| author | wenzelm | 
| Sun, 06 Jan 2008 18:09:34 +0100 | |
| changeset 25856 | 890c51553b33 | 
| parent 25691 | 8f8d83af100a | 
| child 25875 | 536dfdc25e0a | 
| permissions | -rw-r--r-- | 
| 21263 | 1 | (* Title: HOL/Library/Parity.thy | 
| 21256 | 2 | ID: $Id$ | 
| 25600 | 3 | Author: Jeremy Avigad, Jacques D. Fleuriot | 
| 21256 | 4 | *) | 
| 5 | ||
| 6 | header {* Even and Odd for int and nat *}
 | |
| 7 | ||
| 8 | theory Parity | |
| 25691 | 9 | imports ATP_Linkup | 
| 21256 | 10 | begin | 
| 11 | ||
| 22473 | 12 | class even_odd = type + | 
| 22390 | 13 | fixes even :: "'a \<Rightarrow> bool" | 
| 21256 | 14 | |
| 15 | abbreviation | |
| 22390 | 16 | odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where | 
| 17 | "odd x \<equiv> \<not> even x" | |
| 18 | ||
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 19 | instantiation int and nat :: even_odd | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 20 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 21 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 22 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 23 | even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0" | 
| 22390 | 24 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 25 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 26 | even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 27 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 28 | instance .. | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 29 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 30 | end | 
| 21256 | 31 | |
| 32 | ||
| 33 | subsection {* Even and odd are mutually exclusive *}
 | |
| 34 | ||
| 21263 | 35 | lemma int_pos_lt_two_imp_zero_or_one: | 
| 21256 | 36 | "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1" | 
| 23522 | 37 | by presburger | 
| 21256 | 38 | |
| 23522 | 39 | lemma neq_one_mod_two [simp, presburger]: | 
| 40 | "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger | |
| 21256 | 41 | |
| 25600 | 42 | |
| 21256 | 43 | subsection {* Behavior under integer arithmetic operations *}
 | 
| 44 | ||
| 45 | lemma even_times_anything: "even (x::int) ==> even (x * y)" | |
| 46 | by (simp add: even_def zmod_zmult1_eq') | |
| 47 | ||
| 48 | lemma anything_times_even: "even (y::int) ==> even (x * y)" | |
| 49 | by (simp add: even_def zmod_zmult1_eq) | |
| 50 | ||
| 51 | lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" | |
| 52 | by (simp add: even_def zmod_zmult1_eq) | |
| 53 | ||
| 23522 | 54 | lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)" | 
| 21263 | 55 | apply (auto simp add: even_times_anything anything_times_even) | 
| 21256 | 56 | apply (rule ccontr) | 
| 57 | apply (auto simp add: odd_times_odd) | |
| 58 | done | |
| 59 | ||
| 60 | lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)" | |
| 23522 | 61 | by presburger | 
| 21256 | 62 | |
| 63 | lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)" | |
| 23522 | 64 | by presburger | 
| 21256 | 65 | |
| 66 | lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)" | |
| 23522 | 67 | by presburger | 
| 21256 | 68 | |
| 23522 | 69 | lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger | 
| 21256 | 70 | |
| 23522 | 71 | lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" | 
| 72 | by presburger | |
| 21256 | 73 | |
| 23522 | 74 | lemma even_neg[presburger]: "even (-(x::int)) = even x" by presburger | 
| 21256 | 75 | |
| 21263 | 76 | lemma even_difference: | 
| 23522 | 77 | "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger | 
| 21256 | 78 | |
| 21263 | 79 | lemma even_pow_gt_zero: | 
| 80 | "even (x::int) ==> 0 < n ==> even (x^n)" | |
| 81 | by (induct n) (auto simp add: even_product) | |
| 21256 | 82 | |
| 23522 | 83 | lemma odd_pow_iff[presburger]: "odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)" | 
| 84 | apply (induct n, simp_all) | |
| 85 | apply presburger | |
| 86 | apply (case_tac n, auto) | |
| 87 | apply (simp_all add: even_product) | |
| 21256 | 88 | done | 
| 89 | ||
