22657
|
1 |
(* Title: HOL/ex/LocaleTest2.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Clemens Ballarin
|
|
4 |
Copyright (c) 2007 by Clemens Ballarin
|
|
5 |
|
|
6 |
More regression tests for locales.
|
|
7 |
Definitions are less natural in FOL, since there is no selection operator.
|
|
8 |
Hence we do them in HOL, not in the main test suite for locales:
|
|
9 |
FOL/ex/LocaleTest.thy
|
|
10 |
*)
|
|
11 |
|
|
12 |
header {* Test of Locale Interpretation *}
|
|
13 |
|
|
14 |
theory LocaleTest2
|
|
15 |
imports Main
|
|
16 |
begin
|
|
17 |
|
|
18 |
ML {* set quick_and_dirty *} (* allow for thm command in batch mode *)
|
|
19 |
ML {* set show_hyps *}
|
|
20 |
ML {* set show_sorts *}
|
|
21 |
|
23219
|
22 |
|
|
23 |
subsection {* Interpretation of Defined Concepts *}
|
22657
|
24 |
|
|
25 |
text {* Naming convention for global objects: prefixes D and d *}
|
|
26 |
|
|
27 |
(* Group example with defined operation inv *)
|
|
28 |
|
|
29 |
locale Dsemi =
|
|
30 |
fixes prod (infixl "**" 65)
|
|
31 |
assumes assoc: "(x ** y) ** z = x ** (y ** z)"
|
|
32 |
|
|
33 |
locale Dmonoid = Dsemi +
|
|
34 |
fixes one
|
|
35 |
assumes lone: "one ** x = x"
|
|
36 |
and rone: "x ** one = x"
|
|
37 |
|
|
38 |
definition (in Dmonoid)
|
|
39 |
inv where "inv(x) == THE y. x ** y = one & y ** x = one"
|
|
40 |
|
|
41 |
lemma (in Dmonoid) inv_unique:
|
|
42 |
assumes eq: "y ** x = one" "x ** y' = one"
|
|
43 |
shows "y = y'"
|
|
44 |
proof -
|
|
45 |
from eq have "y = y ** (x ** y')" by (simp add: rone)
|
|
46 |
also have "... = (y ** x) ** y'" by (simp add: assoc)
|
|
47 |
also from eq have "... = y'" by (simp add: lone)
|
|
48 |
finally show ?thesis .
|
|
49 |
qed
|
|
50 |
|
|
51 |
locale Dgrp = Dmonoid +
|
|
52 |
assumes linv_ex: "EX y. y ** x = one"
|
|
53 |
and rinv_ex: "EX y. x ** y = one"
|
|
54 |
|
|
55 |
lemma (in Dgrp) linv:
|
|
56 |
"inv x ** x = one"
|
|
57 |
apply (unfold inv_def)
|
|
58 |
apply (insert rinv_ex [where x = x])
|
|
59 |
apply (insert linv_ex [where x = x])
|
|
60 |
apply (erule exE) apply (erule exE)
|
|
61 |
apply (rule theI2)
|
|
62 |
apply rule apply assumption
|
|
63 |
apply (frule inv_unique, assumption)
|
|
64 |
apply simp
|
|
65 |
apply (rule inv_unique)
|
|
66 |
apply fast+
|
|
67 |
done
|
|
68 |
|
|
69 |
lemma (in Dgrp) rinv:
|
|
70 |
"x ** inv x = one"
|
|
71 |
apply (unfold inv_def)
|
|
72 |
apply (insert rinv_ex [where x = x])
|
|
73 |
apply (insert linv_ex [where x = x])
|
|
74 |
apply (erule exE) apply (erule exE)
|
|
75 |
apply (rule theI2)
|
|
76 |
apply rule apply assumption
|
|
77 |
apply (frule inv_unique, assumption)
|
|
78 |
apply simp
|
|
79 |
apply (rule inv_unique)
|
|
80 |
apply fast+
|
|
81 |
done
|
|
82 |
|
|
83 |
lemma (in Dgrp) lcancel:
|
|
84 |
"x ** y = x ** z <-> y = z"
|
|
85 |
proof
|
|
86 |
assume "x ** y = x ** z"
|
|
87 |
then have "inv(x) ** x ** y = inv(x) ** x ** z" by (simp add: assoc)
|
|
88 |
then show "y = z" by (simp add: lone linv)
|
|
89 |
qed simp
|
|
90 |
|
|
91 |
interpretation Dint: Dmonoid ["op +" "0::int"]
|
|
92 |
where "Dmonoid.inv (op +) (0::int)" = "uminus"
|
|
93 |
proof -
|
|
94 |
show "Dmonoid (op +) (0::int)" by unfold_locales auto
|
|
95 |
note Dint = this (* should have this as an assumption in further goals *)
|
|
96 |
{
|
|
97 |
fix x
|
|
98 |
have "Dmonoid.inv (op +) (0::int) x = - x"
|
|
99 |
by (auto simp: Dmonoid.inv_def [OF Dint])
|
|
100 |
}
|
|
101 |
then show "Dmonoid.inv (op +) (0::int) == uminus"
|
|
102 |
by (rule_tac eq_reflection) (fast intro: ext)
|
|
103 |
qed
|
|
104 |
|
|
105 |
thm Dmonoid.inv_def Dint.inv_def
|
|
106 |
|
|
107 |
lemma "- x \<equiv> THE y. x + y = 0 \<and> y + x = (0::int)"
|
|
108 |
apply (rule Dint.inv_def) done
|
|
109 |
|
|
110 |
interpretation Dclass: Dmonoid ["op +" "0::'a::ab_group_add"]
|
|
111 |
where "Dmonoid.inv (op +) (0::'a::ab_group_add)" = "uminus"
|
|
112 |
proof -
|
22757
|
113 |
show "Dmonoid (op +) (0::'a::ab_group_add)" by unfold_locales auto
|
22657
|
114 |
note Dclass = this (* should have this as an assumption in further goals *)
|
|
115 |
{
|
|
116 |
fix x
|
22757
|
117 |
have "Dmonoid.inv (op +) (0::'a::ab_group_add) x = - x"
|
22657
|
118 |
by (auto simp: Dmonoid.inv_def [OF Dclass] equals_zero_I [symmetric])
|
|
119 |
}
|
22757
|
120 |
then show "Dmonoid.inv (op +) (0::'a::ab_group_add) == uminus"
|
22657
|
121 |
by (rule_tac eq_reflection) (fast intro: ext)
|
|
122 |
qed
|
|
123 |
|
|
124 |
interpretation Dclass: Dgrp ["op +" "0::'a::ring"]
|
|
125 |
apply unfold_locales
|
|
126 |
apply (rule_tac x="-x" in exI) apply simp
|
|
127 |
apply (rule_tac x="-x" in exI) apply simp
|
|
128 |
done
|
|
129 |
|
|
130 |
(* Equation for inverse from Dclass: Dmonoid effective. *)
|
|
131 |
|
|
132 |
thm Dclass.linv
|
|
133 |
lemma "-x + x = (0::'a::ring)" apply (rule Dclass.linv) done
|
|
134 |
|
|
135 |
(* Equations have effect in "subscriptions" *)
|
|
136 |
|
|
137 |
(* In the same module *)
|
|
138 |
|
|
139 |
lemma (in Dmonoid) trivial:
|
|
140 |
"inv one = inv one"
|
|
141 |
by rule
|
|
142 |
|
|
143 |
thm Dclass.trivial
|
|
144 |
|
|
145 |
(* Inherited: interpretation *)
|
|
146 |
|
|
147 |
lemma (in Dgrp) inv_inv:
|
|
148 |
"inv (inv x) = x"
|
|
149 |
proof -
|
|
150 |
have "inv x ** inv (inv x) = inv x ** x"
|
|
151 |
by (simp add: linv rinv)
|
|
152 |
then show ?thesis by (simp add: lcancel)
|
|
153 |
qed
|
|
154 |
|
|
155 |
thm Dclass.inv_inv
|
|
156 |
lemma "- (- x) = (x::'a::ring)"
|
|
157 |
apply (rule Dclass.inv_inv) done
|
|
158 |
|
|
159 |
end
|