7917
|
1 |
(* Title: HOL/Real/HahnBanach/HahnBanachSupLemmas.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Gertrud Bauer, TU Munich
|
|
4 |
*)
|
|
5 |
|
9261
|
6 |
header {* The supremum w.r.t.~the function order *}
|
7917
|
7 |
|
9261
|
8 |
theory HahnBanachSupLemmas = FunctionNorm + ZornLemma:
|
9256
|
9 |
|
7917
|
10 |
|
|
11 |
|
|
12 |
text{* This section contains some lemmas that will be used in the
|
7978
|
13 |
proof of the Hahn-Banach Theorem.
|
7917
|
14 |
In this section the following context is presumed.
|
8084
|
15 |
Let $E$ be a real vector space with a seminorm $p$ on $E$.
|
7978
|
16 |
$F$ is a subspace of $E$ and $f$ a linear form on $F$. We
|
|
17 |
consider a chain $c$ of norm-preserving extensions of $f$, such that
|
7927
|
18 |
$\Union c = \idt{graph}\ap H\ap h$.
|
7917
|
19 |
We will show some properties about the limit function $h$,
|
7978
|
20 |
i.e.\ the supremum of the chain $c$.
|
9261
|
21 |
*}
|
7917
|
22 |
|
|
23 |
|
7978
|
24 |
text{* Let $c$ be a chain of norm-preserving extensions of the
|
7917
|
25 |
function $f$ and let $\idt{graph}\ap H\ap h$ be the supremum of $c$.
|
|
26 |
Every element in $H$ is member of
|
9261
|
27 |
one of the elements of the chain. *}
|
7917
|
28 |
|
|
29 |
lemma some_H'h't:
|
9261
|
30 |
"[| M = norm_pres_extensions E p F f; c \<in> chain M;
|
|
31 |
graph H h = Union c; x \\<in> H |]
|
|
32 |
==> \\<exists> H' h'. graph H' h' \<in> c & (x, h x) \<in> graph H' h'
|
7917
|
33 |
& is_linearform H' h' & is_subspace H' E
|
9261
|
34 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
35 |
& (\\<forall>x \\<in> H'. h' x \\<le> p x)"
|
|
36 |
proof -
|
|
37 |
assume m: "M = norm_pres_extensions E p F f" and "c \<in> chain M"
|
|
38 |
and u: "graph H h = Union c" "x \\<in> H"
|
7917
|
39 |
|
9261
|
40 |
have h: "(x, h x) \<in> graph H h" ..
|
|
41 |
with u have "(x, h x) \<in> Union c" by simp
|
|
42 |
hence ex1: "\<exists> g \\<in> c. (x, h x) \<in> g"
|
|
43 |
by (simp only: Union_iff)
|
|
44 |
thus ?thesis
|
|
45 |
proof (elim bexE)
|
|
46 |
fix g assume g: "g \\<in> c" "(x, h x) \\<in> g"
|
|
47 |
have "c \\<subseteq> M" by (rule chainD2)
|
|
48 |
hence "g \\<in> M" ..
|
|
49 |
hence "g \<in> norm_pres_extensions E p F f" by (simp only: m)
|
|
50 |
hence "\<exists> H' h'. graph H' h' = g
|
7917
|
51 |
& is_linearform H' h'
|
|
52 |
& is_subspace H' E
|
|
53 |
& is_subspace F H'
|
9261
|
54 |
& graph F f \\<subseteq> graph H' h'
|
|
55 |
& (\<forall>x \\<in> H'. h' x \\<le> p x)"
|
|
56 |
by (rule norm_pres_extension_D)
|
|
57 |
thus ?thesis
|
|
58 |
proof (elim exE conjE)
|
|
59 |
fix H' h'
|
7917
|
60 |
assume "graph H' h' = g" "is_linearform H' h'"
|
|
61 |
"is_subspace H' E" "is_subspace F H'"
|
9261
|
62 |
"graph F f \\<subseteq> graph H' h'" "\<forall>x \\<in> H'. h' x \\<le> p x"
|
|
63 |
show ?thesis
|
|
64 |
proof (intro exI conjI)
|
|
65 |
show "graph H' h' \<in> c" by (simp!)
