| author | boehmes | 
| Wed, 24 Nov 2010 10:39:58 +0100 | |
| changeset 40681 | 872b08416fb4 | 
| parent 37293 | 2c9ed7478e6e | 
| child 41541 | 1fa4725c4656 | 
| permissions | -rw-r--r-- | 
| 31719 | 1 | (* Title: HOL/Library/Cong.thy | 
| 2 | ID: | |
| 3 | Authors: Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb, | |
| 4 | Thomas M. Rasmussen, Jeremy Avigad | |
| 5 | ||
| 6 | ||
| 7 | Defines congruence (notation: [x = y] (mod z)) for natural numbers and | |
| 8 | integers. | |
| 9 | ||
| 10 | This file combines and revises a number of prior developments. | |
| 11 | ||
| 12 | The original theories "GCD" and "Primes" were by Christophe Tabacznyj | |
| 13 | and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
 | |
| 14 | gcd, lcm, and prime for the natural numbers. | |
| 15 | ||
| 16 | The original theory "IntPrimes" was by Thomas M. Rasmussen, and | |
| 17 | extended gcd, lcm, primes to the integers. Amine Chaieb provided | |
| 18 | another extension of the notions to the integers, and added a number | |
| 19 | of results to "Primes" and "GCD". | |
| 20 | ||
| 21 | The original theory, "IntPrimes", by Thomas M. Rasmussen, defined and | |
| 22 | developed the congruence relations on the integers. The notion was | |
| 33718 | 23 | extended to the natural numbers by Chaieb. Jeremy Avigad combined | 
| 31719 | 24 | these, revised and tidied them, made the development uniform for the | 
| 25 | natural numbers and the integers, and added a number of new theorems. | |
| 26 | ||
| 27 | *) | |
| 28 | ||
| 29 | ||
| 30 | header {* Congruence *}
 | |
| 31 | ||
| 32 | theory Cong | |
| 37293 | 33 | imports Primes | 
| 31719 | 34 | begin | 
| 35 | ||
| 36 | subsection {* Turn off One_nat_def *}
 | |
| 37 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 38 | lemma induct'_nat [case_names zero plus1, induct type: nat]: | 
| 31719 | 39 | "\<lbrakk> P (0::nat); !!n. P n \<Longrightarrow> P (n + 1)\<rbrakk> \<Longrightarrow> P n" | 
| 40 | by (erule nat_induct) (simp add:One_nat_def) | |
| 41 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 42 | lemma cases_nat [case_names zero plus1, cases type: nat]: | 
| 31719 | 43 | "P (0::nat) \<Longrightarrow> (!!n. P (n + 1)) \<Longrightarrow> P n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 44 | by(metis induct'_nat) | 
| 31719 | 45 | |
| 46 | lemma power_plus_one [simp]: "(x::'a::power)^(n + 1) = x * x^n" | |
| 47 | by (simp add: One_nat_def) | |
| 48 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 49 | lemma power_eq_one_eq_nat [simp]: | 
| 31719 | 50 | "((x::nat)^m = 1) = (m = 0 | x = 1)" | 
| 51 | by (induct m, auto) | |
| 52 | ||
| 53 | lemma card_insert_if' [simp]: "finite A \<Longrightarrow> | |
| 54 | card (insert x A) = (if x \<in> A then (card A) else (card A) + 1)" | |
| 55 | by (auto simp add: insert_absorb) | |
| 56 | ||
| 57 | (* why wasn't card_insert_if a simp rule? *) | |
| 58 | declare card_insert_disjoint [simp del] | |
| 59 | ||
| 60 | lemma nat_1' [simp]: "nat 1 = 1" | |
| 61 | by simp | |
| 62 | ||
| 31792 | 63 | (* For those annoying moments where Suc reappears, use Suc_eq_plus1 *) | 
| 31719 | 64 | |
| 65 | declare nat_1 [simp del] | |
| 66 | declare add_2_eq_Suc [simp del] | |
| 67 | declare add_2_eq_Suc' [simp del] | |
| 68 | ||
| 69 | ||
| 70 | declare mod_pos_pos_trivial [simp] | |
| 71 | ||
| 72 | ||
| 73 | subsection {* Main definitions *}
 | |
| 74 | ||
| 75 | class cong = | |
| 76 | ||
| 77 | fixes | |
| 78 |   cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ = _] '(mod _'))")
 | |
| 79 | ||
| 80 | begin | |
| 81 | ||
| 82 | abbreviation | |
| 83 |   notcong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ \<noteq> _] '(mod _'))")
 | |
| 84 | where | |
| 85 | "notcong x y m == (~cong x y m)" | |
| 86 | ||
| 87 | end | |
| 88 | ||
| 89 | (* definitions for the natural numbers *) | |
| 90 | ||
| 91 | instantiation nat :: cong | |
| 92 | ||
| 93 | begin | |
| 94 | ||
| 95 | definition | |
| 96 | cong_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" | |
| 97 | where | |
| 98 | "cong_nat x y m = ((x mod m) = (y mod m))" | |
| 99 | ||
| 100 | instance proof qed | |
| 101 | ||
| 102 | end | |
| 103 | ||
| 104 | ||
| 105 | (* definitions for the integers *) | |
| 106 | ||
| 107 | instantiation int :: cong | |
| 108 | ||
| 109 | begin | |
| 110 | ||
| 111 | definition | |
| 112 | cong_int :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool" | |
| 113 | where | |
| 114 | "cong_int x y m = ((x mod m) = (y mod m))" | |
| 115 | ||
| 116 | instance proof qed | |
| 117 | ||
| 118 | end | |
| 119 | ||
| 120 | ||
| 121 | subsection {* Set up Transfer *}
 | |
| 122 | ||
| 123 | ||
| 124 | lemma transfer_nat_int_cong: | |
| 125 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> m >= 0 \<Longrightarrow> | |
| 126 | ([(nat x) = (nat y)] (mod (nat m))) = ([x = y] (mod m))" | |
| 127 | unfolding cong_int_def cong_nat_def | |
| 128 | apply (auto simp add: nat_mod_distrib [symmetric]) | |
| 129 | apply (subst (asm) eq_nat_nat_iff) | |
| 130 | apply (case_tac "m = 0", force, rule pos_mod_sign, force)+ | |
| 131 | apply assumption | |
| 132 | done | |
| 133 | ||
| 35644 | 134 | declare transfer_morphism_nat_int[transfer add return: | 
| 31719 | 135 | transfer_nat_int_cong] | 
| 136 | ||
| 137 | lemma transfer_int_nat_cong: | |
| 138 | "[(int x) = (int y)] (mod (int m)) = [x = y] (mod m)" | |
| 139 | apply (auto simp add: cong_int_def cong_nat_def) | |
| 140 | apply (auto simp add: zmod_int [symmetric]) | |
| 141 | done | |
| 142 | ||
| 35644 | 143 | declare transfer_morphism_int_nat[transfer add return: | 
| 31719 | 144 | transfer_int_nat_cong] | 
| 145 | ||
| 146 | ||
| 147 | subsection {* Congruence *}
 | |
| 148 | ||
| 149 | (* was zcong_0, etc. *) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 150 | lemma cong_0_nat [simp, presburger]: "([(a::nat) = b] (mod 0)) = (a = b)" | 
| 31719 | 151 | by (unfold cong_nat_def, auto) | 
| 152 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 153 | lemma cong_0_int [simp, presburger]: "([(a::int) = b] (mod 0)) = (a = b)" | 
| 31719 | 154 | by (unfold cong_int_def, auto) | 
| 155 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 156 | lemma cong_1_nat [simp, presburger]: "[(a::nat) = b] (mod 1)" | 
| 31719 | 157 | by (unfold cong_nat_def, auto) | 
| 158 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 159 | lemma cong_Suc_0_nat [simp, presburger]: "[(a::nat) = b] (mod Suc 0)" | 
| 31719 | 160 | by (unfold cong_nat_def, auto simp add: One_nat_def) | 
| 161 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 162 | lemma cong_1_int [simp, presburger]: "[(a::int) = b] (mod 1)" | 
| 31719 | 163 | by (unfold cong_int_def, auto) | 
| 164 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 165 | lemma cong_refl_nat [simp]: "[(k::nat) = k] (mod m)" | 
| 31719 | 166 | by (unfold cong_nat_def, auto) | 
| 167 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 168 | lemma cong_refl_int [simp]: "[(k::int) = k] (mod m)" | 
| 31719 | 169 | by (unfold cong_int_def, auto) | 
| 170 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 171 | lemma cong_sym_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> [b = a] (mod m)" | 
| 31719 | 172 | by (unfold cong_nat_def, auto) | 
| 173 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 174 | lemma cong_sym_int: "[(a::int) = b] (mod m) \<Longrightarrow> [b = a] (mod m)" | 
| 31719 | 175 | by (unfold cong_int_def, auto) | 
| 176 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 177 | lemma cong_sym_eq_nat: "[(a::nat) = b] (mod m) = [b = a] (mod m)" | 
| 31719 | 178 | by (unfold cong_nat_def, auto) | 
| 179 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 180 | lemma cong_sym_eq_int: "[(a::int) = b] (mod m) = [b = a] (mod m)" | 
| 31719 | 181 | by (unfold cong_int_def, auto) | 
| 182 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 183 | lemma cong_trans_nat [trans]: | 
| 31719 | 184 | "[(a::nat) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)" | 
| 185 | by (unfold cong_nat_def, auto) | |
| 186 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 187 | lemma cong_trans_int [trans]: | 
| 31719 | 188 | "[(a::int) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)" | 
| 189 | by (unfold cong_int_def, auto) | |
| 190 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 191 | lemma cong_add_nat: | 
| 31719 | 192 | "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)" | 
| 193 | apply (unfold cong_nat_def) | |
| 194 | apply (subst (1 2) mod_add_eq) | |
| 195 | apply simp | |
| 196 | done | |
| 197 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 198 | lemma cong_add_int: | 
| 31719 | 199 | "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)" | 
| 200 | apply (unfold cong_int_def) | |
| 201 | apply (subst (1 2) mod_add_left_eq) | |
| 202 | apply (subst (1 2) mod_add_right_eq) | |
| 203 | apply simp | |
| 204 | done | |
| 205 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 206 | lemma cong_diff_int: | 
| 31719 | 207 | "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a - c = b - d] (mod m)" | 
| 208 | apply (unfold cong_int_def) | |
| 209 | apply (subst (1 2) mod_diff_eq) | |
| 210 | apply simp | |
| 211 | done | |
| 212 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 213 | lemma cong_diff_aux_int: | 
| 31719 | 214 | "(a::int) >= c \<Longrightarrow> b >= d \<Longrightarrow> [(a::int) = b] (mod m) \<Longrightarrow> | 
| 215 | [c = d] (mod m) \<Longrightarrow> [tsub a c = tsub b d] (mod m)" | |
| 216 | apply (subst (1 2) tsub_eq) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 217 | apply (auto intro: cong_diff_int) | 
| 31719 | 218 | done; | 
| 219 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 220 | lemma cong_diff_nat: | 
| 31719 | 221 | assumes "(a::nat) >= c" and "b >= d" and "[a = b] (mod m)" and | 
| 222 | "[c = d] (mod m)" | |
| 223 | shows "[a - c = b - d] (mod m)" | |
| 224 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 225 | using prems by (rule cong_diff_aux_int [transferred]); | 
| 31719 | 226 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 227 | lemma cong_mult_nat: | 
| 31719 | 228 | "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)" | 
| 229 | apply (unfold cong_nat_def) | |
| 230 | apply (subst (1 2) mod_mult_eq) | |
| 231 | apply simp | |
| 232 | done | |
| 233 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 234 | lemma cong_mult_int: | 
| 31719 | 235 | "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)" | 
| 236 | apply (unfold cong_int_def) | |
| 237 | apply (subst (1 2) zmod_zmult1_eq) | |
| 238 | apply (subst (1 2) mult_commute) | |
| 239 | apply (subst (1 2) zmod_zmult1_eq) | |
| 240 | apply simp | |
| 241 | done | |
| 242 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 243 | lemma cong_exp_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)" | 
| 31719 | 244 | apply (induct k) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 245 | apply (auto simp add: cong_refl_nat cong_mult_nat) | 
| 31719 | 246 | done | 
| 247 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 248 | lemma cong_exp_int: "[(x::int) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)" | 
| 31719 | 249 | apply (induct k) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 250 | apply (auto simp add: cong_refl_int cong_mult_int) | 
| 31719 | 251 | done | 
| 252 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 253 | lemma cong_setsum_nat [rule_format]: | 
| 31719 | 254 | "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> | 
| 255 | [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)" | |
| 256 | apply (case_tac "finite A") | |
| 257 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 258 | apply (auto intro: cong_add_nat) | 
| 31719 | 259 | done | 
| 260 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 261 | lemma cong_setsum_int [rule_format]: | 
| 31719 | 262 | "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> | 
| 263 | [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)" | |
| 264 | apply (case_tac "finite A") | |
| 265 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 266 | apply (auto intro: cong_add_int) | 
| 31719 | 267 | done | 
| 268 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 269 | lemma cong_setprod_nat [rule_format]: | 
| 31719 | 270 | "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> | 
| 271 | [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)" | |
| 272 | apply (case_tac "finite A") | |
| 273 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 274 | apply (auto intro: cong_mult_nat) | 
| 31719 | 275 | done | 
| 276 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 277 | lemma cong_setprod_int [rule_format]: | 
| 31719 | 278 | "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> | 
| 279 | [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)" | |
| 280 | apply (case_tac "finite A") | |
| 281 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 282 | apply (auto intro: cong_mult_int) | 
| 31719 | 283 | done | 
| 284 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 285 | lemma cong_scalar_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 286 | by (rule cong_mult_nat, simp_all) | 
| 31719 | 287 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 288 | lemma cong_scalar_int: "[(a::int)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 289 | by (rule cong_mult_int, simp_all) | 
| 31719 | 290 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 291 | lemma cong_scalar2_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 292 | by (rule cong_mult_nat, simp_all) | 
| 31719 | 293 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 294 | lemma cong_scalar2_int: "[(a::int)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 295 | by (rule cong_mult_int, simp_all) | 
| 31719 | 296 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 297 | lemma cong_mult_self_nat: "[(a::nat) * m = 0] (mod m)" | 
| 31719 | 298 | by (unfold cong_nat_def, auto) | 
| 299 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 300 | lemma cong_mult_self_int: "[(a::int) * m = 0] (mod m)" | 
| 31719 | 301 | by (unfold cong_int_def, auto) | 
| 302 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 303 | lemma cong_eq_diff_cong_0_int: "[(a::int) = b] (mod m) = [a - b = 0] (mod m)" | 
| 31719 | 304 | apply (rule iffI) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 305 | apply (erule cong_diff_int [of a b m b b, simplified]) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 306 | apply (erule cong_add_int [of "a - b" 0 m b b, simplified]) | 
| 31719 | 307 | done | 
| 308 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 309 | lemma cong_eq_diff_cong_0_aux_int: "a >= b \<Longrightarrow> | 
