Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
authorhaftmann
Wed, 30 Jan 2008 10:57:44 +0100
changeset 26013 8764a1f1253b
parent 26012 f6917792f8a4
child 26014 00c2c3525bef
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
NEWS
src/HOL/Inductive.thy
--- a/NEWS	Tue Jan 29 18:00:12 2008 +0100
+++ b/NEWS	Wed Jan 30 10:57:44 2008 +0100
@@ -35,6 +35,9 @@
 
 *** HOL ***
 
+* Theorem Inductive.lfp_ordinal_induct generalized to complete lattices.  The
+form set-specific version is available as Inductive.lfp_ordinal_induct_set.
+
 * Theorems "power.simps" renamed to "power_int.simps".
 
 * New class semiring_div provides basic abstract properties of semirings
--- a/src/HOL/Inductive.thy	Tue Jan 29 18:00:12 2008 +0100
+++ b/src/HOL/Inductive.thy	Wed Jan 30 10:57:44 2008 +0100
@@ -24,12 +24,15 @@
 
 subsection {* Least and greatest fixed points *}
 
+context complete_lattice
+begin
+
 definition
-  lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
+  lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
   "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
 
 definition
-  gfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
+  gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
   "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
 
 
@@ -44,6 +47,8 @@
 lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
   by (auto simp add: lfp_def intro: Inf_greatest)
 
+end
+
 lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
   by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
 
@@ -81,25 +86,34 @@
   by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
     (auto simp: inf_set_eq intro: indhyp)
 
-lemma lfp_ordinal_induct: 
+lemma lfp_ordinal_induct:
+  fixes f :: "'a\<Colon>complete_lattice \<Rightarrow> 'a"
+  assumes mono: "mono f"
+  and P_f: "\<And>S. P S \<Longrightarrow> P (f S)"
+  and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)"
+  shows "P (lfp f)"
+proof -
+  let ?M = "{S. S \<le> lfp f \<and> P S}"
+  have "P (Sup ?M)" using P_Union by simp
+  also have "Sup ?M = lfp f"
+  proof (rule antisym)
+    show "Sup ?M \<le> lfp f" by (blast intro: Sup_least)
+    hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD])
+    hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp
+    hence "f (Sup ?M) \<in> ?M" using P_f P_Union by simp
+    hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper)
+    thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound)
+  qed
+  finally show ?thesis .
+qed 
+
+lemma lfp_ordinal_induct_set: 
   assumes mono: "mono f"
   and P_f: "!!S. P S ==> P(f S)"
   and P_Union: "!!M. !S:M. P S ==> P(Union M)"
   shows "P(lfp f)"
-proof -
-  let ?M = "{S. S \<subseteq> lfp f & P S}"
-  have "P (Union ?M)" using P_Union by simp
-  also have "Union ?M = lfp f"
-  proof
-    show "Union ?M \<subseteq> lfp f" by blast
-    hence "f (Union ?M) \<subseteq> f (lfp f)" by (rule mono [THEN monoD])
-    hence "f (Union ?M) \<subseteq> lfp f" using mono [THEN lfp_unfold] by simp
-    hence "f (Union ?M) \<in> ?M" using P_f P_Union by simp
-    hence "f (Union ?M) \<subseteq> Union ?M" by (rule Union_upper)
-    thus "lfp f \<subseteq> Union ?M" by (rule lfp_lowerbound)
-  qed
-  finally show ?thesis .
-qed
+  using assms unfolding Sup_set_def [symmetric]
+  by (rule lfp_ordinal_induct) 
 
 
 text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct},