author | wenzelm |
Sat, 18 Oct 2014 22:41:36 +0200 | |
changeset 58703 | 883efcc7a50d |
parent 58649 | a62065b5e1e2 |
child 58776 | 95e58e04e534 |
permissions | -rw-r--r-- |
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
35043
diff
changeset
|
1 |
(* Title: HOL/Rings.thy |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30961
diff
changeset
|
2 |
Author: Gertrud Bauer |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30961
diff
changeset
|
3 |
Author: Steven Obua |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30961
diff
changeset
|
4 |
Author: Tobias Nipkow |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30961
diff
changeset
|
5 |
Author: Lawrence C Paulson |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30961
diff
changeset
|
6 |
Author: Markus Wenzel |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30961
diff
changeset
|
7 |
Author: Jeremy Avigad |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
8 |
*) |
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
9 |
|
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
35043
diff
changeset
|
10 |
header {* Rings *} |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
11 |
|
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
35043
diff
changeset
|
12 |
theory Rings |
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
35043
diff
changeset
|
13 |
imports Groups |
15131 | 14 |
begin |
14504 | 15 |
|
22390 | 16 |
class semiring = ab_semigroup_add + semigroup_mult + |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
17 |
assumes distrib_right[algebra_simps, field_simps]: "(a + b) * c = a * c + b * c" |
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
18 |
assumes distrib_left[algebra_simps, field_simps]: "a * (b + c) = a * b + a * c" |
25152 | 19 |
begin |
20 |
||
21 |
text{*For the @{text combine_numerals} simproc*} |
|
22 |
lemma combine_common_factor: |
|
23 |
"a * e + (b * e + c) = (a + b) * e + c" |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
24 |
by (simp add: distrib_right ac_simps) |
25152 | 25 |
|
26 |
end |
|
14504 | 27 |
|
22390 | 28 |
class mult_zero = times + zero + |
25062 | 29 |
assumes mult_zero_left [simp]: "0 * a = 0" |
30 |
assumes mult_zero_right [simp]: "a * 0 = 0" |
|
58195 | 31 |
begin |
32 |
||
33 |
lemma mult_not_zero: |
|
34 |
"a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0" |
|
35 |
by auto |
|
36 |
||
37 |
end |
|
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
38 |
|
58198 | 39 |
class semiring_0 = semiring + comm_monoid_add + mult_zero |
40 |
||
29904 | 41 |
class semiring_0_cancel = semiring + cancel_comm_monoid_add |
25186 | 42 |
begin |
14504 | 43 |
|
25186 | 44 |
subclass semiring_0 |
28823 | 45 |
proof |
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
46 |
fix a :: 'a |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
47 |
have "0 * a + 0 * a = 0 * a + 0" by (simp add: distrib_right [symmetric]) |
29667 | 48 |
thus "0 * a = 0" by (simp only: add_left_cancel) |
25152 | 49 |
next |
50 |
fix a :: 'a |
|
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
51 |
have "a * 0 + a * 0 = a * 0 + 0" by (simp add: distrib_left [symmetric]) |
29667 | 52 |
thus "a * 0 = 0" by (simp only: add_left_cancel) |
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
53 |
qed |
14940 | 54 |
|
25186 | 55 |
end |
25152 | 56 |
|
22390 | 57 |
class comm_semiring = ab_semigroup_add + ab_semigroup_mult + |
25062 | 58 |
assumes distrib: "(a + b) * c = a * c + b * c" |
25152 | 59 |
begin |
14504 | 60 |
|
25152 | 61 |
subclass semiring |
28823 | 62 |
proof |
14738 | 63 |
fix a b c :: 'a |
64 |
show "(a + b) * c = a * c + b * c" by (simp add: distrib) |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
65 |
have "a * (b + c) = (b + c) * a" by (simp add: ac_simps) |
14738 | 66 |
also have "... = b * a + c * a" by (simp only: distrib) |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
67 |
also have "... = a * b + a * c" by (simp add: ac_simps) |
14738 | 68 |
finally show "a * (b + c) = a * b + a * c" by blast |
14504 | 69 |
qed |
70 |
||
25152 | 71 |
end |
14504 | 72 |
|
25152 | 73 |
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero |
74 |
begin |
|
75 |
||
27516 | 76 |
subclass semiring_0 .. |
25152 | 77 |
|
78 |
end |
|
14504 | 79 |
|
29904 | 80 |
class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add |
25186 | 81 |
begin |
14940 | 82 |
|
27516 | 83 |
subclass semiring_0_cancel .. |
14940 | 84 |
|
28141
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents:
27651
diff
changeset
|
85 |
subclass comm_semiring_0 .. |
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents:
27651
diff
changeset
|
86 |
|
25186 | 87 |
end |
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
88 |
|
22390 | 89 |
class zero_neq_one = zero + one + |
25062 | 90 |
assumes zero_neq_one [simp]: "0 \<noteq> 1" |
26193 | 91 |
begin |
92 |
||
93 |
lemma one_neq_zero [simp]: "1 \<noteq> 0" |
|
29667 | 94 |
by (rule not_sym) (rule zero_neq_one) |
26193 | 95 |
|
54225 | 96 |
definition of_bool :: "bool \<Rightarrow> 'a" |
97 |
where |
|
98 |
"of_bool p = (if p then 1 else 0)" |
|
99 |
||
100 |
lemma of_bool_eq [simp, code]: |
|
101 |
"of_bool False = 0" |
|
102 |
"of_bool True = 1" |
|
103 |
by (simp_all add: of_bool_def) |
|
104 |
||
105 |
lemma of_bool_eq_iff: |
|
106 |
"of_bool p = of_bool q \<longleftrightarrow> p = q" |
|
107 |
by (simp add: of_bool_def) |
|
108 |
||
55187 | 109 |
lemma split_of_bool [split]: |
110 |
"P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)" |
|
111 |
by (cases p) simp_all |
|
112 |
||
113 |
lemma split_of_bool_asm: |
|
114 |
"P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)" |
|
115 |
by (cases p) simp_all |
|
116 |
||
54225 | 117 |
end |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
118 |
|
22390 | 119 |
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult |
14504 | 120 |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
121 |
text {* Abstract divisibility *} |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
122 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
123 |
class dvd = times |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
124 |
begin |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
125 |
|
50420 | 126 |
definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where |
37767 | 127 |
"b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
128 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
129 |
lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
130 |
unfolding dvd_def .. |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
131 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
132 |
lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
133 |
unfolding dvd_def by blast |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
134 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
135 |
end |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
136 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
137 |
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd |
22390 | 138 |
(*previously almost_semiring*) |
25152 | 139 |
begin |
14738 | 140 |
|
27516 | 141 |
subclass semiring_1 .. |
25152 | 142 |
|
29925 | 143 |
lemma dvd_refl[simp]: "a dvd a" |
28559 | 144 |
proof |
145 |
show "a = a * 1" by simp |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
146 |
qed |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
147 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
148 |
lemma dvd_trans: |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
149 |
assumes "a dvd b" and "b dvd c" |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
150 |
shows "a dvd c" |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
151 |
proof - |
28559 | 152 |
from assms obtain v where "b = a * v" by (auto elim!: dvdE) |
153 |
moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56544
diff
changeset
|
154 |
ultimately have "c = a * (v * w)" by (simp add: mult.assoc) |
28559 | 155 |
then show ?thesis .. |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
156 |
qed |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
157 |
|
54147
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
158 |
lemma dvd_0_left_iff [simp]: "0 dvd a \<longleftrightarrow> a = 0" |
29667 | 159 |
by (auto intro: dvd_refl elim!: dvdE) |
28559 | 160 |
|
161 |
lemma dvd_0_right [iff]: "a dvd 0" |
|
162 |
proof |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
163 |
show "0 = a * 0" by simp |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
164 |
qed |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
165 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
166 |
lemma one_dvd [simp]: "1 dvd a" |
29667 | 167 |
by (auto intro!: dvdI) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
168 |
|
30042 | 169 |
lemma dvd_mult[simp]: "a dvd c \<Longrightarrow> a dvd (b * c)" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56544
diff
changeset
|
170 |
by (auto intro!: mult.left_commute dvdI elim!: dvdE) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
171 |
|
30042 | 172 |
lemma dvd_mult2[simp]: "a dvd b \<Longrightarrow> a dvd (b * c)" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56544
diff
changeset
|
173 |
