src/HOL/Hoare/Hoare_Logic_Abort.thy
author wenzelm
Wed, 04 May 2011 15:37:39 +0200
changeset 42676 8724f20bf69c
parent 42174 d0be2722ce9f
child 44890 22f665a2e91c
permissions -rw-r--r--
proper case_names for int_cases, int_of_nat_induct; tuned some proofs, eliminating (cases, auto) anti-pattern;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
41959
b460124855b8 tuned headers;
wenzelm
parents: 37591
diff changeset
     1
(*  Title:      HOL/Hoare/Hoare_Logic_Abort.thy
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
     2
    Author:     Leonor Prensa Nieto & Tobias Nipkow
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
     3
    Copyright   2003 TUM
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
     4
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
     5
Like Hoare.thy, but with an Abort statement for modelling run time errors.
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
     6
*)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
     7
35320
f80aee1ed475 dropped axclass; dropped Id; session theory Hoare.thy
haftmann
parents: 35113
diff changeset
     8
theory Hoare_Logic_Abort
28457
25669513fd4c major cleanup of hoare_tac.ML: just one copy for Hoare.thy and HoareAbort.thy (only 1 line different), refrain from inspecting the main goal, proper context;
wenzelm
parents: 27330
diff changeset
     9
imports Main
42153
fa108629d132 use shared copy of hoare_syntax.ML;
wenzelm
parents: 42152
diff changeset
    10
uses ("hoare_syntax.ML") ("hoare_tac.ML")
24470
41c81e23c08d removed Hoare/hoare.ML, Hoare/hoareAbort.ML, ex/svc_oracle.ML (which can be mistaken as attached ML script on case-insensitive file-system);
wenzelm
parents: 21588
diff changeset
    11
begin
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    12
42174
d0be2722ce9f modernized specifications;
wenzelm
parents: 42153
diff changeset
    13
type_synonym 'a bexp = "'a set"
d0be2722ce9f modernized specifications;
wenzelm
parents: 42153
diff changeset
    14
type_synonym 'a assn = "'a set"
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    15
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    16
datatype
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    17
 'a com = Basic "'a \<Rightarrow> 'a"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    18
   | Abort
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    19
   | Seq "'a com" "'a com"               ("(_;/ _)"      [61,60] 60)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    20
   | Cond "'a bexp" "'a com" "'a com"    ("(1IF _/ THEN _ / ELSE _/ FI)"  [0,0,0] 61)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    21
   | While "'a bexp" "'a assn" "'a com"  ("(1WHILE _/ INV {_} //DO _ /OD)"  [0,0,0] 61)
35113
1a0c129bb2e0 modernized translations;
wenzelm
parents: 35101
diff changeset
    22
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 34940
diff changeset
    23
abbreviation annskip ("SKIP") where "SKIP == Basic id"
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    24
42174
d0be2722ce9f modernized specifications;
wenzelm
parents: 42153
diff changeset
    25
type_synonym 'a sem = "'a option => 'a option => bool"
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    26
36643
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    27
inductive Sem :: "'a com \<Rightarrow> 'a sem"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    28
where
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    29
  "Sem (Basic f) None None"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    30
| "Sem (Basic f) (Some s) (Some (f s))"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    31
| "Sem Abort s None"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    32
| "Sem c1 s s'' \<Longrightarrow> Sem c2 s'' s' \<Longrightarrow> Sem (c1;c2) s s'"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    33
| "Sem (IF b THEN c1 ELSE c2 FI) None None"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    34
| "s \<in> b \<Longrightarrow> Sem c1 (Some s) s' \<Longrightarrow> Sem (IF b THEN c1 ELSE c2 FI) (Some s) s'"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    35
| "s \<notin> b \<Longrightarrow> Sem c2 (Some s) s' \<Longrightarrow> Sem (IF b THEN c1 ELSE c2 FI) (Some s) s'"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    36
| "Sem (While b x c) None None"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    37
| "s \<notin> b \<Longrightarrow> Sem (While b x c) (Some s) (Some s)"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    38
| "s \<in> b \<Longrightarrow> Sem c (Some s) s'' \<Longrightarrow> Sem (While b x c) s'' s' \<Longrightarrow>
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    39
   Sem (While b x c) (Some s) s'"
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    40
36643
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    41
inductive_cases [elim!]:
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    42
  "Sem (Basic f) s s'" "Sem (c1;c2) s s'"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    43
  "Sem (IF b THEN c1 ELSE c2 FI) s s'"
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    44
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35320
diff changeset
    45
definition Valid :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a bexp \<Rightarrow> bool" where
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    46
  "Valid p c q == \<forall>s s'. Sem c s s' \<longrightarrow> s : Some ` p \<longrightarrow> s' : Some ` q"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    47
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    48
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 34940
diff changeset
    49
syntax
42152
6c17259724b2 Hoare syntax: standard abstraction syntax admits source positions;
wenzelm
parents: 42054
diff changeset
    50
  "_assign" :: "idt => 'b => 'a com"  ("(2_ :=/ _)" [70, 65] 61)
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 34940
diff changeset
    51
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 34940
diff changeset
    52
syntax
35320
f80aee1ed475 dropped axclass; dropped Id; session theory Hoare.thy
haftmann
parents: 35113
diff changeset
    53
  "_hoare_abort_vars" :: "[idts, 'a assn,'a com,'a assn] => bool"
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 34940
diff changeset
    54
                 ("VARS _// {_} // _ // {_}" [0,0,55,0] 50)
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 34940
diff changeset
    55
syntax ("" output)
35320
f80aee1ed475 dropped axclass; dropped Id; session theory Hoare.thy
haftmann
parents: 35113
diff changeset
    56
  "_hoare_abort"      :: "['a assn,'a com,'a assn] => bool"
35054
a5db9779b026 modernized some syntax translations;
wenzelm
parents: 34940
diff changeset
    57
                 ("{_} // _ // {_}" [0,55,0] 50)
42152
6c17259724b2 Hoare syntax: standard abstraction syntax admits source positions;
wenzelm
parents: 42054
diff changeset
    58
42153
fa108629d132 use shared copy of hoare_syntax.ML;
wenzelm
parents: 42152
diff changeset
    59
use "hoare_syntax.ML"
fa108629d132 use shared copy of hoare_syntax.ML;
wenzelm
parents: 42152
diff changeset
    60
parse_translation {* [(@{syntax_const "_hoare_abort_vars"}, Hoare_Syntax.hoare_vars_tr)] *}
fa108629d132 use shared copy of hoare_syntax.ML;
wenzelm
parents: 42152
diff changeset
    61
print_translation
fa108629d132 use shared copy of hoare_syntax.ML;
wenzelm
parents: 42152
diff changeset
    62
  {* [(@{const_syntax Valid}, Hoare_Syntax.spec_tr' @{syntax_const "_hoare_abort"})] *}
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    63
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    64
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    65
(*** The proof rules ***)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    66
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    67
lemma SkipRule: "p \<subseteq> q \<Longrightarrow> Valid p (Basic id) q"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    68
by (auto simp:Valid_def)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    69
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    70
lemma BasicRule: "p \<subseteq> {s. f s \<in> q} \<Longrightarrow> Valid p (Basic f) q"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    71
by (auto simp:Valid_def)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    72
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    73
lemma SeqRule: "Valid P c1 Q \<Longrightarrow> Valid Q c2 R \<Longrightarrow> Valid P (c1;c2) R"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    74
by (auto simp:Valid_def)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    75
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    76
lemma CondRule:
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    77
 "p \<subseteq> {s. (s \<in> b \<longrightarrow> s \<in> w) \<and> (s \<notin> b \<longrightarrow> s \<in> w')}
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    78
  \<Longrightarrow> Valid w c1 q \<Longrightarrow> Valid w' c2 q \<Longrightarrow> Valid p (Cond b c1 c2) q"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    79
by (fastsimp simp:Valid_def image_def)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    80
36643
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    81
lemma While_aux:
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    82
  assumes "Sem (WHILE b INV {i} DO c OD) s s'"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    83
  shows "\<forall>s s'. Sem c s s' \<longrightarrow> s \<in> Some ` (I \<inter> b) \<longrightarrow> s' \<in> Some ` I \<Longrightarrow>
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    84
    s \<in> Some ` I \<Longrightarrow> s' \<in> Some ` (I \<inter> -b)"
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    85
  using assms
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    86
  by (induct "WHILE b INV {i} DO c OD" s s') auto
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    87
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    88
lemma WhileRule:
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    89
 "p \<subseteq> i \<Longrightarrow> Valid (i \<inter> b) c i \<Longrightarrow> i \<inter> (-b) \<subseteq> q \<Longrightarrow> Valid p (While b i c) q"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    90
apply(simp add:Valid_def)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    91
apply(simp (no_asm) add:image_def)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    92
apply clarify
36643
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    93
apply(drule While_aux)
f36588af1ba1 Turned Sem into an inductive definition.
