author | haftmann |
Wed, 30 Jan 2008 10:57:44 +0100 | |
changeset 26013 | 8764a1f1253b |
parent 25475 | d5a382ccb5cc |
child 26480 | 544cef16045b |
permissions | -rw-r--r-- |
11375 | 1 |
(* Title: HOL/ex/Lagrange.thy |
5078 | 2 |
ID: $Id$ |
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1996 TU Muenchen |
|
5 |
*) |
|
6 |
||
17388 | 7 |
header {* A lemma for Lagrange's theorem *} |
8 |
||
16417 | 9 |
theory Lagrange imports Main begin |
14603 | 10 |
|
17388 | 11 |
text {* This theory only contains a single theorem, which is a lemma |
12 |
in Lagrange's proof that every natural number is the sum of 4 squares. |
|
13 |
Its sole purpose is to demonstrate ordered rewriting for commutative |
|
14 |
rings. |
|
15 |
||
16 |
The enterprising reader might consider proving all of Lagrange's |
|
17 |
theorem. *} |
|
18 |
||
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
19 |
definition sq :: "'a::times => 'a" where "sq x == x*x" |
5078 | 20 |
|
17388 | 21 |
text {* The following lemma essentially shows that every natural |
22 |
number is the sum of four squares, provided all prime numbers are. |
|
23 |
However, this is an abstract theorem about commutative rings. It has, |
|
24 |
a priori, nothing to do with nat. *} |
|
14603 | 25 |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
26 |
(* These two simprocs are even less efficient than ordered rewriting |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
27 |
and kill the second example: *) |
20807 | 28 |
ML_setup {* |
29 |
Delsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv] |
|
30 |
*} |
|
16568 | 31 |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
32 |
lemma Lagrange_lemma: fixes x1 :: "'a::comm_ring" shows |
20807 | 33 |
"(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = |
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
34 |
sq (x1*y1 - x2*y2 - x3*y3 - x4*y4) + |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
35 |
sq (x1*y2 + x2*y1 + x3*y4 - x4*y3) + |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
36 |
sq (x1*y3 - x2*y4 + x3*y1 + x4*y2) + |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
37 |
sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)" |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
38 |
by (simp add: sq_def ring_simps) |
14603 | 39 |
|
40 |
||
25475
d5a382ccb5cc
challenge by John Harrison: down to 12s (was 17s, was 75s);
wenzelm
parents:
23477
diff
changeset
|
41 |
text {* A challenge by John Harrison. Takes about 12s on a 1.6GHz machine. *} |
14603 | 42 |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
43 |
lemma fixes p1 :: "'a::comm_ring" shows |
20807 | 44 |
"(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * |
45 |
(sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) |
|
46 |
= sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + |
|
47 |
sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) + |
|
48 |
sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) + |
|
49 |
sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) + |
|
50 |
sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) + |
|
51 |
sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) + |
|
52 |
sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) + |
|
53 |
sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)" |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22173
diff
changeset
|
54 |
by (simp add: sq_def ring_simps) |
14603 | 55 |
|
5078 | 56 |
end |