|
|
66 |
show "(x, h x) \<in> graph H' h'" by (simp!)
|
|
67 |
qed
|
|
68 |
qed
|
|
69 |
qed
|
|
70 |
qed
|
7917
|
71 |
|
|
72 |
|
8084
|
73 |
text{* \medskip Let $c$ be a chain of norm-preserving extensions of the
|
7917
|
74 |
function $f$ and let $\idt{graph}\ap H\ap h$ be the supremum of $c$.
|
|
75 |
Every element in the domain $H$ of the supremum function is member of
|
|
76 |
the domain $H'$ of some function $h'$, such that $h$ extends $h'$.
|
9261
|
77 |
*}
|
7917
|
78 |
|
|
79 |
lemma some_H'h':
|
9261
|
80 |
"[| M = norm_pres_extensions E p F f; c \<in> chain M;
|
|
81 |
graph H h = Union c; x \\<in> H |]
|
|
82 |
==> \<exists> H' h'. x \\<in> H' & graph H' h' \\<subseteq> graph H h
|
7917
|
83 |
& is_linearform H' h' & is_subspace H' E & is_subspace F H'
|
9261
|
84 |
& graph F f \\<subseteq> graph H' h' & (\<forall>x \\<in> H'. h' x \\<le> p x)"
|
|
85 |
proof -
|
|
86 |
assume "M = norm_pres_extensions E p F f" and cM: "c \<in> chain M"
|
|
87 |
and u: "graph H h = Union c" "x \\<in> H"
|
7917
|
88 |
|
9261
|
89 |
have "\<exists> H' h'. graph H' h' \<in> c & (x, h x) \<in> graph H' h'
|
|
90 |
& is_linearform H' h' & is_subspace H' E
|
|
91 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
92 |
& (\<forall> x \\<in> H'. h' x \\<le> p x)"
|
|
93 |
by (rule some_H'h't)
|
|
94 |
thus ?thesis
|
|
95 |
proof (elim exE conjE)
|
|
96 |
fix H' h' assume "(x, h x) \<in> graph H' h'" "graph H' h' \<in> c"
|
|
97 |
"is_linearform H' h'" "is_subspace H' E" "is_subspace F H'"
|
|
98 |
"graph F f \\<subseteq> graph H' h'" "\<forall> x\<in>H'. h' x \\<le> p x"
|
|
99 |
show ?thesis
|
|
100 |
proof (intro exI conjI)
|
|
101 |
show "x\<in>H'" by (rule graphD1)
|
|
102 |
from cM u show "graph H' h' \\<subseteq> graph H h"
|
|
103 |
by (simp! only: chain_ball_Union_upper)
|
|
104 |
qed
|
|
105 |
qed
|
|
106 |
qed
|
7917
|
107 |
|
|
108 |
|
8084
|
109 |
text{* \medskip Any two elements $x$ and $y$ in the domain $H$ of the
|
7978
|
110 |
supremum function $h$ are both in the domain $H'$ of some function
|
9261
|
111 |
$h'$, such that $h$ extends $h'$. *}
|
7917
|
112 |
|
|
113 |
lemma some_H'h'2:
|
9261
|
114 |
"[| M = norm_pres_extensions E p F f; c\<in> chain M;
|
|
115 |
graph H h = Union c; x\<in>H; y\<in>H |]
|
|
116 |
==> \<exists> H' h'. x\<in>H' & y\<in>H' & graph H' h' \\<subseteq> graph H h
|
7917
|
117 |
& is_linearform H' h' & is_subspace H' E & is_subspace F H'
|
9261
|
118 |
& graph F f \\<subseteq> graph H' h' & (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
119 |
proof -
|
|
120 |
assume "M = norm_pres_extensions E p F f" "c\<in> chain M"
|
|
121 |
"graph H h = Union c" "x\<in>H" "y\<in>H"
|
7917
|
122 |
|
|
123 |
