
|
14 |
consts
|
|
15 |
Nil :: "'a list"
|
|
16 |
Cons :: "['a, 'a list]=> 'a list" (infixr ":" 60)
|
|
17 |
app :: "['a list, 'a list, 'a list] => o"
|
|
18 |
rev :: "['a list, 'a list] => o"
|
|
19 |
axioms
|
|
20 |
appNil: "app(Nil,ys,ys)"
|
|
21 |
appCons: "app(xs,ys,zs) ==> app(x:xs, ys, x:zs)"
|
|
22 |
revNil: "rev(Nil,Nil)"
|
|
23 |
revCons: "[| rev(xs,ys); app(ys, x:Nil, zs) |] ==> rev(x:xs, zs)"
|
|
24 |
|
36319
|
25 |
schematic_lemma "app(a:b:c:Nil, d:e:Nil, ?x)"
|
19819
|
26 |
apply (rule appNil appCons)
|
|
27 |
apply (rule appNil appCons)
|
|
28 |
apply (rule appNil appCons)
|
|
29 |
apply (rule appNil appCons)
|
|
30 |
done
|
|
31 |
|
36319
|
32 |
schematic_lemma "app(?x, c:d:Nil, a:b:c:d:Nil)"
|
19819
|
33 |
apply (rule appNil appCons)+
|
|
34 |
done
|
|
35 |
|
36319
|
36 |
schematic_lemma "app(?x, ?y, a:b:c:d:Nil)"
|
19819
|
37 |
apply (rule appNil appCons)+
|
|
38 |
back
|
|
39 |
back
|
|
40 |
back
|
|
41 |
back
|
|
42 |
done
|
|
43 |
|
|
44 |
(*app([x1,...,xn], y, ?z) requires (n+1) inferences*)
|
|
45 |
(*rev([x1,...,xn], ?y) requires (n+1)(n+2)/2 inferences*)
|
|
46 |
|
|
47 |
lemmas rules = appNil appCons revNil revCons
|
|
48 |
|
36319
|
49 |
schematic_lemma "rev(a:b:c:d:Nil, ?x)"
|
19819
|
50 |
apply (rule rules)+
|
|
51 |
done
|
|
52 |
|
36319
|
53 |
schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)"
|
19819
|
54 |
apply (rule rules)+
|
|
55 |
done
|
|
56 |
|
36319
|
57 |
schematic_lemma "rev(?x, a:b:c:Nil)"
|
19819
|
58 |
apply (rule rules)+ -- {* does not solve it directly! *}
|
|
59 |
back
|
|
60 |
back
|
|
61 |
done
|
|
62 |
|
|
63 |
(*backtracking version*)
|
|
64 |
ML {*
|
26287
|
65 |
val prolog_tac = DEPTH_FIRST (has_fewer_prems 1) (resolve_tac (@{thms rules}) 1)
|
19819
|
66 |
*}
|
|
67 |
|
36319
|
68 |
schematic_lemma "rev(?x, a:b:c:Nil)"
|
19819
|
69 |
apply (tactic prolog_tac)
|
|
70 |
done
|
|
71 |
|
36319
|
72 |
schematic_lemma "rev(a:?x:c:?y:Nil, d:?z:b:?u)"
|
19819
|
73 |
apply (tactic prolog_tac)
|
|
74 |
done
|
|
75 |
|
|
76 |
(*rev([a..p], ?w) requires 153 inferences *)
|
36319
|
77 |
schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil, ?w)"
|
26287
|
78 |
apply (tactic {* DEPTH_SOLVE (resolve_tac ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1) *})
|
19819
|
79 |
done
|
|
80 |
|
|
81 |
(*?x has 16, ?y has 32; rev(?y,?w) requires 561 (rather large) inferences
|
|
82 |
total inferences = 2 + 1 + 17 + 561 = 581*)
|
36319
|
83 |
schematic_lemma "a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil = ?x & app(?x,?x,?y) & rev(?y,?w)"
|
26287
|
84 |
apply (tactic {* DEPTH_SOLVE (resolve_tac ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1) *})
|
19819
|
85 |
done
|
17245
|
86 |
|
0
|
87 |
end
|