| 31719 | 310 | [(a::int) = b] (mod m) = [tsub a b = 0] (mod m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 311 | by (subst tsub_eq, assumption, rule cong_eq_diff_cong_0_int) | 
| 31719 | 312 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 313 | lemma cong_eq_diff_cong_0_nat: | 
| 31719 | 314 | assumes "(a::nat) >= b" | 
| 315 | shows "[a = b] (mod m) = [a - b = 0] (mod m)" | |
| 316 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 317 | using prems by (rule cong_eq_diff_cong_0_aux_int [transferred]) | 
| 31719 | 318 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 319 | lemma cong_diff_cong_0'_nat: | 
| 31719 | 320 | "[(x::nat) = y] (mod n) \<longleftrightarrow> | 
| 321 | (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))" | |
| 322 | apply (case_tac "y <= x") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 323 | apply (frule cong_eq_diff_cong_0_nat [where m = n]) | 
| 31719 | 324 | apply auto [1] | 
| 325 | apply (subgoal_tac "x <= y") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 326 | apply (frule cong_eq_diff_cong_0_nat [where m = n]) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 327 | apply (subst cong_sym_eq_nat) | 
| 31719 | 328 | apply auto | 
| 329 | done | |
| 330 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 331 | lemma cong_altdef_nat: "(a::nat) >= b \<Longrightarrow> [a = b] (mod m) = (m dvd (a - b))" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 332 | apply (subst cong_eq_diff_cong_0_nat, assumption) | 
| 31719 | 333 | apply (unfold cong_nat_def) | 
| 334 | apply (simp add: dvd_eq_mod_eq_0 [symmetric]) | |
| 335 | done | |
| 336 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 337 | lemma cong_altdef_int: "[(a::int) = b] (mod m) = (m dvd (a - b))" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 338 | apply (subst cong_eq_diff_cong_0_int) | 
| 31719 | 339 | apply (unfold cong_int_def) | 
| 340 | apply (simp add: dvd_eq_mod_eq_0 [symmetric]) | |
| 341 | done | |
| 342 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 343 | lemma cong_abs_int: "[(x::int) = y] (mod abs m) = [x = y] (mod m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 344 | by (simp add: cong_altdef_int) | 
| 31719 | 345 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 346 | lemma cong_square_int: | 
| 31719 | 347 | "\<lbrakk> prime (p::int); 0 < a; [a * a = 1] (mod p) \<rbrakk> | 
| 348 | \<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 349 | apply (simp only: cong_altdef_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 350 | apply (subst prime_dvd_mult_eq_int [symmetric], assumption) | 
| 31719 | 351 | (* any way around this? *) | 
| 352 | apply (subgoal_tac "a * a - 1 = (a - 1) * (a - -1)") | |
| 36350 | 353 | apply (auto simp add: field_simps) | 
| 31719 | 354 | done | 
| 355 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 356 | lemma cong_mult_rcancel_int: | 
| 31719 | 357 | "coprime k (m::int) \<Longrightarrow> [a * k = b * k] (mod m) = [a = b] (mod m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 358 | apply (subst (1 2) cong_altdef_int) | 
| 31719 | 359 | apply (subst left_diff_distrib [symmetric]) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 360 | apply (rule coprime_dvd_mult_iff_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 361 | apply (subst gcd_commute_int, assumption) | 
| 31719 | 362 | done | 
| 363 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 364 | lemma cong_mult_rcancel_nat: | 
| 31719 | 365 | assumes "coprime k (m::nat)" | 
| 366 | shows "[a * k = b * k] (mod m) = [a = b] (mod m)" | |
| 367 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 368 | apply (rule cong_mult_rcancel_int [transferred]) | 
| 31719 | 369 | using prems apply auto | 
| 370 | done | |
| 371 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 372 | lemma cong_mult_lcancel_nat: | 
| 31719 | 373 | "coprime k (m::nat) \<Longrightarrow> [k * a = k * b ] (mod m) = [a = b] (mod m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 374 | by (simp add: mult_commute cong_mult_rcancel_nat) | 
| 31719 | 375 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 376 | lemma cong_mult_lcancel_int: | 
| 31719 | 377 | "coprime k (m::int) \<Longrightarrow> [k * a = k * b] (mod m) = [a = b] (mod m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 378 | by (simp add: mult_commute cong_mult_rcancel_int) | 
| 31719 | 379 | |
| 380 | (* was zcong_zgcd_zmult_zmod *) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 381 | lemma coprime_cong_mult_int: | 
| 31719 | 382 | "[(a::int) = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n | 
| 383 | \<Longrightarrow> [a = b] (mod m * n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 384 | apply (simp only: cong_altdef_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 385 | apply (erule (2) divides_mult_int) | 
| 31719 | 386 | done | 
| 387 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 388 | lemma coprime_cong_mult_nat: | 
| 31719 | 389 | assumes "[(a::nat) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n" | 
| 390 | shows "[a = b] (mod m * n)" | |
| 391 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 392 | apply (rule coprime_cong_mult_int [transferred]) | 
| 31719 | 393 | using prems apply auto | 
| 394 | done | |
| 395 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 396 | lemma cong_less_imp_eq_nat: "0 \<le> (a::nat) \<Longrightarrow> | 
| 31719 | 397 | a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b" | 
| 398 | by (auto simp add: cong_nat_def mod_pos_pos_trivial) | |
| 399 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 400 | lemma cong_less_imp_eq_int: "0 \<le> (a::int) \<Longrightarrow> | 
| 31719 | 401 | a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b" | 
| 402 | by (auto simp add: cong_int_def mod_pos_pos_trivial) | |
| 403 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 404 | lemma cong_less_unique_nat: | 
| 31719 | 405 | "0 < (m::nat) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))" | 
| 406 | apply auto | |
| 407 | apply (rule_tac x = "a mod m" in exI) | |
| 408 | apply (unfold cong_nat_def, auto) | |
| 409 | done | |
| 410 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 411 | lemma cong_less_unique_int: | 
| 31719 | 412 | "0 < (m::int) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))" | 
| 413 | apply auto | |
| 414 | apply (rule_tac x = "a mod m" in exI) | |
| 415 | apply (unfold cong_int_def, auto simp add: mod_pos_pos_trivial) | |
| 416 | done | |
| 417 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 418 | lemma cong_iff_lin_int: "([(a::int) = b] (mod m)) = (\<exists>k. b = a + m * k)" | 
| 36350 | 419 | apply (auto simp add: cong_altdef_int dvd_def field_simps) | 
| 31719 | 420 | apply (rule_tac [!] x = "-k" in exI, auto) | 
| 421 | done | |
| 422 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 423 | lemma cong_iff_lin_nat: "([(a::nat) = b] (mod m)) = | 
| 31719 | 424 | (\<exists>k1 k2. b + k1 * m = a + k2 * m)" | 
| 425 | apply (rule iffI) | |
| 426 | apply (case_tac "b <= a") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 427 | apply (subst (asm) cong_altdef_nat, assumption) | 
| 31719 | 428 | apply (unfold dvd_def, auto) | 
| 429 | apply (rule_tac x = k in exI) | |
| 430 | apply (rule_tac x = 0 in exI) | |