txt {* $x$ is in the domain $H'$ of some function $h'$,
|
9261
|
124 |
such that $h$ extends $h'$. *}
|
7917
|
125 |
|
9261
|
126 |
have e1: "\<exists> H' h'. graph H' h' \<in> c & (x, h x) \<in> graph H' h'
|
7917
|
127 |
& is_linearform H' h' & is_subspace H' E
|
9261
|
128 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
129 |
& (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
130 |
by (rule some_H'h't)
|
7917
|
131 |
|
|
132 |
txt {* $y$ is in the domain $H''$ of some function $h''$,
|
9261
|
133 |
such that $h$ extends $h''$. *}
|
7917
|
134 |
|
9261
|
135 |
have e2: "\<exists> H'' h''. graph H'' h'' \<in> c & (y, h y) \<in> graph H'' h''
|
7917
|
136 |
& is_linearform H'' h'' & is_subspace H'' E
|
9261
|
137 |
& is_subspace F H'' & graph F f \\<subseteq> graph H'' h''
|
|
138 |
& (\<forall> x\<in>H''. h'' x \\<le> p x)"
|
|
139 |
by (rule some_H'h't)
|
7917
|
140 |
|
9261
|
141 |
from e1 e2 show ?thesis
|
|
142 |
proof (elim exE conjE)
|
|
143 |
fix H' h' assume "(y, h y)\<in> graph H' h'" "graph H' h' \<in> c"
|
7917
|
144 |
"is_linearform H' h'" "is_subspace H' E" "is_subspace F H'"
|
9261
|
145 |
"graph F f \\<subseteq> graph H' h'" "\<forall> x\<in>H'. h' x \\<le> p x"
|
7917
|
146 |
|
9261
|
147 |
fix H'' h'' assume "(x, h x)\<in> graph H'' h''" "graph H'' h'' \<in> c"
|
7917
|
148 |
"is_linearform H'' h''" "is_subspace H'' E" "is_subspace F H''"
|
9261
|
149 |
"graph F f \\<subseteq> graph H'' h''" "\<forall> x\<in>H''. h'' x \\<le> p x"
|
7917
|
150 |
|
|
151 |
txt {* Since both $h'$ and $h''$ are elements of the chain,
|
|
152 |
$h''$ is an extension of $h'$ or vice versa. Thus both
|
9261
|
153 |
$x$ and $y$ are contained in the greater one. \label{cases1}*}
|
7917
|
154 |
|
9261
|
155 |
have "graph H'' h'' \\<subseteq> graph H' h' | graph H' h' \\<subseteq> graph H'' h''"
|
|
156 |
(is "?case1 | ?case2")
|
|
157 |
by (rule chainD)
|
|
158 |
thus ?thesis
|
|
159 |
proof
|
|
160 |
assume ?case1
|
|
161 |
show ?thesis
|
|
162 |
proof (intro exI conjI)
|
|
163 |
have "(x, h x) \<in> graph H'' h''" .
|
|
164 |
also have "... \\<subseteq> graph H' h'" .
|
|
165 |
finally have xh:"(x, h x) \<in> graph H' h'" .
|
|
166 |
thus x: "x\<in>H'" ..
|
|
167 |
show y: "y\<in>H'" ..
|
|
168 |
show "graph H' h' \\<subseteq> graph H h"
|
|
169 |
by (simp! only: chain_ball_Union_upper)
|
|
170 |
qed
|
|
171 |
next
|
|
172 |
assume ?case2
|
|
173 |
show ?thesis
|
|
174 |
proof (intro exI conjI)
|
|
175 |
show x: "x\<in>H''" ..
|
|
176 |
have "(y, h y) \<in> graph H' h'" by (simp!)
|
|
177 |
also have "... \\<subseteq> graph H'' h''" .
|
|
178 |
finally have yh: "(y, h y)\<in> graph H'' h''" .
|
|
179 |
thus y: "y\<in>H''" ..
|
|
180 |
show "graph H'' h'' \\<subseteq> graph H h"
|
|
181 |
by (simp! only: chain_ball_Union_upper)
|
|
182 |
qed
|
|
183 |
qed
|
|
184 |
qed
|
|
185 |
qed
|
7917
|
186 |
|
|
187 |
|
|
188 |
|
8084
|
189 |
text{* \medskip The relation induced by the graph of the supremum
|
9261
|
190 |
of a chain $c$ is definite, i.~e.~it is the graph of a function. *}
|
7917
|
191 |
|
|
192 |
lemma sup_definite:
|
9261
|
193 |
"[| M == norm_pres_extensions E p F f; c \<in> chain M;
|
|
194 |
(x, y) \<in> Union c; (x, z) \<in> Union c |] ==> z = y"
|
|
195 |
proof -
|
|
196 |
assume "c\<in>chain M" "M == norm_pres_extensions E p F f"
|
|
197 |
"(x, y) \<in> Union c" "(x, z) \<in> Union c"
|
|
198 |
thus ?thesis
|
|
199 |
proof (elim UnionE chainE2)
|
7917
|
200 |
|
7927
|
201 |
txt{* Since both $(x, y) \in \Union c$ and $(x, z) \in \Union c$
|
|
202 |
they are members of some graphs $G_1$ and $G_2$, resp., such that
|
9261
|
203 |
both $G_1$ and $G_2$ are members of $c$.*}
|
7917
|
204 |
|
9261
|
205 |
fix G1 G2 assume
|
|
206 |
"(x, y) \<in> G1" "G1 \<in> c" "(x, z) \<in> G2" "G2 \<in> c" "c \\<subseteq> M"
|
7917
|
207 |
|
9261
|
208 |
have "G1 \<in> M" ..
|
|
209 |
hence e1: "\<exists> H1 h1. graph H1 h1 = G1"
|
|
210 |
by (force! dest: norm_pres_extension_D)
|
|
211 |
have "G2 \<in> M" ..
|
|
212 |
hence e2: "\<exists> H2 h2. graph H2 h2 = G2"
|
|
213 |
by (force! dest: norm_pres_extension_D)
|
|
214 |
from e1 e2 show ?thesis
|
|
215 |
proof (elim exE)
|
|
216 |
fix H1 h1 H2 h2
|
|
217 |
assume "graph H1 h1 = G1" "graph H2 h2 = G2"
|
7917
|
218 |
|
7978
|
219 |
txt{* $G_1$ is contained in $G_2$ or vice versa,
|
9261
|
220 |
since both $G_1$ and $G_2$ are members of $c$. \label{cases2}*}
|
7917
|
221 |
|
9261
|
222 |
have "G1 \\<subseteq> G2 | G2 \\<subseteq> G1" (is "?case1 | ?case2") ..
|
|
223 |
thus ?thesis
|
|
224 |
proof
|
|
225 |
assume ?case1
|
|
226 |
have "(x, y) \<in> graph H2 h2" by (force!)
|
|
227 |
hence "y = h2 x" ..
|
|
228 |
also have "(x, z) \<in> graph H2 h2" by (simp!)
|
|
229 |
hence "z = h2 x" ..
|
|
230 |
finally show ?thesis .
|
|
231 |
next
|
|
232 |
assume ?case2
|
|
233 |
have "(x, y) \<in> graph H1 h1" by (simp!)
|
|
234 |
hence "y = h1 x" ..
|
|
235 |
also have "(x, z) \<in> graph H1 h1" by (force!)
|
|
236 |
hence "z = h1 x" ..
|
|
237 |
finally show ?thesis .
|
|
238 |
qed
|
|
239 |
qed
|
|
240 |
qed
|
|
241 |
qed
|
7917
|
242 |
|
8084
|
243 |
text{* \medskip The limit function $h$ is linear. Every element $x$ in the
|
7927
|
244 |
domain of $h$ is in the domain of a function $h'$ in the chain of norm
|
|
245 |
preserving extensions. Furthermore, $h$ is an extension of $h'$ so
|
7978
|
246 |
the function values of $x$ are identical for $h'$ and $h$. Finally, the
|
9261
|
247 |
function $h'$ is linear by construction of $M$. *}
|
7917
|
248 |
|
|
249 |
lemma sup_lf:
|
9261
|
250 |
"[| M = norm_pres_extensions E p F f; c\<in> chain M;
|
|
251 |
graph H h = Union c |] ==> is_linearform H h"
|
|
252 |
proof -
|
|
253 |
assume "M = norm_pres_extensions E p F f" "c\<in> chain M"
|
|
254 |
"graph H h = Union c"
|
7917
|
255 |
|
9261
|
256 |
show "is_linearform H h"
|
|
257 |
proof
|
|
258 |
fix x y assume "x \<in> H" "y \<in> H"
|
|
259 |
have "\<exists> H' h'. x\<in>H' & y\<in>H' & graph H' h' \\<subseteq> graph H h
|
7917
|
260 |
& is_linearform H' h' & is_subspace H' E
|
9261
|
261 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
262 |
& (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
263 |
by (rule some_H'h'2)
|
7917
|
264 |
|
9261
|
265 |
txt {* We have to show that $h$ is additive. *}
|
7917
|
266 |
|
9261
|
267 |
thus "h (x + y) = h x + h y"
|
|
268 |
proof (elim exE conjE)
|
|
269 |
fix H' h' assume "x\<in>H'" "y\<in>H'"
|
|
270 |
and b: "graph H' h' \\<subseteq> graph H h"
|
|
271 |
and "is_linearform H' h'" "is_subspace H' E"
|
|
272 |
have "h' (x + y) = h' x + h' y"
|
|
273 |
by (rule linearform_add)
|
|
274 |
also have "h' x = h x" ..
|
|
275 |
also have "h' y = h y" ..
|
|
276 |
also have "x + y \<in> H'" ..
|
|
277 |
with b have "h' (x + y) = h (x + y)" ..
|
|
278 |
finally show ?thesis .
|
|
279 |
qed
|
|
280 |
next
|
|
281 |
fix a x assume "x \<in> H"
|
|
282 |
have "\<exists> H' h'. x\<in>H' & graph H' h' \\<subseteq> graph H h
|
7917
|
283 |
& is_linearform H' h' & is_subspace H' E
|
9261
|
284 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
285 |
& (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
286 |
by (rule some_H'h')
|
7917
|
287 |
|
9261
|
288 |
txt{* We have to show that $h$ is multiplicative. *}
|
7917
|
289 |
|
9261
|
290 |
thus "h (a \<prod> x) = a * h x"
|
|
291 |
proof (elim exE conjE)
|
|
292 |
fix H' h' assume "x\<in>H'"
|
|
293 |
and b: "graph H' h' \\<subseteq> graph H h"
|
|
294 |
and "is_linearform H' h'" "is_subspace H' E"
|
|
295 |
have "h' (a \<prod> x) = a * h' x"
|
|
296 |
by (rule linearform_mult)
|
|
297 |
also have "h' x = h x" ..
|
|
298 |
also have "a \<prod> x \<in> H'" ..
|
|
299 |
with b have "h' (a \<prod> x) = h (a \<prod> x)" ..
|
|
300 |
finally show ?thesis .
|
|
301 |
qed
|
|
302 |
qed
|
|
303 |
qed
|
7917
|
304 |
|
8084
|
305 |
text{* \medskip The limit of a non-empty chain of norm
|
7917
|
306 |
preserving extensions of $f$ is an extension of $f$,
|
|
307 |
since every element of the chain is an extension
|
|
308 |
of $f$ and the supremum is an extension
|
9261
|
309 |
for every element of the chain.*}
|
7917
|
310 |
|
|
311 |
lemma sup_ext:
|
9261
|
312 |
"[| M = norm_pres_extensions E p F f; c\<in> chain M; \<exists> x. x\<in>c;
|
|
313 |
graph H h = Union c |] ==> graph F f \\<subseteq> graph H h"
|
|
314 |
proof -
|
|
315 |
assume "M = norm_pres_extensions E p F f" "c\<in> chain M"
|
|
316 |
"graph H h = Union c"
|
|
317 |
assume "\<exists> x. x\<in>c"
|
|
318 |
thus ?thesis
|
|
319 |
proof
|
|
320 |
fix x assume "x\<in>c"
|
|
321 |
have "c \\<subseteq> M" by (rule chainD2)
|
|
322 |
hence "x\<in>M" ..
|
|
323 |
hence "x \<in> norm_pres_extensions E p F f" by (simp!)