| 23522 | 90 | lemma odd_pow: "odd x ==> odd((x::int)^n)" by (simp add: odd_pow_iff) | 
| 91 | ||
| 92 | lemma even_power[presburger]: "even ((x::int)^n) = (even x & 0 < n)" | |
| 21263 | 93 | apply (auto simp add: even_pow_gt_zero) | 
| 21256 | 94 | apply (erule contrapos_pp, erule odd_pow) | 
| 95 | apply (erule contrapos_pp, simp add: even_def) | |
| 96 | done | |
| 97 | ||
| 23522 | 98 | lemma even_zero[presburger]: "even (0::int)" by presburger | 
| 21256 | 99 | |
| 23522 | 100 | lemma odd_one[presburger]: "odd (1::int)" by presburger | 
| 21256 | 101 | |
| 21263 | 102 | lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero | 
| 21256 | 103 | odd_one even_product even_sum even_neg even_difference even_power | 
| 104 | ||
| 105 | ||
| 106 | subsection {* Equivalent definitions *}
 | |
| 107 | ||
| 23522 | 108 | lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" | 
| 109 | by presburger | |
| 21256 | 110 | |
| 21263 | 111 | lemma two_times_odd_div_two_plus_one: "odd (x::int) ==> | 
| 23522 | 112 | 2 * (x div 2) + 1 = x" by presburger | 
| 21256 | 113 | |
| 23522 | 114 | lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger | 
| 21256 | 115 | |
| 23522 | 116 | lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger | 
| 21256 | 117 | |
| 118 | subsection {* even and odd for nats *}
 | |
| 119 | ||
| 120 | lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)" | |
| 121 | by (simp add: even_nat_def) | |
| 122 | ||
| 23522 | 123 | lemma even_nat_product[presburger]: "even((x::nat) * y) = (even x | even y)" | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23309diff
changeset | 124 | by (simp add: even_nat_def int_mult) | 
| 21256 | 125 | |
| 23522 | 126 | lemma even_nat_sum[presburger]: "even ((x::nat) + y) = | 
| 127 | ((even x & even y) | (odd x & odd y))" by presburger | |
| 21256 | 128 | |
| 23522 | 129 | lemma even_nat_difference[presburger]: | 
| 21256 | 130 | "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" | 
| 23522 | 131 | by presburger | 
| 21256 | 132 | |
| 23522 | 133 | lemma even_nat_Suc[presburger]: "even (Suc x) = odd x" by presburger | 
| 21256 | 134 | |
| 23522 | 135 | lemma even_nat_power[presburger]: "even ((x::nat)^y) = (even x & 0 < y)" | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23309diff
changeset | 136 | by (simp add: even_nat_def int_power) | 
| 21256 | 137 | |
| 23522 | 138 | lemma even_nat_zero[presburger]: "even (0::nat)" by presburger | 
| 21256 | 139 | |
| 21263 | 140 | lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard] | 
| 21256 | 141 | even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power | 
| 142 | ||
| 143 | ||
| 144 | subsection {* Equivalent definitions *}
 | |
| 145 | ||
| 21263 | 146 | lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==> | 
| 23522 | 147 | x = 0 | x = Suc 0" by presburger | 
| 21256 | 148 | |
| 149 | lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0" | |
| 23522 | 150 | by presburger | 
| 21256 | 151 | |
| 152 | lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0" | |
| 23522 | 153 | by presburger | 
| 21256 | 154 | |
| 21263 | 155 | lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" | 
| 23522 | 156 | by presburger | 
| 21256 | 157 | |
| 158 | lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)" | |
| 23522 | 159 | by presburger | 
| 21256 | 160 | |
| 21263 | 161 | lemma even_nat_div_two_times_two: "even (x::nat) ==> | 
| 23522 | 162 | Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger | 
| 21256 | 163 | |
| 21263 | 164 | lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> | 
| 23522 | 165 | Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger | 
| 21256 | 166 | |
| 167 | lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)" | |
| 23522 | 168 | by presburger | 
| 21256 | 169 | |
| 170 | lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))" | |
| 23522 | 171 | by presburger | 
| 21256 | 172 | |
| 25600 | 173 | |
| 21256 | 174 | subsection {* Parity and powers *}
 | 
| 175 | ||
| 21263 | 176 | lemma minus_one_even_odd_power: | 