| 36350 | 431 | apply (auto simp add: field_simps) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 432 | apply (subst (asm) cong_sym_eq_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 433 | apply (subst (asm) cong_altdef_nat) | 
| 31719 | 434 | apply force | 
| 435 | apply (unfold dvd_def, auto) | |
| 436 | apply (rule_tac x = 0 in exI) | |
| 437 | apply (rule_tac x = k in exI) | |
| 36350 | 438 | apply (auto simp add: field_simps) | 
| 31719 | 439 | apply (unfold cong_nat_def) | 
| 440 | apply (subgoal_tac "a mod m = (a + k2 * m) mod m") | |
| 441 | apply (erule ssubst)back | |
| 442 | apply (erule subst) | |
| 443 | apply auto | |
| 444 | done | |
| 445 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 446 | lemma cong_gcd_eq_int: "[(a::int) = b] (mod m) \<Longrightarrow> gcd a m = gcd b m" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 447 | apply (subst (asm) cong_iff_lin_int, auto) | 
| 31719 | 448 | apply (subst add_commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 449 | apply (subst (2) gcd_commute_int) | 
| 31719 | 450 | apply (subst mult_commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 451 | apply (subst gcd_add_mult_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 452 | apply (rule gcd_commute_int) | 
| 31719 | 453 | done | 
| 454 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 455 | lemma cong_gcd_eq_nat: | 
| 31719 | 456 | assumes "[(a::nat) = b] (mod m)" | 
| 457 | shows "gcd a m = gcd b m" | |
| 458 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 459 | apply (rule cong_gcd_eq_int [transferred]) | 
| 31719 | 460 | using prems apply auto | 
| 461 | done | |
| 462 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 463 | lemma cong_imp_coprime_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> | 
| 31719 | 464 | coprime b m" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 465 | by (auto simp add: cong_gcd_eq_nat) | 
| 31719 | 466 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 467 | lemma cong_imp_coprime_int: "[(a::int) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> | 
| 31719 | 468 | coprime b m" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 469 | by (auto simp add: cong_gcd_eq_int) | 
| 31719 | 470 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 471 | lemma cong_cong_mod_nat: "[(a::nat) = b] (mod m) = | 
| 31719 | 472 | [a mod m = b mod m] (mod m)" | 
| 473 | by (auto simp add: cong_nat_def) | |
| 474 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 475 | lemma cong_cong_mod_int: "[(a::int) = b] (mod m) = | 
| 31719 | 476 | [a mod m = b mod m] (mod m)" | 
| 477 | by (auto simp add: cong_int_def) | |
| 478 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 479 | lemma cong_minus_int [iff]: "[(a::int) = b] (mod -m) = [a = b] (mod m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 480 | by (subst (1 2) cong_altdef_int, auto) | 
| 31719 | 481 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 482 | lemma cong_zero_nat [iff]: "[(a::nat) = b] (mod 0) = (a = b)" | 
| 31719 | 483 | by (auto simp add: cong_nat_def) | 
| 484 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 485 | lemma cong_zero_int [iff]: "[(a::int) = b] (mod 0) = (a = b)" | 
| 31719 | 486 | by (auto simp add: cong_int_def) | 
| 487 | ||
| 488 | (* | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 489 | lemma mod_dvd_mod_int: | 
| 31719 | 490 | "0 < (m::int) \<Longrightarrow> m dvd b \<Longrightarrow> (a mod b mod m) = (a mod m)" | 
| 491 | apply (unfold dvd_def, auto) | |
| 492 | apply (rule mod_mod_cancel) | |
| 493 | apply auto | |
| 494 | done | |
| 495 | ||
| 496 | lemma mod_dvd_mod: | |
| 497 | assumes "0 < (m::nat)" and "m dvd b" | |
| 498 | shows "(a mod b mod m) = (a mod m)" | |
| 499 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 500 | apply (rule mod_dvd_mod_int [transferred]) | 
| 31719 | 501 | using prems apply auto | 
| 502 | done | |
| 503 | *) | |
| 504 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 505 | lemma cong_add_lcancel_nat: | 
| 31719 | 506 | "[(a::nat) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 507 | by (simp add: cong_iff_lin_nat) | 
| 31719 | 508 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 509 | lemma cong_add_lcancel_int: | 
| 31719 | 510 | "[(a::int) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 511 | by (simp add: cong_iff_lin_int) | 
| 31719 | 512 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 513 | lemma cong_add_rcancel_nat: "[(x::nat) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 514 | by (simp add: cong_iff_lin_nat) | 
| 31719 | 515 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 516 | lemma cong_add_rcancel_int: "[(x::int) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 517 | by (simp add: cong_iff_lin_int) | 
| 31719 | 518 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 519 | lemma cong_add_lcancel_0_nat: "[(a::nat) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 520 | by (simp add: cong_iff_lin_nat) | 
| 31719 | 521 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 522 | lemma cong_add_lcancel_0_int: "[(a::int) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 523 | by (simp add: cong_iff_lin_int) | 
| 31719 | 524 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 525 | lemma cong_add_rcancel_0_nat: "[x + (a::nat) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 526 | by (simp add: cong_iff_lin_nat) | 
| 31719 | 527 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 528 | lemma cong_add_rcancel_0_int: "[x + (a::int) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 529 | by (simp add: cong_iff_lin_int) | 
| 31719 | 530 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 531 | lemma cong_dvd_modulus_nat: "[(x::nat) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> | 
| 31719 | 532 | [x = y] (mod n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 533 | apply (auto simp add: cong_iff_lin_nat dvd_def) | 
| 31719 | 534 | apply (rule_tac x="k1 * k" in exI) | 
| 535 | apply (rule_tac x="k2 * k" in exI) | |
| 36350 | 536 | apply (simp add: field_simps) | 
| 31719 | 537 | done | 
| 538 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 539 | lemma cong_dvd_modulus_int: "[(x::int) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> | 
| 31719 | 540 | [x = y] (mod n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 541 | by (auto simp add: cong_altdef_int dvd_def) | 
| 31719 | 542 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 543 | lemma cong_dvd_eq_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y" | 
| 31719 | 544 | by (unfold cong_nat_def, auto simp add: dvd_eq_mod_eq_0) | 
| 545 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 546 | lemma cong_dvd_eq_int: "[(x::int) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y" | 
| 31719 | 547 | by (unfold cong_int_def, auto simp add: dvd_eq_mod_eq_0) | 
| 548 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 549 | lemma cong_mod_nat: "(n::nat) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" | 
| 31719 | 550 | by (simp add: cong_nat_def) | 
| 551 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 552 | lemma cong_mod_int: "(n::int) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" | 
| 31719 | 553 | by (simp add: cong_int_def) | 
| 554 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 555 | lemma mod_mult_cong_nat: "(a::nat) ~= 0 \<Longrightarrow> b ~= 0 | 
| 31719 | 556 | \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)" | 
| 557 | by (simp add: cong_nat_def mod_mult2_eq mod_add_left_eq) | |
| 558 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 559 | lemma neg_cong_int: "([(a::int) = b] (mod m)) = ([-a = -b] (mod m))" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 560 | apply (simp add: cong_altdef_int) | 
| 31719 | 561 | apply (subst dvd_minus_iff [symmetric]) | 
| 36350 | 562 | apply (simp add: field_simps) | 
| 31719 | 563 | done | 
| 564 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 565 | lemma cong_modulus_neg_int: "([(a::int) = b] (mod m)) = ([a = b] (mod -m))" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 566 | by (auto simp add: cong_altdef_int) | 
| 31719 | 567 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 568 | lemma mod_mult_cong_int: "(a::int) ~= 0 \<Longrightarrow> b ~= 0 | 
| 31719 | 569 | \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)" | 
| 570 | apply (case_tac "b > 0") | |
| 571 | apply (simp add: cong_int_def mod_mod_cancel mod_add_left_eq) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 572 | apply (subst (1 2) cong_modulus_neg_int) | 
| 31719 | 573 | apply (unfold cong_int_def) | 
| 574 | apply (subgoal_tac "a * b = (-a * -b)") | |
| 575 | apply (erule ssubst) | |
| 576 | apply (subst zmod_zmult2_eq) | |
| 577 | apply (auto simp add: mod_add_left_eq) | |
| 578 | done | |
| 579 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 580 | lemma cong_to_1_nat: "([(a::nat) = 1] (mod n)) \<Longrightarrow> (n dvd (a - 1))" | 
| 31719 | 581 | apply (case_tac "a = 0") | 
| 582 | apply force | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 583 | apply (subst (asm) cong_altdef_nat) | 
| 31719 | 584 | apply auto | 
| 585 | done | |
| 586 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 587 | lemma cong_0_1_nat: "[(0::nat) = 1] (mod n) = (n = 1)" | 
| 31719 | 588 | by (unfold cong_nat_def, auto) | 
| 589 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 590 | lemma cong_0_1_int: "[(0::int) = 1] (mod n) = ((n = 1) | (n = -1))" | 
| 31719 | 591 | by (unfold cong_int_def, auto simp add: zmult_eq_1_iff) | 
| 592 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 593 | lemma cong_to_1'_nat: "[(a::nat) = 1] (mod n) \<longleftrightarrow> | 
| 31719 | 594 | a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)" | 
| 595 | apply (case_tac "n = 1") | |
| 596 | apply auto [1] | |
| 597 | apply (drule_tac x = "a - 1" in spec) | |
| 598 | apply force | |
| 599 | apply (case_tac "a = 0") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 600 | apply (auto simp add: cong_0_1_nat) [1] | 
| 31719 | 601 | apply (rule iffI) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 602 | apply (drule cong_to_1_nat) | 
| 31719 | 603 | apply (unfold dvd_def) | 
| 604 | apply auto [1] | |
| 605 | apply (rule_tac x = k in exI) | |
| 36350 | 606 | apply (auto simp add: field_simps) [1] | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 607 | apply (subst cong_altdef_nat) | 
| 31719 | 608 | apply (auto simp add: dvd_def) | 
| 609 | done | |
| 610 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 611 | lemma cong_le_nat: "(y::nat) <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 612 | apply (subst cong_altdef_nat) | 
| 31719 | 613 | apply assumption | 
| 36350 | 614 | apply (unfold dvd_def, auto simp add: field_simps) | 
| 31719 | 615 | apply (rule_tac x = k in exI) | 
| 616 | apply auto | |
| 617 | done | |
| 618 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 619 | lemma cong_solve_nat: "(a::nat) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)" | 
| 31719 | 620 | apply (case_tac "n = 0") | 
| 621 | apply force | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 622 | apply (frule bezout_nat [of a n], auto) | 
| 31719 | 623 | apply (rule exI, erule ssubst) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 624 | apply (rule cong_trans_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 625 | apply (rule cong_add_nat) | 
| 31719 | 626 | apply (subst mult_commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 627 | apply (rule cong_mult_self_nat) | 
| 31719 | 628 | prefer 2 | 
| 629 | apply simp | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 630 | apply (rule cong_refl_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 631 | apply (rule cong_refl_nat) | 
| 31719 | 632 | done | 
| 633 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 634 | lemma cong_solve_int: "(a::int) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)" | 
| 31719 | 635 | apply (case_tac "n = 0") | 
| 636 | apply (case_tac "a \<ge> 0") | |
| 637 | apply auto | |
| 638 | apply (rule_tac x = "-1" in exI) | |
| 639 | apply auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 640 | apply (insert bezout_int [of a n], auto) | 
| 31719 | 641 | apply (rule exI) | 
| 642 | apply (erule subst) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 643 | apply (rule cong_trans_int) | 
| 31719 | 644 | prefer 2 | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 645 | apply (rule cong_add_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 646 | apply (rule cong_refl_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 647 | apply (rule cong_sym_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 648 | apply (rule cong_mult_self_int) | 
| 31719 | 649 | apply simp | 
| 650 | apply (subst mult_commute) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 651 | apply (rule cong_refl_int) | 
| 31719 | 652 | done | 
| 653 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 654 | lemma cong_solve_dvd_nat: | 
| 31719 | 655 | assumes a: "(a::nat) \<noteq> 0" and b: "gcd a n dvd d" | 
| 656 | shows "EX x. [a * x = d] (mod n)" | |
| 657 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 658 | from cong_solve_nat [OF a] obtain x where | 
| 31719 | 659 | "[a * x = gcd a n](mod n)" | 
| 660 | by auto | |
| 661 | hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 662 | by (elim cong_scalar2_nat) | 
| 31719 | 663 | also from b have "(d div gcd a n) * gcd a n = d" | 
| 664 | by (rule dvd_div_mult_self) | |
| 665 | also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)" | |
| 666 | by auto | |
| 667 | finally show ?thesis | |
| 668 | by auto | |
| 669 | qed | |
| 670 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 671 | lemma cong_solve_dvd_int: | 
| 31719 | 672 | assumes a: "(a::int) \<noteq> 0" and b: "gcd a n dvd d" | 
| 673 | shows "EX x. [a * x = d] (mod n)" | |
| 674 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 675 | from cong_solve_int [OF a] obtain x where | 
| 31719 | 676 | "[a * x = gcd a n](mod n)" | 
| 677 | by auto | |
| 678 | hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 679 | by (elim cong_scalar2_int) | 
| 31719 | 680 | also from b have "(d div gcd a n) * gcd a n = d" | 
| 681 | by (rule dvd_div_mult_self) | |
| 682 | also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)" | |
| 683 | by auto | |
| 684 | finally show ?thesis | |
| 685 | by auto | |
| 686 | qed | |
| 687 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 688 | lemma cong_solve_coprime_nat: "coprime (a::nat) n \<Longrightarrow> | 
| 31719 | 689 | EX x. [a * x = 1] (mod n)" | 