apply (subst mult.commute) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
174 |
apply (erule dvd_mult) |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
175 |
done |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
176 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
177 |
lemma dvd_triv_right [simp]: "a dvd b * a" |
29667 | 178 |
by (rule dvd_mult) (rule dvd_refl) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
179 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
180 |
lemma dvd_triv_left [simp]: "a dvd a * b" |
29667 | 181 |
by (rule dvd_mult2) (rule dvd_refl) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
182 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
183 |
lemma mult_dvd_mono: |
30042 | 184 |
assumes "a dvd b" |
185 |
and "c dvd d" |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
186 |
shows "a * c dvd b * d" |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
187 |
proof - |
30042 | 188 |
from `a dvd b` obtain b' where "b = a * b'" .. |
189 |
moreover from `c dvd d` obtain d' where "d = c * d'" .. |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
190 |
ultimately have "b * d = (a * c) * (b' * d')" by (simp add: ac_simps) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
191 |
then show ?thesis .. |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
192 |
qed |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
193 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
194 |
lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56544
diff
changeset
|
195 |
by (simp add: dvd_def mult.assoc, blast) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
196 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
197 |
lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
198 |
unfolding mult.commute [of a] by (rule dvd_mult_left) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
199 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
200 |
lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" |
29667 | 201 |
by simp |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
202 |
|
29925 | 203 |
lemma dvd_add[simp]: |
204 |
assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)" |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
205 |
proof - |
29925 | 206 |
from `a dvd b` obtain b' where "b = a * b'" .. |
207 |
moreover from `a dvd c` obtain c' where "c = a * c'" .. |
|
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
208 |
ultimately have "b + c = a * (b' + c')" by (simp add: distrib_left) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
209 |
then show ?thesis .. |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
210 |
qed |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
211 |
|
25152 | 212 |
end |
14421
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents:
14398
diff
changeset
|
213 |
|
58647 | 214 |
class semiring_dvd = comm_semiring_1 + |
215 |
assumes dvd_add_times_triv_left_iff [simp]: "a dvd c * a + b \<longleftrightarrow> a dvd b" |
|
216 |
assumes dvd_addD: "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c" |
|
217 |
begin |
|
218 |
||
219 |
lemma dvd_add_times_triv_right_iff [simp]: |
|
220 |
"a dvd b + c * a \<longleftrightarrow> a dvd b" |
|
221 |
using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps) |
|
222 |
||
223 |
lemma dvd_add_triv_left_iff [simp]: |
|
224 |
"a dvd a + b \<longleftrightarrow> a dvd b" |
|
225 |
using dvd_add_times_triv_left_iff [of a 1 b] by simp |
|
226 |
||
227 |
lemma dvd_add_triv_right_iff [simp]: |
|
228 |
"a dvd b + a \<longleftrightarrow> a dvd b" |
|
229 |
using dvd_add_times_triv_right_iff [of a b 1] by simp |
|
230 |
||
58649
a62065b5e1e2
generalized and consolidated some theorems concerning divisibility
haftmann
parents:
58647
diff
changeset
|
231 |
lemma dvd_add_right_iff: |
58647 | 232 |
assumes "a dvd b" |
233 |
shows "a dvd b + c \<longleftrightarrow> a dvd c" |
|
234 |
using assms by (auto dest: dvd_addD) |
|
235 |
||
58649
a62065b5e1e2
generalized and consolidated some theorems concerning divisibility
haftmann
parents:
58647
diff
changeset
|
236 |
lemma dvd_add_left_iff: |
58647 | 237 |
assumes "a dvd c" |
238 |
shows "a dvd b + c \<longleftrightarrow> a dvd b" |
|
58649
a62065b5e1e2
generalized and consolidated some theorems concerning divisibility
haftmann
parents:
58647
diff
changeset
|
239 |
using assms dvd_add_right_iff [of a c b] by (simp add: ac_simps) |
58647 | 240 |
|
241 |
end |
|
242 |
||
22390 | 243 |
class no_zero_divisors = zero + times + |
25062 | 244 |
assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" |
36719 | 245 |
begin |
246 |
||
247 |
lemma divisors_zero: |
|
248 |
assumes "a * b = 0" |
|
249 |
shows "a = 0 \<or> b = 0" |
|
250 |
proof (rule classical) |
|
251 |
assume "\<not> (a = 0 \<or> b = 0)" |
|
252 |
then have "a \<noteq> 0" and "b \<noteq> 0" by auto |
|
253 |
with no_zero_divisors have "a * b \<noteq> 0" by blast |
|
254 |
with assms show ?thesis by simp |
|
255 |
qed |
|
256 |
||
257 |
end |
|
14504 | 258 |
|
29904 | 259 |
class semiring_1_cancel = semiring + cancel_comm_monoid_add |
260 |
+ zero_neq_one + monoid_mult |
|
25267 | 261 |
begin |
14940 | 262 |
|
27516 | 263 |
subclass semiring_0_cancel .. |
25512
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
haftmann
parents:
25450
diff
changeset
|
264 |
|
27516 | 265 |
subclass semiring_1 .. |
25267 | 266 |
|
267 |
end |
|
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
268 |
|
29904 | 269 |
class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add |
270 |
+ zero_neq_one + comm_monoid_mult |
|
25267 | 271 |
begin |
14738 | 272 |
|
27516 | 273 |
subclass semiring_1_cancel .. |
274 |
subclass comm_semiring_0_cancel .. |
|
275 |
subclass comm_semiring_1 .. |
|
25267 | 276 |
|
277 |
end |
|
25152 | 278 |
|
22390 | 279 |
class ring = semiring + ab_group_add |
25267 | 280 |
begin |
25152 | 281 |
|
27516 | 282 |
subclass semiring_0_cancel .. |
25152 | 283 |
|
284 |
text {* Distribution rules *} |
|
285 |
||
286 |
lemma minus_mult_left: "- (a * b) = - a * b" |
|
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
287 |
by (rule minus_unique) (simp add: distrib_right [symmetric]) |
25152 | 288 |
|
289 |
lemma minus_mult_right: "- (a * b) = a * - b" |
|
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
290 |
by (rule minus_unique) (simp add: distrib_left [symmetric]) |
25152 | 291 |
|
29407
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
huffman
parents:
29406
diff
changeset
|
292 |
text{*Extract signs from products*} |
54147
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
293 |
lemmas mult_minus_left [simp] = minus_mult_left [symmetric] |
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
294 |
lemmas mult_minus_right [simp] = minus_mult_right [symmetric] |
29407
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
huffman
parents:
29406
diff
changeset
|
295 |
|
25152 | 296 |
lemma minus_mult_minus [simp]: "- a * - b = a * b" |
29667 | 297 |
by simp |
25152 | 298 |
|
299 |
lemma minus_mult_commute: "- a * b = a * - b" |
|
29667 | 300 |
by simp |
301 |
||
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
302 |
lemma right_diff_distrib [algebra_simps, field_simps]: |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
303 |
"a * (b - c) = a * b - a * c" |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
304 |
using distrib_left [of a b "-c "] by simp |
29667 | 305 |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
306 |
lemma left_diff_distrib [algebra_simps, field_simps]: |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
307 |
"(a - b) * c = a * c - b * c" |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
308 |
using distrib_right [of a "- b" c] by simp |
25152 | 309 |
|
54147
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
310 |
lemmas ring_distribs = |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
311 |
distrib_left distrib_right left_diff_distrib right_diff_distrib |
25152 | 312 |
|
25230 | 313 |
lemma eq_add_iff1: |
314 |
"a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" |
|
29667 | 315 |
by (simp add: algebra_simps) |
25230 | 316 |
|
317 |
lemma eq_add_iff2: |
|
318 |
"a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" |
|
29667 | 319 |
by (simp add: algebra_simps) |
25230 | 320 |
|
25152 | 321 |
end |
322 |
||
54147
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
323 |
lemmas ring_distribs = |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
324 |
distrib_left distrib_right left_diff_distrib right_diff_distrib |
25152 | 325 |
|
22390 | 326 |
class comm_ring = comm_semiring + ab_group_add |
25267 | 327 |
begin |
14738 | 328 |
|
27516 | 329 |
subclass ring .. |
28141
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents:
27651
diff
changeset
|
330 |
subclass comm_semiring_0_cancel .. |
25267 | 331 |
|
44350
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents:
44346
diff
changeset
|
332 |
lemma square_diff_square_factored: |
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents:
44346
diff
changeset
|
333 |
"x * x - y * y = (x + y) * (x - y)" |
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents:
44346
diff
changeset
|
334 |
by (simp add: algebra_simps) |
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
huffman
parents:
44346
diff
changeset
|
335 |
|
25267 | 336 |
end |
14738 | 337 |
|
22390 | 338 |
class ring_1 = ring + zero_neq_one + monoid_mult |
25267 | 339 |
begin |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
340 |
|
27516 | 341 |
subclass semiring_1_cancel .. |
25267 | 342 |
|
44346
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents:
44064
diff
changeset
|
343 |
lemma square_diff_one_factored: |
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents:
44064
diff
changeset
|
344 |
"x * x - 1 = (x + 1) * (x - 1)" |
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents:
44064
diff
changeset
|
345 |
by (simp add: algebra_simps) |
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
huffman
parents:
44064
diff
changeset
|
346 |
|
25267 | 347 |
end |
25152 | 348 |
|
22390 | 349 |
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult |
350 |
(*previously ring*) |
|
25267 | 351 |
begin |
14738 | 352 |
|
27516 | 353 |
subclass ring_1 .. |
354 |
subclass comm_semiring_1_cancel .. |
|
25267 | 355 |
|
58647 | 356 |
subclass semiring_dvd |
357 |
proof |
|
358 |
fix a b c |
|
359 |
show "a dvd c * a + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q") |
|
360 |
proof |
|
361 |
assume ?Q then show ?P by simp |
|
362 |
next |
|
363 |
assume ?P then obtain d where "c * a + b = a * d" .. |
|
364 |
then have "b = a * (d - c)" by (simp add: algebra_simps) |
|
365 |
then show ?Q .. |
|
366 |
qed |
|
367 |
assume "a dvd b + c" and "a dvd b" |
|
368 |
show "a dvd c" |
|
369 |
proof - |
|
370 |
from `a dvd b` obtain d where "b = a * d" .. |
|
371 |
moreover from `a dvd b + c` obtain e where "b + c = a * e" .. |
|
372 |
ultimately have "a * d + c = a * e" by simp |
|
373 |
then have "c = a * (e - d)" by (simp add: algebra_simps) |
|
374 |
then show "a dvd c" .. |
|
375 |
qed |
|
376 |
qed |
|
377 |
||
29465
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents:
29461
diff
changeset
|
378 |
lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" |
29408
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
379 |
proof |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
380 |
assume "x dvd - y" |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
381 |
then have "x dvd - 1 * - y" by (rule dvd_mult) |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
382 |
then show "x dvd y" by simp |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
383 |
next |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
384 |
assume "x dvd y" |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
385 |
then have "x dvd - 1 * y" by (rule dvd_mult) |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
386 |
then show "x dvd - y" by simp |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
387 |
qed |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
388 |
|
29465
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents:
29461
diff
changeset
|
389 |
lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" |
29408
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
390 |
proof |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
391 |
assume "- x dvd y" |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
392 |
then obtain k where "y = - x * k" .. |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
393 |
then have "y = x * - k" by simp |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
394 |
then show "x dvd y" .. |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
395 |
next |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
396 |
assume "x dvd y" |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
397 |
then obtain k where "y = x * k" .. |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
398 |
then have "y = - x * - k" by simp |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
399 |
then show "- x dvd y" .. |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
400 |
qed |
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents:
29407
diff
changeset
|
401 |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
402 |
lemma dvd_diff [simp]: |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
403 |
"x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" |
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
404 |
using dvd_add [of x y "- z"] by simp |
29409 | 405 |
|
25267 | 406 |
end |
25152 | 407 |
|
22990
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents:
22987
diff
changeset
|
408 |
class ring_no_zero_divisors = ring + no_zero_divisors |
25230 | 409 |
begin |
410 |
||
411 |
lemma mult_eq_0_iff [simp]: |
|
412 |
shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)" |
|
413 |
proof (cases "a = 0 \<or> b = 0") |
|
414 |
case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto |
|
415 |
then show ?thesis using no_zero_divisors by simp |
|
416 |
next |
|
417 |
case True then show ?thesis by auto |
|
418 |
qed |
|
419 |
||
26193 | 420 |
text{*Cancellation of equalities with a common factor*} |
54147
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
421 |
lemma mult_cancel_right [simp]: |
26193 | 422 |
"a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" |
423 |
proof - |
|
424 |
have "(a * c = b * c) = ((a - b) * c = 0)" |
|
35216 | 425 |
by (simp add: algebra_simps) |
426 |
thus ?thesis by (simp add: disj_commute) |
|
26193 | 427 |
qed |
428 |
||
54147
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
429 |
lemma mult_cancel_left [simp]: |
26193 | 430 |
"c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" |
431 |
proof - |
|
432 |
have "(c * a = c * b) = (c * (a - b) = 0)" |
|
35216 | 433 |
by (simp add: algebra_simps) |
434 |
thus ?thesis by simp |
|
26193 | 435 |
qed |
436 |
||
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
55912
diff
changeset
|
437 |
lemma mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> (c*a=c*b) = (a=b)" |
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
55912
diff
changeset
|
438 |
by simp |
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
55912
diff
changeset
|
439 |
|
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
55912
diff
changeset
|
440 |
lemma mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> (a*c=b*c) = (a=b)" |
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
55912
diff
changeset
|
441 |
by simp |
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
55912
diff
changeset
|
442 |
|
25230 | 443 |
end |
22990
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents:
22987
diff
changeset
|
444 |
|
23544 | 445 |
class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors |
26274 | 446 |
begin |
447 |
||
36970 | 448 |
lemma square_eq_1_iff: |
36821
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
449 |
"x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
450 |
proof - |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
451 |
have "(x - 1) * (x + 1) = x * x - 1" |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
452 |
by (simp add: algebra_simps) |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
453 |
hence "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
454 |
by simp |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
455 |
thus ?thesis |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
456 |
by (simp add: eq_neg_iff_add_eq_0) |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
457 |
qed |
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
huffman
parents:
36719
diff
changeset
|
458 |
|
26274 | 459 |
lemma mult_cancel_right1 [simp]: |
460 |
"c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" |
|
29667 | 461 |
by (insert mult_cancel_right [of 1 c b], force) |
26274 | 462 |
|
463 |
lemma mult_cancel_right2 [simp]: |
|
464 |
"a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" |
|
29667 | 465 |
by (insert mult_cancel_right [of a c 1], simp) |
26274 | 466 |
|
467 |
lemma mult_cancel_left1 [simp]: |
|
468 |
"c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" |
|
29667 | 469 |
by (insert mult_cancel_left [of c 1 b], force) |
26274 | 470 |
|
471 |
lemma mult_cancel_left2 [simp]: |
|
472 |
"c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" |
|
29667 | 473 |
by (insert mult_cancel_left [of c a 1], simp) |
26274 | 474 |
|
475 |
end |
|
22990
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents:
22987
diff
changeset
|
476 |
|
22390 | 477 |
class idom = comm_ring_1 + no_zero_divisors |
25186 | 478 |
begin |
14421
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents:
14398
diff
changeset
|
479 |
|
27516 | 480 |
subclass ring_1_no_zero_divisors .. |
22990
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents:
22987
diff
changeset
|
481 |
|
29915
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
482 |
lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)" |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
483 |
proof |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
484 |
assume "a * a = b * b" |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
485 |
then have "(a - b) * (a + b) = 0" |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
486 |
by (simp add: algebra_simps) |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
487 |
then show "a = b \<or> a = - b" |
35216 | 488 |
by (simp add: eq_neg_iff_add_eq_0) |
29915
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
489 |
next |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
490 |
assume "a = b \<or> a = - b" |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
491 |
then show "a * a = b * b" by auto |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
492 |
qed |
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents:
29904
diff
changeset
|
493 |
|
29981
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
494 |
lemma dvd_mult_cancel_right [simp]: |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
495 |
"a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
496 |
proof - |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
497 |
have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
498 |
unfolding dvd_def by (simp add: ac_simps) |
29981
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
499 |
also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
500 |
unfolding dvd_def by simp |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
501 |
finally show ?thesis . |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
502 |
qed |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
503 |
|
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
504 |
lemma dvd_mult_cancel_left [simp]: |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
505 |
"c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
506 |
proof - |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
507 |
have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
508 |
unfolding dvd_def by (simp add: ac_simps) |
29981
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
509 |
also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
510 |
unfolding dvd_def by simp |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
511 |
finally show ?thesis . |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
512 |
qed |
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
huffman
parents:
29949
diff
changeset
|
513 |
|
25186 | 514 |
end |
25152 | 515 |
|
35302 | 516 |
text {* |
517 |
The theory of partially ordered rings is taken from the books: |
|
518 |
\begin{itemize} |
|
519 |
\item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 |
|
520 |
\item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963 |
|
521 |
\end{itemize} |
|
522 |
Most of the used notions can also be looked up in |
|
523 |
\begin{itemize} |
|
54703 | 524 |
\item @{url "http://www.mathworld.com"} by Eric Weisstein et. al. |
35302 | 525 |
\item \emph{Algebra I} by van der Waerden, Springer. |
526 |
\end{itemize} |
|
527 |
*} |
|
528 |
||
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
529 |
class ordered_semiring = semiring + comm_monoid_add + ordered_ab_semigroup_add + |
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
530 |
assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" |
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
531 |
assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" |
25230 | 532 |
begin |
533 |
||
534 |
lemma mult_mono: |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
535 |
"a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" |
25230 | 536 |
apply (erule mult_right_mono [THEN order_trans], assumption) |
537 |
apply (erule mult_left_mono, assumption) |
|
538 |
done |
|
539 |
||
540 |
lemma mult_mono': |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
541 |
"a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" |
25230 | 542 |
apply (rule mult_mono) |
543 |
apply (fast intro: order_trans)+ |
|
544 |
done |
|
545 |
||
546 |
end |
|
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
547 |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
548 |
class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add |
25267 | 549 |
begin |
14268
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents:
14267
diff
changeset
|
550 |
|
27516 | 551 |
subclass semiring_0_cancel .. |
23521 | 552 |
|
56536 | 553 |
lemma mult_nonneg_nonneg[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
554 |
using mult_left_mono [of 0 b a] by simp |
25230 | 555 |
|
556 |
lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
557 |
using mult_left_mono [of b 0 a] by simp |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
558 |
|
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
559 |
lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
560 |
using mult_right_mono [of a 0 b] by simp |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
561 |
|
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
562 |
text {* Legacy - use @{text mult_nonpos_nonneg} *} |
25230 | 563 |
lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
564 |
by (drule mult_right_mono [of b 0], auto) |
25230 | 565 |
|
26234 | 566 |
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" |
29667 | 567 |
by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) |
25230 | 568 |
|
569 |
end |
|
570 |
||
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
571 |
class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add |
25267 | 572 |
begin |
25230 | 573 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
574 |
subclass ordered_cancel_semiring .. |
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
575 |
|
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
576 |
subclass ordered_comm_monoid_add .. |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
577 |
|
25230 | 578 |
lemma mult_left_less_imp_less: |
579 |
"c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" |
|
29667 | 580 |
by (force simp add: mult_left_mono not_le [symmetric]) |
25230 | 581 |
|
582 |
lemma mult_right_less_imp_less: |
|
583 |
"a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" |
|
29667 | 584 |
by (force simp add: mult_right_mono not_le [symmetric]) |
23521 | 585 |
|
25186 | 586 |
end |
25152 | 587 |
|
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35032
diff
changeset
|
588 |
class linordered_semiring_1 = linordered_semiring + semiring_1 |
36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
589 |
begin |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
590 |
|
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
591 |
lemma convex_bound_le: |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
592 |
assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
593 |
shows "u * x + v * y \<le> a" |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
594 |
proof- |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
595 |
from assms have "u * x + v * y \<le> u * a + v * a" |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
596 |
by (simp add: add_mono mult_left_mono) |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
597 |
thus ?thesis using assms unfolding distrib_right[symmetric] by simp |
36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
598 |
qed |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
599 |
|
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
600 |
end |
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35032
diff
changeset
|
601 |
|
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35032
diff
changeset
|
602 |
class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + |
25062 | 603 |
assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" |
604 |
assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" |
|
25267 | 605 |
begin |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14334
diff
changeset
|
606 |
|
27516 | 607 |
subclass semiring_0_cancel .. |
14940 | 608 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
609 |
subclass linordered_semiring |
28823 | 610 |
proof |
23550 | 611 |
fix a b c :: 'a |
612 |
assume A: "a \<le> b" "0 \<le> c" |
|
613 |
from A show "c * a \<le> c * b" |
|
25186 | 614 |
unfolding le_less |
615 |
using mult_strict_left_mono by (cases "c = 0") auto |
|
23550 | 616 |
from A show "a * c \<le> b * c" |
25152 | 617 |
unfolding le_less |
25186 | 618 |
using mult_strict_right_mono by (cases "c = 0") auto |
25152 | 619 |
qed |
620 |
||
25230 | 621 |
lemma mult_left_le_imp_le: |
622 |
"c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" |
|
29667 | 623 |
by (force simp add: mult_strict_left_mono _not_less [symmetric]) |
25230 | 624 |
|
625 |
lemma mult_right_le_imp_le: |
|
626 |
"a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" |
|
29667 | 627 |
by (force simp add: mult_strict_right_mono not_less [symmetric]) |
25230 | 628 |
|
56544 | 629 |
lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
630 |
using mult_strict_left_mono [of 0 b a] by simp |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
631 |
|
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
632 |
lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
633 |
using mult_strict_left_mono [of b 0 a] by simp |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
634 |
|
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
635 |
lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
636 |
using mult_strict_right_mono [of a 0 b] by simp |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
637 |
|
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
638 |
text {* Legacy - use @{text mult_neg_pos} *} |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
639 |
lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
640 |
by (drule mult_strict_right_mono [of b 0], auto) |
25230 | 641 |
|
642 |
lemma zero_less_mult_pos: |
|
643 |
"0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" |
|
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
644 |
apply (cases "b\<le>0") |
25230 | 645 |
apply (auto simp add: le_less not_less) |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
646 |
apply (drule_tac mult_pos_neg [of a b]) |
25230 | 647 |
apply (auto dest: less_not_sym) |
648 |
done |
|
649 |
||
650 |
lemma zero_less_mult_pos2: |
|
651 |
"0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" |
|
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
652 |
apply (cases "b\<le>0") |
25230 | 653 |
apply (auto simp add: le_less not_less) |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
654 |
apply (drule_tac mult_pos_neg2 [of a b]) |
25230 | 655 |
apply (auto dest: less_not_sym) |
656 |
done |
|
657 |
||
26193 | 658 |
text{*Strict monotonicity in both arguments*} |
659 |
lemma mult_strict_mono: |
|
660 |
assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" |
|
661 |
shows "a * c < b * d" |
|
662 |
using assms apply (cases "c=0") |
|
56544 | 663 |
apply (simp) |
26193 | 664 |
apply (erule mult_strict_right_mono [THEN less_trans]) |
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
665 |
apply (force simp add: le_less) |
26193 | 666 |
apply (erule mult_strict_left_mono, assumption) |
667 |
done |
|
668 |
||
669 |
text{*This weaker variant has more natural premises*} |
|
670 |
lemma mult_strict_mono': |
|
671 |
assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" |
|
672 |
shows "a * c < b * d" |
|
29667 | 673 |
by (rule mult_strict_mono) (insert assms, auto) |
26193 | 674 |
|
675 |
lemma mult_less_le_imp_less: |
|
676 |
assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" |
|
677 |
shows "a * c < b * d" |
|
678 |
using assms apply (subgoal_tac "a * c < b * c") |
|
679 |
apply (erule less_le_trans) |
|
680 |
apply (erule mult_left_mono) |
|
681 |
apply simp |
|
682 |
apply (erule mult_strict_right_mono) |
|
683 |
apply assumption |
|
684 |
done |
|
685 |
||
686 |
lemma mult_le_less_imp_less: |
|
687 |
assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" |
|
688 |
shows "a * c < b * d" |
|
689 |
using assms apply (subgoal_tac "a * c \<le> b * c") |
|
690 |
apply (erule le_less_trans) |
|
691 |
apply (erule mult_strict_left_mono) |
|
692 |
apply simp |
|
693 |
apply (erule mult_right_mono) |
|
694 |
apply simp |
|
695 |
done |
|
696 |
||
697 |
lemma mult_less_imp_less_left: |
|
698 |
assumes less: "c * a < c * b" and nonneg: "0 \<le> c" |
|
699 |
shows "a < b" |
|
700 |
proof (rule ccontr) |
|
701 |
assume "\<not> a < b" |
|
702 |
hence "b \<le> a" by (simp add: linorder_not_less) |
|
703 |
hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono) |
|
29667 | 704 |
with this and less show False by (simp add: not_less [symmetric]) |
26193 | 705 |
qed |
706 |
||
707 |
lemma mult_less_imp_less_right: |
|
708 |
assumes less: "a * c < b * c" and nonneg: "0 \<le> c" |
|
709 |
shows "a < b" |
|
710 |
proof (rule ccontr) |
|
711 |
assume "\<not> a < b" |
|
712 |
hence "b \<le> a" by (simp add: linorder_not_less) |
|
713 |
hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono) |
|
29667 | 714 |
with this and less show False by (simp add: not_less [symmetric]) |
26193 | 715 |
qed |
716 |
||
25230 | 717 |
end |
718 |
||
35097
4554bb2abfa3
dropped last occurence of the linlinordered accident
haftmann
parents:
35092
diff
changeset
|
719 |
class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 |
36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
720 |
begin |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
721 |
|
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
722 |
subclass linordered_semiring_1 .. |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
723 |
|
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
724 |
lemma convex_bound_lt: |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
725 |
assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
726 |
shows "u * x + v * y < a" |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
727 |
proof - |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
728 |
from assms have "u * x + v * y < u * a + v * a" |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
729 |
by (cases "u = 0") |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
730 |
(auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44921
diff
changeset
|
731 |
thus ?thesis using assms unfolding distrib_right[symmetric] by simp |
36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
732 |
qed |
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
733 |
|
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
734 |
end |
33319 | 735 |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
736 |
class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + |
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
737 |
assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" |
25186 | 738 |
begin |
25152 | 739 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
740 |
subclass ordered_semiring |
28823 | 741 |
proof |
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
742 |
fix a b c :: 'a |
23550 | 743 |
assume "a \<le> b" "0 \<le> c" |
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
744 |
thus "c * a \<le> c * b" by (rule comm_mult_left_mono) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56544
diff
changeset
|
745 |
thus "a * c \<le> b * c" by (simp only: mult.commute) |
21199
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents:
20633
diff
changeset
|
746 |
qed |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
747 |
|
25267 | 748 |
end |
749 |
||
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
750 |
class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add |
25267 | 751 |
begin |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
752 |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
753 |
subclass comm_semiring_0_cancel .. |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
754 |
subclass ordered_comm_semiring .. |
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
755 |
subclass ordered_cancel_semiring .. |
25267 | 756 |
|
757 |
end |
|
758 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
759 |
class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + |
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
760 |
assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" |
25267 | 761 |
begin |
762 |
||
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35032
diff
changeset
|
763 |
subclass linordered_semiring_strict |
28823 | 764 |
proof |
23550 | 765 |
fix a b c :: 'a |
766 |
assume "a < b" "0 < c" |
|
38642
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents:
37767
diff
changeset
|
767 |
thus "c * a < c * b" by (rule comm_mult_strict_left_mono) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56544
diff
changeset
|
768 |
thus "a * c < b * c" by (simp only: mult.commute) |
23550 | 769 |
qed |
14272
5efbb548107d
Tidying of the integer development; towards removing the
paulson
parents:
14270
diff
changeset
|
770 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
771 |
subclass ordered_cancel_comm_semiring |
28823 | 772 |
proof |
23550 | 773 |
fix a b c :: 'a |
774 |
assume "a \<le> b" "0 \<le> c" |
|
775 |
thus "c * a \<le> c * b" |
|
25186 | 776 |
unfolding le_less |
26193 | 777 |
using mult_strict_left_mono by (cases "c = 0") auto |
23550 | 778 |
qed |
14272
5efbb548107d
Tidying of the integer development; towards removing the
paulson
parents:
14270
diff
changeset
|
779 |
|
25267 | 780 |
end |
25230 | 781 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
782 |
class ordered_ring = ring + ordered_cancel_semiring |
25267 | 783 |
begin |
25230 | 784 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
785 |
subclass ordered_ab_group_add .. |
14270 | 786 |
|
25230 | 787 |
lemma less_add_iff1: |
788 |
"a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" |
|
29667 | 789 |
by (simp add: algebra_simps) |
25230 | 790 |
|
791 |
lemma less_add_iff2: |
|
792 |
"a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" |
|
29667 | 793 |
by (simp add: algebra_simps) |
25230 | 794 |
|
795 |
lemma le_add_iff1: |
|
796 |
"a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" |
|
29667 | 797 |
by (simp add: algebra_simps) |
25230 | 798 |
|
799 |
lemma le_add_iff2: |
|
800 |
"a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" |
|
29667 | 801 |
by (simp add: algebra_simps) |
25230 | 802 |
|
803 |
lemma mult_left_mono_neg: |
|
804 |
"b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
805 |
apply (drule mult_left_mono [of _ _ "- c"]) |
35216 | 806 |
apply simp_all |
25230 | 807 |
done |
808 |
||
809 |
lemma mult_right_mono_neg: |
|
810 |
"b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
811 |
apply (drule mult_right_mono [of _ _ "- c"]) |
35216 | 812 |
apply simp_all |
25230 | 813 |
done |
814 |
||
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
815 |
lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
816 |
using mult_right_mono_neg [of a 0 b] by simp |
25230 | 817 |
|
818 |
lemma split_mult_pos_le: |
|
819 |