berghofe
parents: 35417
diff changeset
    94
  apply assumption
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    95
 apply blast
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    96
apply blast
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    97
done
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    98
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
    99
lemma AbortRule: "p \<subseteq> {s. False} \<Longrightarrow> Valid p Abort q"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   100
by(auto simp:Valid_def)
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   101
24470
41c81e23c08d removed Hoare/hoare.ML, Hoare/hoareAbort.ML, ex/svc_oracle.ML (which can be mistaken as attached ML script on case-insensitive file-system);
wenzelm
parents: 21588
diff changeset
   102
41c81e23c08d removed Hoare/hoare.ML, Hoare/hoareAbort.ML, ex/svc_oracle.ML (which can be mistaken as attached ML script on case-insensitive file-system);
wenzelm
parents: 21588
diff changeset
   103
subsection {* Derivation of the proof rules and, most importantly, the VCG tactic *}
41c81e23c08d removed Hoare/hoare.ML, Hoare/hoareAbort.ML, ex/svc_oracle.ML (which can be mistaken as attached ML script on case-insensitive file-system);
wenzelm
parents: 21588
diff changeset
   104
41c81e23c08d removed Hoare/hoare.ML, Hoare/hoareAbort.ML, ex/svc_oracle.ML (which can be mistaken as attached ML script on case-insensitive file-system);
wenzelm
parents: 21588
diff changeset
   105
lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}"
41c81e23c08d removed Hoare/hoare.ML, Hoare/hoareAbort.ML, ex/svc_oracle.ML (which can be mistaken as attached ML script on case-insensitive file-system);
wenzelm
parents: 21588
diff changeset
   106
  by blast
41c81e23c08d removed Hoare/hoare.ML, Hoare/hoareAbort.ML, ex/svc_oracle.ML (which can be mistaken as attached ML script on case-insensitive file-system);
wenzelm
parents: 21588
diff changeset
   107
28457
25669513fd4c major cleanup of hoare_tac.ML: just one copy for Hoare.thy and HoareAbort.thy (only 1 line different), refrain from inspecting the main goal, proper context;
wenzelm
parents: 27330
diff changeset
   108
use "hoare_tac.ML"
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   109
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   110
method_setup vcg = {*
30549
d2d7874648bd simplified method setup;
wenzelm
parents: 30510
diff changeset
   111
  Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *}
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   112
  "verification condition generator"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   113
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   114
method_setup vcg_simp = {*
30549
d2d7874648bd simplified method setup;
wenzelm
parents: 30510
diff changeset
   115
  Scan.succeed (fn ctxt =>
32149
ef59550a55d3 renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents: 32134
diff changeset
   116
    SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (simpset_of ctxt)))) *}
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   117
  "verification condition generator plus simplification"
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   118
13875
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   119
(* Special syntax for guarded statements and guarded array updates: *)
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   120
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   121
syntax
35352
fa051b504c3f observe standard convention for syntax consts;
wenzelm
parents: 35320
diff changeset
   122
  "_guarded_com" :: "bool \<Rightarrow> 'a com \<Rightarrow> 'a com"  ("(2_ \<rightarrow>/ _)" 71)
fa051b504c3f observe standard convention for syntax consts;
wenzelm
parents: 35320
diff changeset
   123
  "_array_update" :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a com"  ("(2_[_] :=/ _)" [70, 65] 61)
13875
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   124
translations
35101
6ce9177d6b38 modernized translations;
wenzelm
parents: 35054
diff changeset
   125
  "P \<rightarrow> c" == "IF P THEN c ELSE CONST Abort FI"
34940
3e80eab831a1 explicit CONST in translations
haftmann
parents: 32149
diff changeset
   126
  "a[i] := v" => "(i < CONST length a) \<rightarrow> (a := CONST list_update a i v)"
13875
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   127
  (* reverse translation not possible because of duplicate "a" *)
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   128
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   129
text{* Note: there is no special syntax for guarded array access. Thus
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   130
you must write @{text"j < length a \<rightarrow> a[i] := a!j"}. *}
12997e3ddd8d *** empty log message ***
nipkow
parents: 13857
diff changeset
   131
13857
11d7c5a8dbb7 *** empty log message ***
nipkow
parents:
diff changeset
   132
end