| 177 |      "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) &
 | |
| 21256 | 178 | (odd x --> (- 1::'a)^x = - 1)" | 
| 179 | apply (induct x) | |
| 180 | apply (rule conjI) | |
| 181 | apply simp | |
| 182 | apply (insert even_nat_zero, blast) | |
| 183 | apply (simp add: power_Suc) | |
| 21263 | 184 | done | 
| 21256 | 185 | |
| 186 | lemma minus_one_even_power [simp]: | |
| 21263 | 187 |     "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
 | 
| 188 | using minus_one_even_odd_power by blast | |
| 21256 | 189 | |
| 190 | lemma minus_one_odd_power [simp]: | |
| 21263 | 191 |     "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
 | 
| 192 | using minus_one_even_odd_power by blast | |
| 21256 | 193 | |
| 194 | lemma neg_one_even_odd_power: | |
| 21263 | 195 |      "(even x --> (-1::'a::{number_ring,recpower})^x = 1) &
 | 
| 21256 | 196 | (odd x --> (-1::'a)^x = -1)" | 
| 197 | apply (induct x) | |
| 198 | apply (simp, simp add: power_Suc) | |
| 199 | done | |
| 200 | ||
| 201 | lemma neg_one_even_power [simp]: | |
| 21263 | 202 |     "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
 | 
| 203 | using neg_one_even_odd_power by blast | |
| 21256 | 204 | |
| 205 | lemma neg_one_odd_power [simp]: | |
| 21263 | 206 |     "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
 | 
| 207 | using neg_one_even_odd_power by blast | |
| 21256 | 208 | |
| 209 | lemma neg_power_if: | |
| 21263 | 210 |      "(-x::'a::{comm_ring_1,recpower}) ^ n =
 | 
| 21256 | 211 | (if even n then (x ^ n) else -(x ^ n))" | 
| 21263 | 212 | apply (induct n) | 
| 213 | apply (simp_all split: split_if_asm add: power_Suc) | |
| 214 | done | |
| 21256 | 215 | |
| 21263 | 216 | lemma zero_le_even_power: "even n ==> | 
| 21256 | 217 |     0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
 | 
| 218 | apply (simp add: even_nat_equiv_def2) | |
| 219 | apply (erule exE) | |
| 220 | apply (erule ssubst) | |
| 221 | apply (subst power_add) | |
| 222 | apply (rule zero_le_square) | |
| 223 | done | |
| 224 | ||
| 21263 | 225 | lemma zero_le_odd_power: "odd n ==> | 
| 21256 | 226 |     (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
 | 
| 227 | apply (simp add: odd_nat_equiv_def2) | |
| 228 | apply (erule exE) | |
| 229 | apply (erule ssubst) | |
| 230 | apply (subst power_Suc) | |
| 231 | apply (subst power_add) | |
| 232 | apply (subst zero_le_mult_iff) | |
| 233 | apply auto | |
| 25162 | 234 | apply (subgoal_tac "x = 0 & y > 0") | 
| 21256 | 235 | apply (erule conjE, assumption) | 
| 21263 | 236 | apply (subst power_eq_0_iff [symmetric]) | 
| 21256 | 237 | apply (subgoal_tac "0 <= x^y * x^y") | 
| 238 | apply simp | |
| 239 | apply (rule zero_le_square)+ | |
| 21263 | 240 | done | 
| 21256 | 241 | |
| 23522 | 242 | lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) =
 | 
| 21256 | 243 | (even n | (odd n & 0 <= x))" | 
| 244 | apply auto | |
| 21263 | 245 | apply (subst zero_le_odd_power [symmetric]) | 
| 21256 | 246 | apply assumption+ | 
| 247 | apply (erule zero_le_even_power) | |
| 21263 | 248 | apply (subst zero_le_odd_power) | 
| 21256 | 249 | apply assumption+ | 
| 21263 | 250 | done | 
| 21256 | 251 | |
| 23522 | 252 | lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
 | 
| 21256 | 253 | (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))" | 
| 254 | apply (rule iffI) | |
| 255 | apply clarsimp | |
| 256 | apply (rule conjI) | |
| 257 | apply clarsimp | |
| 258 | apply (rule ccontr) | |
| 259 | apply (subgoal_tac "~ (0 <= x^n)") | |
| 260 | apply simp | |
| 261 | apply (subst zero_le_odd_power) | |
| 21263 | 262 | apply assumption | 
| 21256 | 263 | apply simp | 
| 264 | apply (rule notI) | |
| 265 | apply (simp add: power_0_left) | |
| 266 | apply (rule notI) | |
| 267 | apply (simp add: power_0_left) | |
| 268 | apply auto | |
| 269 | apply (subgoal_tac "0 <= x^n") | |
| 270 | apply (frule order_le_imp_less_or_eq) | |
| 271 | apply simp | |
| 272 | apply (erule zero_le_even_power) | |
| 273 | apply (subgoal_tac "0 <= x^n") | |
| 274 | apply (frule order_le_imp_less_or_eq) | |