"(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" |
|
56536 | 820 |
by (auto simp add: mult_nonpos_nonpos) |
25186 | 821 |
|
822 |
end |
|
14270 | 823 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
824 |
class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
825 |
begin |
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
826 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
827 |
subclass ordered_ring .. |
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
828 |
|
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
829 |
subclass ordered_ab_group_add_abs |
28823 | 830 |
proof |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
831 |
fix a b |
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
832 |
show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54225
diff
changeset
|
833 |
by (auto simp add: abs_if not_le not_less algebra_simps simp del: add.commute dest: add_neg_neg add_nonneg_nonneg) |
35216 | 834 |
qed (auto simp add: abs_if) |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
835 |
|
35631
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35302
diff
changeset
|
836 |
lemma zero_le_square [simp]: "0 \<le> a * a" |
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35302
diff
changeset
|
837 |
using linear [of 0 a] |
56536 | 838 |
by (auto simp add: mult_nonpos_nonpos) |
35631
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35302
diff
changeset
|
839 |
|
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35302
diff
changeset
|
840 |
lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" |
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35302
diff
changeset
|
841 |
by (simp add: not_less) |
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35302
diff
changeset
|
842 |
|
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
843 |
end |
23521 | 844 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
845 |
(* The "strict" suffix can be seen as describing the combination of linordered_ring and no_zero_divisors. |
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35032
diff
changeset
|
846 |
Basically, linordered_ring + no_zero_divisors = linordered_ring_strict. |
25230 | 847 |
*) |
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35032
diff
changeset
|
848 |
class linordered_ring_strict = ring + linordered_semiring_strict |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
849 |
+ ordered_ab_group_add + abs_if |
25230 | 850 |
begin |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
851 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
852 |
subclass linordered_ring .. |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
853 |
|
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
854 |
lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
855 |
using mult_strict_left_mono [of b a "- c"] by simp |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
856 |
|
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
857 |
lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
858 |
using mult_strict_right_mono [of b a "- c"] by simp |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
859 |
|
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
860 |
lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
861 |
using mult_strict_right_mono_neg [of a 0 b] by simp |
14738 | 862 |
|
25917 | 863 |
subclass ring_no_zero_divisors |
28823 | 864 |
proof |
25917 | 865 |
fix a b |
866 |
assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) |
|
867 |
assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) |
|
868 |
have "a * b < 0 \<or> 0 < a * b" |
|
869 |
proof (cases "a < 0") |
|
870 |
case True note A' = this |
|
871 |
show ?thesis proof (cases "b < 0") |
|
872 |
case True with A' |
|
873 |
show ?thesis by (auto dest: mult_neg_neg) |
|
874 |
next |
|
875 |
case False with B have "0 < b" by auto |
|
876 |
with A' show ?thesis by (auto dest: mult_strict_right_mono) |
|
877 |
qed |
|
878 |
next |
|
879 |
case False with A have A': "0 < a" by auto |
|
880 |
show ?thesis proof (cases "b < 0") |
|
881 |
case True with A' |
|
882 |
show ?thesis by (auto dest: mult_strict_right_mono_neg) |
|
883 |
next |
|
884 |
case False with B have "0 < b" by auto |
|
56544 | 885 |
with A' show ?thesis by auto |
25917 | 886 |
qed |
887 |
qed |
|
888 |
then show "a * b \<noteq> 0" by (simp add: neq_iff) |
|
889 |
qed |
|
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
890 |
|
56480
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56217
diff
changeset
|
891 |
lemma zero_less_mult_iff: "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" |
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56217
diff
changeset
|
892 |
by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases]) |
56544 | 893 |
(auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2) |
22990
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents:
22987
diff
changeset
|
894 |
|
56480
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56217
diff
changeset
|
895 |
lemma zero_le_mult_iff: "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" |
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56217
diff
changeset
|
896 |
by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
897 |
|
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
898 |
lemma mult_less_0_iff: |
25917 | 899 |
"a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" |
35216 | 900 |
apply (insert zero_less_mult_iff [of "-a" b]) |
901 |
apply force |
|
25917 | 902 |
done |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
903 |
|
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
904 |
lemma mult_le_0_iff: |
25917 | 905 |
"a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" |
906 |
apply (insert zero_le_mult_iff [of "-a" b]) |
|
35216 | 907 |
apply force |
25917 | 908 |
done |
909 |
||
26193 | 910 |
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"}, |
911 |
also with the relations @{text "\<le>"} and equality.*} |
|
912 |
||
913 |
text{*These ``disjunction'' versions produce two cases when the comparison is |
|
914 |
an assumption, but effectively four when the comparison is a goal.*} |
|
915 |
||
916 |
lemma mult_less_cancel_right_disj: |
|
917 |
"a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" |
|
918 |
apply (cases "c = 0") |
|
919 |
apply (auto simp add: neq_iff mult_strict_right_mono |
|
920 |
mult_strict_right_mono_neg) |
|
921 |
apply (auto simp add: not_less |
|
922 |
not_le [symmetric, of "a*c"] |
|
923 |
not_le [symmetric, of a]) |
|
924 |
apply (erule_tac [!] notE) |
|
925 |
apply (auto simp add: less_imp_le mult_right_mono |
|
926 |
mult_right_mono_neg) |
|
927 |
done |
|
928 |
||
929 |
lemma mult_less_cancel_left_disj: |
|
930 |
"c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" |
|
931 |
apply (cases "c = 0") |
|
932 |
apply (auto simp add: neq_iff mult_strict_left_mono |
|
933 |
mult_strict_left_mono_neg) |
|
934 |
apply (auto simp add: not_less |
|
935 |
not_le [symmetric, of "c*a"] |
|
936 |
not_le [symmetric, of a]) |
|
937 |
apply (erule_tac [!] notE) |
|
938 |
apply (auto simp add: less_imp_le mult_left_mono |
|
939 |
mult_left_mono_neg) |
|
940 |
done |
|
941 |
||
942 |
text{*The ``conjunction of implication'' lemmas produce two cases when the |
|
943 |
comparison is a goal, but give four when the comparison is an assumption.*} |
|
944 |
||
945 |
lemma mult_less_cancel_right: |
|
946 |
"a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" |
|
947 |
using mult_less_cancel_right_disj [of a c b] by auto |
|
948 |
||
949 |
lemma mult_less_cancel_left: |
|
950 |
"c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" |
|
951 |
using mult_less_cancel_left_disj [of c a b] by auto |
|
952 |
||
953 |
lemma mult_le_cancel_right: |
|
954 |
"a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" |
|
29667 | 955 |
by (simp add: not_less [symmetric] mult_less_cancel_right_disj) |
26193 | 956 |
|
957 |
lemma mult_le_cancel_left: |
|
958 |
"c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" |
|
29667 | 959 |
by (simp add: not_less [symmetric] mult_less_cancel_left_disj) |
26193 | 960 |
|
30649
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
961 |
lemma mult_le_cancel_left_pos: |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
962 |
"0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
963 |
by (auto simp: mult_le_cancel_left) |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
964 |
|
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
965 |
lemma mult_le_cancel_left_neg: |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
966 |
"c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
967 |
by (auto simp: mult_le_cancel_left) |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
968 |
|
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
969 |
lemma mult_less_cancel_left_pos: |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
970 |
"0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
971 |
by (auto simp: mult_less_cancel_left) |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
972 |
|
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
973 |
lemma mult_less_cancel_left_neg: |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
974 |
"c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
975 |
by (auto simp: mult_less_cancel_left) |
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
nipkow
parents:
30242
diff
changeset
|
976 |
|
25917 | 977 |
end |
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
978 |
|
30692
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
979 |
lemmas mult_sign_intros = |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
980 |
mult_nonneg_nonneg mult_nonneg_nonpos |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
981 |
mult_nonpos_nonneg mult_nonpos_nonpos |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
982 |
mult_pos_pos mult_pos_neg |
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents:
30650
diff
changeset
|
983 |
mult_neg_pos mult_neg_neg |
25230 | 984 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
985 |
class ordered_comm_ring = comm_ring + ordered_comm_semiring |
25267 | 986 |
begin |
25230 | 987 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
988 |
subclass ordered_ring .. |
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
989 |
subclass ordered_cancel_comm_semiring .. |
25230 | 990 |
|
25267 | 991 |
end |
25230 | 992 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
993 |
class linordered_semidom = comm_semiring_1_cancel + linordered_comm_semiring_strict + |
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
994 |
(*previously linordered_semiring*) |
25230 | 995 |
assumes zero_less_one [simp]: "0 < 1" |
996 |
begin |
|
997 |
||
998 |
lemma pos_add_strict: |
|
999 |
shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1000 |
using add_strict_mono [of 0 a b c] by simp |
25230 | 1001 |
|
26193 | 1002 |
lemma zero_le_one [simp]: "0 \<le> 1" |
29667 | 1003 |
by (rule zero_less_one [THEN less_imp_le]) |
26193 | 1004 |
|
1005 |
lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" |
|
29667 | 1006 |
by (simp add: not_le) |
26193 | 1007 |
|
1008 |
lemma not_one_less_zero [simp]: "\<not> 1 < 0" |
|
29667 | 1009 |
by (simp add: not_less) |
26193 | 1010 |
|
1011 |
lemma less_1_mult: |
|
1012 |
assumes "1 < m" and "1 < n" |
|
1013 |
shows "1 < m * n" |
|
1014 |
using assms mult_strict_mono [of 1 m 1 n] |
|
1015 |
by (simp add: less_trans [OF zero_less_one]) |
|
1016 |
||
25230 | 1017 |
end |
1018 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1019 |
class linordered_idom = comm_ring_1 + |
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1020 |
linordered_comm_semiring_strict + ordered_ab_group_add + |
25230 | 1021 |
abs_if + sgn_if |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1022 |
(*previously linordered_ring*) |
25917 | 1023 |
begin |
1024 |
||
36622
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
hoelzl
parents:
36348
diff
changeset
|
1025 |
subclass linordered_semiring_1_strict .. |
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35032
diff
changeset
|
1026 |
subclass linordered_ring_strict .. |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1027 |
subclass ordered_comm_ring .. |
27516 | 1028 |
subclass idom .. |
25917 | 1029 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1030 |
subclass linordered_semidom |
28823 | 1031 |
proof |
26193 | 1032 |
have "0 \<le> 1 * 1" by (rule zero_le_square) |
1033 |
thus "0 < 1" by (simp add: le_less) |
|
25917 | 1034 |
qed |
1035 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1036 |
lemma linorder_neqE_linordered_idom: |
26193 | 1037 |
assumes "x \<noteq> y" obtains "x < y" | "y < x" |
1038 |
using assms by (rule neqE) |
|
1039 |
||
26274 | 1040 |
text {* These cancellation simprules also produce two cases when the comparison is a goal. *} |
1041 |
||
1042 |
lemma mult_le_cancel_right1: |
|
1043 |
"c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" |
|
29667 | 1044 |
by (insert mult_le_cancel_right [of 1 c b], simp) |
26274 | 1045 |
|
1046 |
lemma mult_le_cancel_right2: |
|
1047 |
"a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" |
|
29667 | 1048 |
by (insert mult_le_cancel_right [of a c 1], simp) |
26274 | 1049 |
|
1050 |
lemma mult_le_cancel_left1: |
|
1051 |
"c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" |
|
29667 | 1052 |
by (insert mult_le_cancel_left [of c 1 b], simp) |
26274 | 1053 |
|
1054 |
lemma mult_le_cancel_left2: |
|
1055 |
"c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" |
|
29667 | 1056 |
by (insert mult_le_cancel_left [of c a 1], simp) |
26274 | 1057 |
|
1058 |
lemma mult_less_cancel_right1: |
|
1059 |
"c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" |
|
29667 | 1060 |
by (insert mult_less_cancel_right [of 1 c b], simp) |
26274 | 1061 |
|
1062 |
lemma mult_less_cancel_right2: |
|
1063 |
"a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" |
|
29667 | 1064 |
by (insert mult_less_cancel_right [of a c 1], simp) |
26274 | 1065 |
|
1066 |
lemma mult_less_cancel_left1: |
|
1067 |
"c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" |
|
29667 | 1068 |
by (insert mult_less_cancel_left [of c 1 b], simp) |
26274 | 1069 |
|
1070 |
lemma mult_less_cancel_left2: |
|
1071 |
"c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" |
|
29667 | 1072 |
by (insert mult_less_cancel_left [of c a 1], simp) |
26274 | 1073 |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1074 |
lemma sgn_sgn [simp]: |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1075 |
"sgn (sgn a) = sgn a" |
29700 | 1076 |
unfolding sgn_if by simp |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1077 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1078 |
lemma sgn_0_0: |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1079 |
"sgn a = 0 \<longleftrightarrow> a = 0" |
29700 | 1080 |
unfolding sgn_if by simp |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1081 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1082 |
lemma sgn_1_pos: |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1083 |
"sgn a = 1 \<longleftrightarrow> a > 0" |
35216 | 1084 |
unfolding sgn_if by simp |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1085 |
|
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1086 |
lemma sgn_1_neg: |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1087 |
"sgn a = - 1 \<longleftrightarrow> a < 0" |
35216 | 1088 |
unfolding sgn_if by auto |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1089 |
|
29940 | 1090 |
lemma sgn_pos [simp]: |
1091 |
"0 < a \<Longrightarrow> sgn a = 1" |
|
1092 |
unfolding sgn_1_pos . |
|
1093 |
||
1094 |
lemma sgn_neg [simp]: |
|
1095 |
"a < 0 \<Longrightarrow> sgn a = - 1" |
|
1096 |
unfolding sgn_1_neg . |
|
1097 |
||
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1098 |
lemma sgn_times: |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1099 |
"sgn (a * b) = sgn a * sgn b" |
29667 | 1100 |
by (auto simp add: sgn_if zero_less_mult_iff) |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27516
diff
changeset
|
1101 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1102 |
lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" |
29700 | 1103 |
unfolding sgn_if abs_if by auto |
1104 |
||
29940 | 1105 |
lemma sgn_greater [simp]: |
1106 |
"0 < sgn a \<longleftrightarrow> 0 < a" |
|
1107 |
unfolding sgn_if by auto |
|
1108 |
||
1109 |
lemma sgn_less [simp]: |
|
1110 |
"sgn a < 0 \<longleftrightarrow> a < 0" |
|
1111 |
unfolding sgn_if by auto |
|
1112 |
||
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1113 |
lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" |
29949 | 1114 |
by (simp add: abs_if) |
1115 |
||
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1116 |
lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" |
29949 | 1117 |
by (simp add: abs_if) |
29653 | 1118 |
|
33676
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents:
33364
diff
changeset
|
1119 |
lemma dvd_if_abs_eq: |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1120 |
"\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" |
33676
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents:
33364
diff
changeset
|
1121 |
by(subst abs_dvd_iff[symmetric]) simp |
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents:
33364
diff
changeset
|
1122 |
|
55912 | 1123 |
text {* The following lemmas can be proven in more general structures, but |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1124 |
are dangerous as simp rules in absence of @{thm neg_equal_zero}, |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1125 |
@{thm neg_less_pos}, @{thm neg_less_eq_nonneg}. *} |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1126 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1127 |
lemma equation_minus_iff_1 [simp, no_atp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1128 |
"1 = - a \<longleftrightarrow> a = - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1129 |
by (fact equation_minus_iff) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1130 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1131 |
lemma minus_equation_iff_1 [simp, no_atp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1132 |
"- a = 1 \<longleftrightarrow> a = - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1133 |
by (subst minus_equation_iff, auto) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1134 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1135 |