|
7917
|
324 |
|
9261
|
325 |
hence "\<exists> G g. graph G g = x
|
7917
|
326 |
& is_linearform G g
|
|
327 |
& is_subspace G E
|
|
328 |
& is_subspace F G
|
9261
|
329 |
& graph F f \\<subseteq> graph G g
|
|
330 |
& (\<forall> x\<in>G. g x \\<le> p x)"
|
|
331 |
by (simp! add: norm_pres_extension_D)
|
7917
|
332 |
|
9261
|
333 |
thus ?thesis
|
|
334 |
proof (elim exE conjE)
|
|
335 |
fix G g assume "graph F f \\<subseteq> graph G g"
|
|
336 |
also assume "graph G g = x"
|
|
337 |
also have "... \<in> c" .
|
|
338 |
hence "x \\<subseteq> Union c" by fast
|
|
339 |
also have [RS sym]: "graph H h = Union c" .
|
|
340 |
finally show ?thesis .
|
|
341 |
qed
|
|
342 |
qed
|
|
343 |
qed
|
7917
|
344 |
|
8084
|
345 |
text{* \medskip The domain $H$ of the limit function is a superspace of $F$,
|
7927
|
346 |
since $F$ is a subset of $H$. The existence of the $\zero$ element in
|
|
347 |
$F$ and the closure properties follow from the fact that $F$ is a
|
9261
|
348 |
vector space. *}
|
7917
|
349 |
|
|
350 |
lemma sup_supF:
|
9261
|
351 |
"[| M = norm_pres_extensions E p F f; c\<in> chain M; \<exists> x. x\<in>c;
|
7917
|
352 |
graph H h = Union c; is_subspace F E; is_vectorspace E |]
|
9261
|
353 |
==> is_subspace F H"
|
|
354 |
proof -
|
|
355 |
assume "M = norm_pres_extensions E p F f" "c\<in> chain M" "\<exists> x. x\<in>c"
|
|
356 |
"graph H h = Union c" "is_subspace F E" "is_vectorspace E"
|
7917
|
357 |
|
9261
|
358 |
show ?thesis
|
|
359 |
proof
|
|
360 |
show "\<zero> \<in> F" ..
|
|
361 |
show "F \\<subseteq> H"
|
|
362 |
proof (rule graph_extD2)
|
|
363 |
show "graph F f \\<subseteq> graph H h"
|
|
364 |
by (rule sup_ext)
|
|
365 |
qed
|
|
366 |
show "\<forall> x\<in>F. \<forall> y\<in>F. x + y \<in> F"
|
|
367 |
proof (intro ballI)
|
|
368 |
fix x y assume "x\<in>F" "y\<in>F"
|
|
369 |
show "x + y \<in> F" by (simp!)
|
|
370 |
qed
|
|
371 |
show "\<forall> x\<in>F. \<forall> a. a \<prod> x \<in> F"
|
|
372 |
proof (intro ballI allI)
|
|
373 |
fix x a assume "x\<in>F"
|
|
374 |
show "a \<prod> x \<in> F" by (simp!)
|
|
375 |
qed
|
|
376 |
qed
|
|
377 |
qed
|
7917
|
378 |
|
8084
|
379 |
text{* \medskip The domain $H$ of the limit function is a subspace
|
9261
|
380 |
of $E$. *}
|
7917
|
381 |
|
|
382 |
lemma sup_subE:
|
9261
|
383 |
"[| M = norm_pres_extensions E p F f; c\<in> chain M; \<exists> x. x\<in>c;
|
7917
|
384 |
graph H h = Union c; is_subspace F E; is_vectorspace E |]
|
9261
|
385 |
==> is_subspace H E"
|
|
386 |
proof -
|
|
387 |
assume "M = norm_pres_extensions E p F f" "c\<in> chain M" "\<exists> x. x\<in>c"
|
|
388 |
"graph H h = Union c" "is_subspace F E" "is_vectorspace E"
|
|
389 |
show ?thesis
|
|
390 |
proof
|
7917
|
391 |
|
7978
|
392 |
txt {* The $\zero$ element is in $H$, as $F$ is a subset
|
9261
|
393 |
of $H$: *}
|
7917
|
394 |
|
9261
|
395 |
have "\<zero> \<in> F" ..
|
|
396 |
also have "is_subspace F H" by (rule sup_supF)
|
|
397 |
hence "F \\<subseteq> H" ..