| 690 | apply (case_tac "a = 0") | |
| 691 | apply force | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 692 | apply (frule cong_solve_nat [of a n]) | 
| 31719 | 693 | apply auto | 
| 694 | done | |
| 695 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 696 | lemma cong_solve_coprime_int: "coprime (a::int) n \<Longrightarrow> | 
| 31719 | 697 | EX x. [a * x = 1] (mod n)" | 
| 698 | apply (case_tac "a = 0") | |
| 699 | apply auto | |
| 700 | apply (case_tac "n \<ge> 0") | |
| 701 | apply auto | |
| 702 | apply (subst cong_int_def, auto) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 703 | apply (frule cong_solve_int [of a n]) | 
| 31719 | 704 | apply auto | 
| 705 | done | |
| 706 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 707 | lemma coprime_iff_invertible_nat: "m > (1::nat) \<Longrightarrow> coprime a m = | 
| 31719 | 708 | (EX x. [a * x = 1] (mod m))" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 709 | apply (auto intro: cong_solve_coprime_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 710 | apply (unfold cong_nat_def, auto intro: invertible_coprime_nat) | 
| 31719 | 711 | done | 
| 712 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 713 | lemma coprime_iff_invertible_int: "m > (1::int) \<Longrightarrow> coprime a m = | 
| 31719 | 714 | (EX x. [a * x = 1] (mod m))" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 715 | apply (auto intro: cong_solve_coprime_int) | 
| 31719 | 716 | apply (unfold cong_int_def) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 717 | apply (auto intro: invertible_coprime_int) | 
| 31719 | 718 | done | 
| 719 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 720 | lemma coprime_iff_invertible'_int: "m > (1::int) \<Longrightarrow> coprime a m = | 
| 31719 | 721 | (EX x. 0 <= x & x < m & [a * x = 1] (mod m))" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 722 | apply (subst coprime_iff_invertible_int) | 
| 31719 | 723 | apply auto | 
| 724 | apply (auto simp add: cong_int_def) | |
| 725 | apply (rule_tac x = "x mod m" in exI) | |
| 726 | apply (auto simp add: mod_mult_right_eq [symmetric]) | |
| 727 | done | |
| 728 | ||
| 729 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 730 | lemma cong_cong_lcm_nat: "[(x::nat) = y] (mod a) \<Longrightarrow> | 
| 31719 | 731 | [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)" | 
| 732 | apply (case_tac "y \<le> x") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 733 | apply (auto simp add: cong_altdef_nat lcm_least_nat) [1] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 734 | apply (rule cong_sym_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 735 | apply (subst (asm) (1 2) cong_sym_eq_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 736 | apply (auto simp add: cong_altdef_nat lcm_least_nat) | 
| 31719 | 737 | done | 
| 738 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 739 | lemma cong_cong_lcm_int: "[(x::int) = y] (mod a) \<Longrightarrow> | 
| 31719 | 740 | [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 741 | by (auto simp add: cong_altdef_int lcm_least_int) [1] | 
| 31719 | 742 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 743 | lemma cong_cong_coprime_nat: "coprime a b \<Longrightarrow> [(x::nat) = y] (mod a) \<Longrightarrow> | 
| 31719 | 744 | [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 745 | apply (frule (1) cong_cong_lcm_nat)back | 
| 31719 | 746 | apply (simp add: lcm_nat_def) | 
| 747 | done | |
| 748 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 749 | lemma cong_cong_coprime_int: "coprime a b \<Longrightarrow> [(x::int) = y] (mod a) \<Longrightarrow> | 
| 31719 | 750 | [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 751 | apply (frule (1) cong_cong_lcm_int)back | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 752 | apply (simp add: lcm_altdef_int cong_abs_int abs_mult [symmetric]) | 
| 31719 | 753 | done | 
| 754 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 755 | lemma cong_cong_setprod_coprime_nat [rule_format]: "finite A \<Longrightarrow> | 
| 31719 | 756 | (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow> | 
| 757 | (ALL i:A. [(x::nat) = y] (mod m i)) \<longrightarrow> | |
| 758 | [x = y] (mod (PROD i:A. m i))" | |
| 759 | apply (induct set: finite) | |
| 760 | apply auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 761 | apply (rule cong_cong_coprime_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 762 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 763 | apply (rule setprod_coprime_nat) | 
| 31719 | 764 | apply auto | 
| 765 | done | |
| 766 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 767 | lemma cong_cong_setprod_coprime_int [rule_format]: "finite A \<Longrightarrow> | 
| 31719 | 768 | (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow> | 
| 769 | (ALL i:A. [(x::int) = y] (mod m i)) \<longrightarrow> | |
| 770 | [x = y] (mod (PROD i:A. m i))" | |
| 771 | apply (induct set: finite) | |
| 772 | apply auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 773 | apply (rule cong_cong_coprime_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 774 | apply (subst gcd_commute_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 775 | apply (rule setprod_coprime_int) | 
| 31719 | 776 | apply auto | 
| 777 | done | |
| 778 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 779 | lemma binary_chinese_remainder_aux_nat: | 
| 31719 | 780 | assumes a: "coprime (m1::nat) m2" | 
| 781 | shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and> | |
| 782 | [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)" | |
| 783 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 784 | from cong_solve_coprime_nat [OF a] | 
| 31719 | 785 | obtain x1 where one: "[m1 * x1 = 1] (mod m2)" | 
| 786 | by auto | |
| 787 | from a have b: "coprime m2 m1" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 788 | by (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 789 | from cong_solve_coprime_nat [OF b] | 
| 31719 | 790 | obtain x2 where two: "[m2 * x2 = 1] (mod m1)" | 
| 791 | by auto | |
| 792 | have "[m1 * x1 = 0] (mod m1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 793 | by (subst mult_commute, rule cong_mult_self_nat) | 
| 31719 | 794 | moreover have "[m2 * x2 = 0] (mod m2)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 795 | by (subst mult_commute, rule cong_mult_self_nat) | 
| 31719 | 796 | moreover note one two | 
| 797 | ultimately show ?thesis by blast | |
| 798 | qed | |
| 799 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 800 | lemma binary_chinese_remainder_aux_int: | 
| 31719 | 801 | assumes a: "coprime (m1::int) m2" | 
| 802 | shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and> | |
| 803 | [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)" | |
| 804 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 805 | from cong_solve_coprime_int [OF a] | 
| 31719 | 806 | obtain x1 where one: "[m1 * x1 = 1] (mod m2)" | 
| 807 | by auto | |
| 808 | from a have b: "coprime m2 m1" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 809 | by (subst gcd_commute_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 810 | from cong_solve_coprime_int [OF b] | 
| 31719 | 811 | obtain x2 where two: "[m2 * x2 = 1] (mod m1)" | 
| 812 | by auto | |