lemma le_minus_iff_1 [simp, no_atp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1136 |
"1 \<le> - b \<longleftrightarrow> b \<le> - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1137 |
by (fact le_minus_iff) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1138 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1139 |
lemma minus_le_iff_1 [simp, no_atp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1140 |
"- a \<le> 1 \<longleftrightarrow> - 1 \<le> a" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1141 |
by (fact minus_le_iff) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1142 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1143 |
lemma less_minus_iff_1 [simp, no_atp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1144 |
"1 < - b \<longleftrightarrow> b < - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1145 |
by (fact less_minus_iff) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1146 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1147 |
lemma minus_less_iff_1 [simp, no_atp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1148 |
"- a < 1 \<longleftrightarrow> - 1 < a" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1149 |
by (fact minus_less_iff) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54250
diff
changeset
|
1150 |
|
25917 | 1151 |
end |
25230 | 1152 |
|
26274 | 1153 |
text {* Simprules for comparisons where common factors can be cancelled. *} |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1154 |
|
54147
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
blanchet
parents:
52435
diff
changeset
|
1155 |
lemmas mult_compare_simps = |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1156 |
mult_le_cancel_right mult_le_cancel_left |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1157 |
mult_le_cancel_right1 mult_le_cancel_right2 |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1158 |
mult_le_cancel_left1 mult_le_cancel_left2 |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1159 |
mult_less_cancel_right mult_less_cancel_left |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1160 |
mult_less_cancel_right1 mult_less_cancel_right2 |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1161 |
mult_less_cancel_left1 mult_less_cancel_left2 |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1162 |
mult_cancel_right mult_cancel_left |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1163 |
mult_cancel_right1 mult_cancel_right2 |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1164 |
mult_cancel_left1 mult_cancel_left2 |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1165 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1166 |
text {* Reasoning about inequalities with division *} |
16775
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents:
16568
diff
changeset
|
1167 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1168 |
context linordered_semidom |
25193 | 1169 |
begin |
1170 |
||
1171 |
lemma less_add_one: "a < a + 1" |
|
14293 | 1172 |
proof - |
25193 | 1173 |
have "a + 0 < a + 1" |
23482 | 1174 |
by (blast intro: zero_less_one add_strict_left_mono) |
14293 | 1175 |
thus ?thesis by simp |
1176 |
qed |
|
1177 |
||
25193 | 1178 |
lemma zero_less_two: "0 < 1 + 1" |
29667 | 1179 |
by (blast intro: less_trans zero_less_one less_add_one) |
25193 | 1180 |
|
1181 |
end |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14353
diff
changeset
|
1182 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1183 |
context linordered_idom |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1184 |
begin |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1185 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1186 |
lemma mult_right_le_one_le: |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1187 |
"0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1188 |
by (auto simp add: mult_le_cancel_left2) |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1189 |
|
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1190 |
lemma mult_left_le_one_le: |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1191 |
"0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1192 |
by (auto simp add: mult_le_cancel_right2) |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1193 |
|
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1194 |
end |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1195 |
|
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1196 |
text {* Absolute Value *} |
14293 | 1197 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1198 |
context linordered_idom |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1199 |
begin |
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1200 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1201 |
lemma mult_sgn_abs: |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1202 |
"sgn x * \<bar>x\<bar> = x" |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1203 |
unfolding abs_if sgn_if by auto |
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1204 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1205 |
lemma abs_one [simp]: |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1206 |
"\<bar>1\<bar> = 1" |
44921 | 1207 |
by (simp add: abs_if) |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1208 |
|
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1209 |
end |
24491 | 1210 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1211 |
class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + |
25304
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1212 |
assumes abs_eq_mult: |
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1213 |
"(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" |
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
haftmann
parents:
25267
diff
changeset
|
1214 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1215 |
context linordered_idom |
30961 | 1216 |
begin |
1217 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34146
diff
changeset
|
1218 |
subclass ordered_ring_abs proof |
35216 | 1219 |
qed (auto simp add: abs_if not_less mult_less_0_iff) |
30961 | 1220 |
|
1221 |
lemma abs_mult: |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1222 |
"\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" |
30961 | 1223 |
by (rule abs_eq_mult) auto |
1224 |
||
1225 |
lemma abs_mult_self: |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1226 |
"\<bar>a\<bar> * \<bar>a\<bar> = a * a" |
30961 | 1227 |
by (simp add: abs_if) |
1228 |
||
14294
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
paulson
parents:
14293
diff
changeset
|
1229 |
lemma abs_mult_less: |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1230 |
"\<bar>a\<bar> < c \<Longrightarrow> \<bar>b\<bar> < d \<Longrightarrow> \<bar>a\<bar> * \<bar>b\<bar> < c * d" |
14294
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
paulson
parents:
14293
diff
changeset
|
1231 |
proof - |
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1232 |
assume ac: "\<bar>a\<bar> < c" |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1233 |
hence cpos: "0<c" by (blast intro: le_less_trans abs_ge_zero) |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1234 |
assume "\<bar>b\<bar> < d" |
14294
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
paulson
parents:
14293
diff
changeset
|
1235 |
thus ?thesis by (simp add: ac cpos mult_strict_mono) |
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
paulson
parents:
14293
diff
changeset
|
1236 |
qed |
14293 | 1237 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1238 |
lemma abs_less_iff: |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1239 |
"\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1240 |
by (simp add: less_le abs_le_iff) (auto simp add: abs_if) |
14738 | 1241 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1242 |
lemma abs_mult_pos: |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1243 |
"0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1244 |
by (simp add: abs_mult) |
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1245 |
|
51520
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents:
50420
diff
changeset
|
1246 |
lemma abs_diff_less_iff: |
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents:
50420
diff
changeset
|
1247 |
"\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" |
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents:
50420
diff
changeset
|
1248 |
by (auto simp add: diff_less_eq ac_simps abs_less_iff) |
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
hoelzl
parents:
50420
diff
changeset
|
1249 |
|
36301
72f4d079ebf8
more localization; factored out lemmas for division_ring
haftmann
parents:
35828
diff
changeset
|
1250 |
end |
16775
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents:
16568
diff
changeset
|
1251 |
|
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
51520
diff
changeset
|
1252 |
code_identifier |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
51520
diff
changeset
|
1253 |
code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith |
33364 | 1254 |
|
14265
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff
changeset
|
1255 |
end |
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
51520
diff
changeset
|
1256 |