| 275 | apply auto | |
| 276 | apply (subst zero_le_odd_power) | |
| 277 | apply assumption | |
| 278 | apply (erule order_less_imp_le) | |
| 21263 | 279 | done | 
| 21256 | 280 | |
| 23522 | 281 | lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
 | 
| 282 | (odd n & x < 0)" | |
| 21263 | 283 | apply (subst linorder_not_le [symmetric])+ | 
| 21256 | 284 | apply (subst zero_le_power_eq) | 
| 285 | apply auto | |
| 21263 | 286 | done | 
| 21256 | 287 | |
| 23522 | 288 | lemma power_le_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
 | 
| 21256 | 289 | (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))" | 
| 21263 | 290 | apply (subst linorder_not_less [symmetric])+ | 
| 21256 | 291 | apply (subst zero_less_power_eq) | 
| 292 | apply auto | |
| 21263 | 293 | done | 
| 21256 | 294 | |
| 21263 | 295 | lemma power_even_abs: "even n ==> | 
| 21256 | 296 |     (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
 | 
| 21263 | 297 | apply (subst power_abs [symmetric]) | 
| 21256 | 298 | apply (simp add: zero_le_even_power) | 
| 21263 | 299 | done | 
| 21256 | 300 | |
| 23522 | 301 | lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)" | 
| 21263 | 302 | by (induct n) auto | 
| 21256 | 303 | |
| 21263 | 304 | lemma power_minus_even [simp]: "even n ==> | 
| 21256 | 305 |     (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
 | 
| 306 | apply (subst power_minus) | |
| 307 | apply simp | |
| 21263 | 308 | done | 
| 21256 | 309 | |
| 21263 | 310 | lemma power_minus_odd [simp]: "odd n ==> | 
| 21256 | 311 |     (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
 | 
| 312 | apply (subst power_minus) | |
| 313 | apply simp | |
| 21263 | 314 | done | 
| 21256 | 315 | |
| 21263 | 316 | |
| 25600 | 317 | subsection {* General Lemmas About Division *}
 | 
| 318 | ||
| 319 | lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" | |
| 320 | apply (induct "m") | |
| 321 | apply (simp_all add: mod_Suc) | |
| 322 | done | |
| 323 | ||
| 324 | declare Suc_times_mod_eq [of "number_of w", standard, simp] | |
| 325 | ||
| 326 | lemma [simp]: "n div k \<le> (Suc n) div k" | |
| 327 | by (simp add: div_le_mono) | |
| 328 | ||
| 329 | lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2" | |
| 330 | by arith | |
| 331 | ||
| 332 | lemma div_2_gt_zero [simp]: "(1::nat) < n ==> 0 < n div 2" | |
| 333 | by arith | |
| 334 | ||
| 335 | lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)" | |
| 336 | by (simp add: mult_ac add_ac) | |
| 337 | ||
| 338 | lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n" | |
| 339 | proof - | |
| 340 | have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp | |
| 341 | also have "... = Suc m mod n" by (rule mod_mult_self3) | |
| 342 | finally show ?thesis . | |
| 343 | qed | |
| 344 | ||
| 345 | lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n" | |
| 346 | apply (subst mod_Suc [of m]) | |
| 347 | apply (subst mod_Suc [of "m mod n"], simp) | |
| 348 | done | |
| 349 | ||
| 350 | ||
| 351 | subsection {* More Even/Odd Results *}
 | |
| 352 | ||
| 353 | lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" | |
| 354 | by (simp add: even_nat_equiv_def2 numeral_2_eq_2) | |
| 355 | ||
| 356 | lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" | |
| 357 | by (simp add: odd_nat_equiv_def2 numeral_2_eq_2) | |
| 358 | ||
| 359 | lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" | |
| 360 | by auto | |
| 361 | ||
| 362 | lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" | |
| 363 | by auto | |
| 364 | ||
| 365 | lemma div_Suc: "Suc a div c = a div c + Suc 0 div c + | |
| 366 | (a mod c + Suc 0 mod c) div c" | |
| 367 | apply (subgoal_tac "Suc a = a + Suc 0") | |
| 368 | apply (erule ssubst) | |
| 369 | apply (rule div_add1_eq, simp) | |
| 370 | done | |
| 371 | ||
| 372 | lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" | |
| 373 | apply (simp add: numeral_2_eq_2) | |
| 374 | apply (subst div_Suc) | |
| 375 | apply (simp add: even_nat_mod_two_eq_zero) | |
| 376 | done | |
| 377 | ||
| 378 | lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)" | |
| 379 | apply (simp add: numeral_2_eq_2) | |
| 380 | apply (subst div_Suc) | |
| 381 | apply (simp add: odd_nat_mod_two_eq_one) | |
| 382 | done | |
| 383 | ||
| 384 | lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" | |
| 385 | by (case_tac "n", auto) | |
| 386 | ||
| 387 | lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" | |
| 388 | apply (induct n, simp) | |
| 389 | apply (subst mod_Suc, simp) | |
| 390 | done | |
| 391 | ||
| 392 | lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" | |
| 393 | apply (rule_tac t = n and n1 = 4 in mod_div_equality [THEN subst]) | |
| 394 | apply (simp add: even_num_iff) | |
| 395 | done | |
| 396 | ||
| 397 | lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)" | |
| 398 | by (rule_tac t = n and n1 = 4 in mod_div_equality [THEN subst], simp) | |
| 399 | ||
| 400 | ||
| 21263 | 401 | text {* Simplify, when the exponent is a numeral *}
 | 
| 21256 | 402 | |
| 403 | lemmas power_0_left_number_of = power_0_left [of "number_of w", standard] | |
| 404 | declare power_0_left_number_of [simp] | |
| 405 | ||
| 21263 | 406 | lemmas zero_le_power_eq_number_of [simp] = | 
| 21256 | 407 | zero_le_power_eq [of _ "number_of w", standard] | 
| 408 | ||
| 21263 | 409 | lemmas zero_less_power_eq_number_of [simp] = | 
| 21256 | 410 | zero_less_power_eq [of _ "number_of w", standard] | 
| 411 | ||
| 21263 | 412 | lemmas power_le_zero_eq_number_of [simp] = | 
| 21256 | 413 | power_le_zero_eq [of _ "number_of w", standard] | 
| 414 | ||
| 21263 | 415 | lemmas power_less_zero_eq_number_of [simp] = | 
| 21256 | 416 | power_less_zero_eq [of _ "number_of w", standard] | 
| 417 | ||
| 21263 | 418 | lemmas zero_less_power_nat_eq_number_of [simp] = | 
| 21256 | 419 | zero_less_power_nat_eq [of _ "number_of w", standard] | 
| 420 | ||
| 21263 | 421 | lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard] | 
| 21256 | 422 | |
| 21263 | 423 | lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard] | 
| 21256 | 424 | |
| 425 | ||
| 426 | subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
 | |
| 427 | ||
| 428 | lemma even_power_le_0_imp_0: | |
| 21263 | 429 |     "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
 | 
| 430 | by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc) | |
| 21256 | 431 | |
| 23522 | 432 | lemma zero_le_power_iff[presburger]: | 
| 21263 | 433 |   "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
 | 
| 21256 | 434 | proof cases | 
| 435 | assume even: "even n" | |
| 436 | then obtain k where "n = 2*k" | |
| 437 | by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2) | |
| 21263 | 438 | thus ?thesis by (simp add: zero_le_even_power even) | 
| 21256 | 439 | next | 
| 440 | assume odd: "odd n" | |
| 441 | then obtain k where "n = Suc(2*k)" | |
| 442 | by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2) | |
| 443 | thus ?thesis | |
| 21263 | 444 | by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power | 
| 445 | dest!: even_power_le_0_imp_0) | |
| 446 | qed | |
| 447 | ||
| 21256 | 448 | |
| 449 | subsection {* Miscellaneous *}
 | |
| 450 | ||
| 25600 | 451 | lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" | 
| 452 | by (cases n, simp_all) | |
| 453 | ||
| 23522 | 454 | lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger | 
| 455 | lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger | |
| 456 | lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger | |
| 457 | lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger | |
| 21256 | 458 | |
| 23522 | 459 | lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger | 
| 460 | lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger | |
| 21263 | 461 | lemma even_nat_plus_one_div_two: "even (x::nat) ==> | 
| 23522 | 462 | (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger | 
| 21256 | 463 | |
| 21263 | 464 | lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> | 
| 23522 | 465 | (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger | 
| 21256 | 466 | |
| 467 | end |