| 813 | have "[m1 * x1 = 0] (mod m1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 814 | by (subst mult_commute, rule cong_mult_self_int) | 
| 31719 | 815 | moreover have "[m2 * x2 = 0] (mod m2)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 816 | by (subst mult_commute, rule cong_mult_self_int) | 
| 31719 | 817 | moreover note one two | 
| 818 | ultimately show ?thesis by blast | |
| 819 | qed | |
| 820 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 821 | lemma binary_chinese_remainder_nat: | 
| 31719 | 822 | assumes a: "coprime (m1::nat) m2" | 
| 823 | shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)" | |
| 824 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 825 | from binary_chinese_remainder_aux_nat [OF a] obtain b1 b2 | 
| 31719 | 826 | where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and | 
| 827 | "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)" | |
| 828 | by blast | |
| 829 | let ?x = "u1 * b1 + u2 * b2" | |
| 830 | have "[?x = u1 * 1 + u2 * 0] (mod m1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 831 | apply (rule cong_add_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 832 | apply (rule cong_scalar2_nat) | 
| 31719 | 833 | apply (rule `[b1 = 1] (mod m1)`) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 834 | apply (rule cong_scalar2_nat) | 
| 31719 | 835 | apply (rule `[b2 = 0] (mod m1)`) | 
| 836 | done | |
| 837 | hence "[?x = u1] (mod m1)" by simp | |
| 838 | have "[?x = u1 * 0 + u2 * 1] (mod m2)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 839 | apply (rule cong_add_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 840 | apply (rule cong_scalar2_nat) | 
| 31719 | 841 | apply (rule `[b1 = 0] (mod m2)`) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 842 | apply (rule cong_scalar2_nat) | 
| 31719 | 843 | apply (rule `[b2 = 1] (mod m2)`) | 
| 844 | done | |
| 845 | hence "[?x = u2] (mod m2)" by simp | |
| 846 | with `[?x = u1] (mod m1)` show ?thesis by blast | |
| 847 | qed | |
| 848 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 849 | lemma binary_chinese_remainder_int: | 
| 31719 | 850 | assumes a: "coprime (m1::int) m2" | 
| 851 | shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)" | |
| 852 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 853 | from binary_chinese_remainder_aux_int [OF a] obtain b1 b2 | 
| 31719 | 854 | where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and | 
| 855 | "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)" | |
| 856 | by blast | |
| 857 | let ?x = "u1 * b1 + u2 * b2" | |
| 858 | have "[?x = u1 * 1 + u2 * 0] (mod m1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 859 | apply (rule cong_add_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 860 | apply (rule cong_scalar2_int) | 
| 31719 | 861 | apply (rule `[b1 = 1] (mod m1)`) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 862 | apply (rule cong_scalar2_int) | 
| 31719 | 863 | apply (rule `[b2 = 0] (mod m1)`) | 
| 864 | done | |
| 865 | hence "[?x = u1] (mod m1)" by simp | |
| 866 | have "[?x = u1 * 0 + u2 * 1] (mod m2)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 867 | apply (rule cong_add_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 868 | apply (rule cong_scalar2_int) | 
| 31719 | 869 | apply (rule `[b1 = 0] (mod m2)`) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 870 | apply (rule cong_scalar2_int) | 
| 31719 | 871 | apply (rule `[b2 = 1] (mod m2)`) | 
| 872 | done | |
| 873 | hence "[?x = u2] (mod m2)" by simp | |
| 874 | with `[?x = u1] (mod m1)` show ?thesis by blast | |
| 875 | qed | |
| 876 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 877 | lemma cong_modulus_mult_nat: "[(x::nat) = y] (mod m * n) \<Longrightarrow> | 
| 31719 | 878 | [x = y] (mod m)" | 
| 879 | apply (case_tac "y \<le> x") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 880 | apply (simp add: cong_altdef_nat) | 
| 31719 | 881 | apply (erule dvd_mult_left) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 882 | apply (rule cong_sym_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 883 | apply (subst (asm) cong_sym_eq_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 884 | apply (simp add: cong_altdef_nat) | 
| 31719 | 885 | apply (erule dvd_mult_left) | 
| 886 | done | |
| 887 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 888 | lemma cong_modulus_mult_int: "[(x::int) = y] (mod m * n) \<Longrightarrow> | 
| 31719 | 889 | [x = y] (mod m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 890 | apply (simp add: cong_altdef_int) | 
| 31719 | 891 | apply (erule dvd_mult_left) | 
| 892 | done | |
| 893 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 894 | lemma cong_less_modulus_unique_nat: | 
| 31719 | 895 | "[(x::nat) = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y" | 
| 896 | by (simp add: cong_nat_def) | |
| 897 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 898 | lemma binary_chinese_remainder_unique_nat: | 
| 31719 | 899 | assumes a: "coprime (m1::nat) m2" and | 
| 900 | nz: "m1 \<noteq> 0" "m2 \<noteq> 0" | |
| 901 | shows "EX! x. x < m1 * m2 \<and> [x = u1] (mod m1) \<and> [x = u2] (mod m2)" | |
| 902 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 903 | from binary_chinese_remainder_nat [OF a] obtain y where | 
| 31719 | 904 | "[y = u1] (mod m1)" and "[y = u2] (mod m2)" | 
| 905 | by blast | |
| 906 | let ?x = "y mod (m1 * m2)" | |
| 907 | from nz have less: "?x < m1 * m2" | |
| 908 | by auto | |
| 909 | have one: "[?x = u1] (mod m1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 910 | apply (rule cong_trans_nat) | 
| 31719 | 911 | prefer 2 | 
| 912 | apply (rule `[y = u1] (mod m1)`) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 913 | apply (rule cong_modulus_mult_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 914 | apply (rule cong_mod_nat) | 
| 31719 | 915 | using nz apply auto | 
| 916 | done | |
| 917 | have two: "[?x = u2] (mod m2)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 918 | apply (rule cong_trans_nat) | 
| 31719 | 919 | prefer 2 | 
| 920 | apply (rule `[y = u2] (mod m2)`) | |
| 921 | apply (subst mult_commute) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 922 | apply (rule cong_modulus_mult_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 923 | apply (rule cong_mod_nat) | 
| 31719 | 924 | using nz apply auto | 
| 925 | done | |
| 926 | have "ALL z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow> | |
| 927 | z = ?x" | |
| 928 | proof (clarify) | |
| 929 | fix z | |
| 930 | assume "z < m1 * m2" | |
| 931 | assume "[z = u1] (mod m1)" and "[z = u2] (mod m2)" | |
| 932 | have "[?x = z] (mod m1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 933 | apply (rule cong_trans_nat) | 
| 31719 | 934 | apply (rule `[?x = u1] (mod m1)`) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 935 | apply (rule cong_sym_nat) | 
| 31719 | 936 | apply (rule `[z = u1] (mod m1)`) | 
| 937 | done | |
| 938 | moreover have "[?x = z] (mod m2)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 939 | apply (rule cong_trans_nat) | 
| 31719 | 940 | apply (rule `[?x = u2] (mod m2)`) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 941 | apply (rule cong_sym_nat) | 
| 31719 | 942 | apply (rule `[z = u2] (mod m2)`) | 
| 943 | done | |
| 944 | ultimately have "[?x = z] (mod m1 * m2)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 945 | by (auto intro: coprime_cong_mult_nat a) | 
| 31719 | 946 | with `z < m1 * m2` `?x < m1 * m2` show "z = ?x" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 947 | apply (intro cong_less_modulus_unique_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 948 | apply (auto, erule cong_sym_nat) | 
| 31719 | 949 | done | 
| 950 | qed | |
| 951 | with less one two show ?thesis | |
| 952 | by auto | |
| 953 | qed | |
| 954 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 955 | lemma chinese_remainder_aux_nat: | 
| 31719 | 956 | fixes A :: "'a set" and | 
| 957 | m :: "'a \<Rightarrow> nat" | |
| 958 | assumes fin: "finite A" and | |
| 959 | cop: "ALL i : A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))" | |
| 960 | shows "EX b. (ALL i : A. | |
| 961 |       [b i = 1] (mod m i) \<and> [b i = 0] (mod (PROD j : A - {i}. m j)))"
 | |
| 962 | proof (rule finite_set_choice, rule fin, rule ballI) | |
| 963 | fix i | |
| 964 | assume "i : A" | |
| 965 |   with cop have "coprime (PROD j : A - {i}. m j) (m i)"
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 966 | by (intro setprod_coprime_nat, auto) | 
| 31719 | 967 |   hence "EX x. [(PROD j : A - {i}. m j) * x = 1] (mod m i)"
 | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 968 | by (elim cong_solve_coprime_nat) | 
| 31719 | 969 |   then obtain x where "[(PROD j : A - {i}. m j) * x = 1] (mod m i)"
 | 
| 970 | by auto | |
| 971 |   moreover have "[(PROD j : A - {i}. m j) * x = 0] 
 | |
| 972 |     (mod (PROD j : A - {i}. m j))"
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 973 | by (subst mult_commute, rule cong_mult_self_nat) | 
| 31719 | 974 | ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0] | 
| 975 |       (mod setprod m (A - {i}))"
 | |
| 976 | by blast | |
| 977 | qed | |
| 978 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 979 | lemma chinese_remainder_nat: | 
| 31719 | 980 | fixes A :: "'a set" and | 
| 981 | m :: "'a \<Rightarrow> nat" and | |
| 982 | u :: "'a \<Rightarrow> nat" | |
| 983 | assumes | |
| 984 | fin: "finite A" and | |
| 985 | cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))" | |
| 986 | shows "EX x. (ALL i:A. [x = u i] (mod m i))" | |
| 987 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 988 | from chinese_remainder_aux_nat [OF fin cop] obtain b where | 
| 31719 | 989 | bprop: "ALL i:A. [b i = 1] (mod m i) \<and> | 
| 990 |       [b i = 0] (mod (PROD j : A - {i}. m j))"
 | |
| 991 | by blast | |
| 992 | let ?x = "SUM i:A. (u i) * (b i)" | |
| 993 | show "?thesis" | |
| 994 | proof (rule exI, clarify) | |
| 995 | fix i | |
| 996 | assume a: "i : A" | |
| 997 | show "[?x = u i] (mod m i)" | |
| 998 | proof - | |
| 999 |       from fin a have "?x = (SUM j:{i}. u j * b j) + 
 | |
| 1000 |           (SUM j:A-{i}. u j * b j)"
 | |
| 1001 | by (subst setsum_Un_disjoint [symmetric], auto intro: setsum_cong) | |
| 1002 |       hence "[?x = u i * b i + (SUM j:A-{i}. u j * b j)] (mod m i)"
 | |
| 1003 | by auto | |
| 1004 |       also have "[u i * b i + (SUM j:A-{i}. u j * b j) =
 | |
| 1005 |                   u i * 1 + (SUM j:A-{i}. u j * 0)] (mod m i)"
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1006 | apply (rule cong_add_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1007 | apply (rule cong_scalar2_nat) | 
| 31719 | 1008 | using bprop a apply blast | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1009 | apply (rule cong_setsum_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1010 | apply (rule cong_scalar2_nat) | 
| 31719 | 1011 | using bprop apply auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1012 | apply (rule cong_dvd_modulus_nat) | 
| 31719 | 1013 | apply (drule (1) bspec) | 
| 1014 | apply (erule conjE) | |
| 1015 | apply assumption | |
| 1016 | apply (rule dvd_setprod) | |
| 1017 | using fin a apply auto | |
| 1018 | done | |
| 1019 | finally show ?thesis | |
| 1020 | by simp | |
| 1021 | qed | |
| 1022 | qed | |
| 1023 | qed | |
| 1024 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1025 | lemma coprime_cong_prod_nat [rule_format]: "finite A \<Longrightarrow> | 
| 31719 | 1026 | (ALL i: A. (ALL j: A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow> | 
| 1027 | (ALL i: A. [(x::nat) = y] (mod m i)) \<longrightarrow> | |
| 1028 | [x = y] (mod (PROD i:A. m i))" | |
| 1029 | apply (induct set: finite) | |
| 1030 | apply auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1031 | apply (erule (1) coprime_cong_mult_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1032 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1033 | apply (rule setprod_coprime_nat) | 
| 31719 | 1034 | apply auto | 
| 1035 | done | |
| 1036 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1037 | lemma chinese_remainder_unique_nat: | 
| 31719 | 1038 | fixes A :: "'a set" and | 
| 1039 | m :: "'a \<Rightarrow> nat" and | |
| 1040 | u :: "'a \<Rightarrow> nat" | |
| 1041 | assumes | |
| 1042 | fin: "finite A" and | |
| 1043 | nz: "ALL i:A. m i \<noteq> 0" and | |
| 1044 | cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))" | |
| 1045 | shows "EX! x. x < (PROD i:A. m i) \<and> (ALL i:A. [x = u i] (mod m i))" | |
| 1046 | proof - | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1047 | from chinese_remainder_nat [OF fin cop] obtain y where | 
| 31719 | 1048 | one: "(ALL i:A. [y = u i] (mod m i))" | 
| 1049 | by blast | |
| 1050 | let ?x = "y mod (PROD i:A. m i)" | |
| 1051 | from fin nz have prodnz: "(PROD i:A. m i) \<noteq> 0" | |
| 1052 | by auto | |
| 1053 | hence less: "?x < (PROD i:A. m i)" | |
| 1054 | by auto | |
| 1055 | have cong: "ALL i:A. [?x = u i] (mod m i)" | |
| 1056 | apply auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1057 | apply (rule cong_trans_nat) | 
| 31719 | 1058 | prefer 2 | 
| 1059 | using one apply auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1060 | apply (rule cong_dvd_modulus_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1061 | apply (rule cong_mod_nat) | 
| 31719 | 1062 | using prodnz apply auto | 
| 1063 | apply (rule dvd_setprod) | |
| 1064 | apply (rule fin) | |
| 1065 | apply assumption | |
| 1066 | done | |
| 1067 | have unique: "ALL z. z < (PROD i:A. m i) \<and> | |
| 1068 | (ALL i:A. [z = u i] (mod m i)) \<longrightarrow> z = ?x" | |
| 1069 | proof (clarify) | |
| 1070 | fix z | |
| 1071 | assume zless: "z < (PROD i:A. m i)" | |
| 1072 | assume zcong: "(ALL i:A. [z = u i] (mod m i))" | |
| 1073 | have "ALL i:A. [?x = z] (mod m i)" | |
| 1074 | apply clarify | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1075 | apply (rule cong_trans_nat) | 
| 31719 | 1076 | using cong apply (erule bspec) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1077 | apply (rule cong_sym_nat) | 
| 31719 | 1078 | using zcong apply auto | 
| 1079 | done | |
| 1080 | with fin cop have "[?x = z] (mod (PROD i:A. m i))" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1081 | by (intro coprime_cong_prod_nat, auto) | 
| 31719 | 1082 | with zless less show "z = ?x" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1083 | apply (intro cong_less_modulus_unique_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 1084 | apply (auto, erule cong_sym_nat) | 
| 31719 | 1085 | done | 
| 1086 | qed | |
| 1087 | from less cong unique show ?thesis | |
| 1088 | by blast | |
| 1089 | qed | |
| 1090 | ||
| 1091 | end |