|
|
398 |
finally show "\<zero> \<in> H" .
|
7917
|
399 |
|
9261
|
400 |
txt{* $H$ is a subset of $E$: *}
|
7917
|
401 |
|
9261
|
402 |
show "H \\<subseteq> E"
|
|
403 |
proof
|
|
404 |
fix x assume "x\<in>H"
|
|
405 |
have "\<exists> H' h'. x\<in>H' & graph H' h' \\<subseteq> graph H h
|
7917
|
406 |
& is_linearform H' h' & is_subspace H' E
|
9261
|
407 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
408 |
& (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
409 |
by (rule some_H'h')
|
|
410 |
thus "x\<in>E"
|
|
411 |
proof (elim exE conjE)
|
|
412 |
fix H' h' assume "x\<in>H'" "is_subspace H' E"
|
|
413 |
have "H' \\<subseteq> E" ..
|
|
414 |
thus "x\<in>E" ..
|
|
415 |
qed
|
|
416 |
qed
|
7917
|
417 |
|
9261
|
418 |
txt{* $H$ is closed under addition: *}
|
7917
|
419 |
|
9261
|
420 |
show "\<forall> x\<in>H. \<forall> y\<in>H. x + y \<in> H"
|
|
421 |
proof (intro ballI)
|
|
422 |
fix x y assume "x\<in>H" "y\<in>H"
|
|
423 |
have "\<exists> H' h'. x\<in>H' & y\<in>H' & graph H' h' \\<subseteq> graph H h
|
7917
|
424 |
& is_linearform H' h' & is_subspace H' E
|
9261
|
425 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
426 |
& (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
427 |
by (rule some_H'h'2)
|
|
428 |
thus "x + y \<in> H"
|
|
429 |
proof (elim exE conjE)
|
|
430 |
fix H' h'
|
|
431 |
assume "x\<in>H'" "y\<in>H'" "is_subspace H' E"
|
|
432 |
"graph H' h' \\<subseteq> graph H h"
|
|
433 |
have "x + y \<in> H'" ..
|
|
434 |
also have "H' \\<subseteq> H" ..
|
|
435 |
finally show ?thesis .
|
|
436 |
qed
|
|
437 |
qed
|
7917
|
438 |
|
9261
|
439 |
txt{* $H$ is closed under scalar multiplication: *}
|
7917
|
440 |
|
9261
|
441 |
show "\<forall> x\<in>H. \<forall> a. a \<prod> x \<in> H"
|
|
442 |
proof (intro ballI allI)
|
|
443 |
fix x a assume "x\<in>H"
|
|
444 |
have "\<exists> H' h'. x\<in>H' & graph H' h' \\<subseteq> graph H h
|
7917
|
445 |
& is_linearform H' h' & is_subspace H' E
|
9261
|
446 |
& is_subspace F H' & graph F f \\<subseteq> graph H' h'
|
|
447 |
& (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
448 |
by (rule some_H'h')
|
|
449 |
thus "a \<prod> x \<in> H"
|
|
450 |
proof (elim exE conjE)
|
|
451 |
fix H' h'
|
|
452 |
assume "x\<in>H'" "is_subspace H' E" "graph H' h' \\<subseteq> graph H h"
|
|
453 |
have "a \<prod> x \<in> H'" ..
|
|
454 |
also have "H' \\<subseteq> H" ..
|
|
455 |
finally show ?thesis .
|
|
456 |
qed
|
|
457 |
qed
|
|
458 |
qed
|
|
459 |
qed
|
7917
|
460 |
|
8084
|
461 |
text {* \medskip The limit function is bounded by
|
7978
|
462 |
the norm $p$ as well, since all elements in the chain are
|
|
463 |
bounded by $p$.
|
9261
|
464 |
*}
|
7917
|
465 |
|
9261
|
466 |
lemma sup_norm_pres:
|
|
467 |
"[| M = norm_pres_extensions E p F f; c\<in> chain M;
|
|
468 |
graph H h = Union c |] ==> \<forall> x\<in>H. h x \\<le> p x"
|
|
469 |
proof
|
|
470 |
assume "M = norm_pres_extensions E p F f" "c\<in> chain M"
|
|
471 |
"graph H h = Union c"
|
|
472 |
fix x assume "x\<in>H"
|
|
473 |
have "\\<exists> H' h'. x\<in>H' & graph H' h' \\<subseteq> graph H h
|
7917
|
474 |
& is_linearform H' h' & is_subspace H' E & is_subspace F H'
|
9261
|
475 |
& graph F f \\<subseteq> graph H' h' & (\<forall> x\<in>H'. h' x \\<le> p x)"
|
|
476 |
by (rule some_H'h')
|
|
477 |
thus "h x \\<le> p x"
|
|
478 |
proof (elim exE conjE)
|
|
479 |
fix H' h'
|
|
480 |
assume "x\<in> H'" "graph H' h' \\<subseteq> graph H h"
|
|
481 |
and a: "\<forall> x\<in> H'. h' x \\<le> p x"
|
|
482 |
have [RS sym]: "h' x = h x" ..
|
|
483 |
also from a have "h' x \\<le> p x " ..
|
|
484 |
finally show ?thesis .
|
|
485 |
qed
|
|
486 |
qed
|
7917
|
487 |
|
|
488 |
|
8084
|
489 |
text{* \medskip The following lemma is a property of linear forms on
|
7917
|
490 |
real vector spaces. It will be used for the lemma
|
8838
|
491 |
$\idt{abs{\dsh}HahnBanach}$ (see page \pageref{abs-HahnBanach}). \label{abs-ineq-iff}
|
7917
|
492 |
For real vector spaces the following inequations are equivalent:
|
|
493 |
\begin{matharray}{ll}
|
|
494 |
\forall x\in H.\ap |h\ap x|\leq p\ap x& {\rm and}\\
|
|
495 |
\forall x\in H.\ap h\ap x\leq p\ap x\\
|
|
496 |
\end{matharray}
|
9261
|
497 |
*}
|
7917
|
498 |
|
8838
|
499 |
lemma abs_ineq_iff:
|
7978
|
500 |
"[| is_subspace H E; is_vectorspace E; is_seminorm E p;
|
7917
|
501 |
is_linearform H h |]
|
9261
|
502 |
==> (\<forall> x\<in>H. abs (h x) \\<le> p x) = (\<forall> x\<in>H. h x \\<le> p x)"
|
|
503 |
(concl is "?L = ?R")
|
|
504 |
proof -
|
7978
|
505 |
assume "is_subspace H E" "is_vectorspace E" "is_seminorm E p"
|
9261
|
506 |
"is_linearform H h"
|
|
507 |
have h: "is_vectorspace H" ..
|
|
508 |
show ?thesis
|
|
509 |
proof
|
|
510 |
assume l: ?L
|
|
511 |
show ?R
|
|
512 |
proof
|
|
513 |
fix x assume x: "x\<in>H"
|
|
514 |
have "h x \\<le> abs (h x)" by (rule abs_ge_self)
|
|
515 |
also from l have "... \\<le> p x" ..
|
|
516 |
finally show "h x \\<le> p x" .
|
|
517 |
qed
|
|
518 |
next
|
|
519 |
assume r: ?R
|
|
520 |
show ?L
|
|
521 |
proof
|
|
522 |
fix x assume "x\<in>H"
|
|
523 |
show "!! a b :: real. [| - a \\<le> b; b \\<le> a |] ==> abs b \\<le> a"
|
|
524 |
by arith
|
|
525 |
show "- p x \\<le> h x"
|
|
526 |
proof (rule real_minus_le)
|
|
527 |
from h have "- h x = h (- x)"
|
|
528 |
by (rule linearform_neg [RS sym])
|
|
529 |
also from r have "... \\<le> p (- x)" by (simp!)
|
|
530 |
also have "... = p x"
|
|
531 |
by (rule seminorm_minus [OF _ subspace_subsetD])
|
|
532 |
finally show "- h x \\<le> p x" .
|
|
533 |
qed
|
|
534 |
from r show "h x \\<le> p x" ..
|
|
535 |
qed
|
|
536 |
qed
|
|
537 |
qed
|
7917
|
538 |
|
|
539 |
|
9261
|
540 |
end |