author | paulson |
Wed, 06 Dec 2000 11:00:23 +0100 | |
changeset 10601 | 894f845c3dbf |
parent 10015 | 8c16ec5ba62b |
permissions | -rw-r--r-- |
9866 | 1 |
(* Title: TFL/post.sml |
3302 | 2 |
ID: $Id$ |
3 |
Author: Konrad Slind, Cambridge University Computer Laboratory |
|
4 |
Copyright 1997 University of Cambridge |
|
5 |
||
9866 | 6 |
Second part of main module (postprocessing of TFL definitions). |
3302 | 7 |
*) |
8 |
||
9866 | 9 |
signature TFL = |
10 |
sig |
|
11 |
val trace: bool ref |
|
12 |
val quiet_mode: bool ref |
|
13 |
val message: string -> unit |
|
14 |
val tgoalw: theory -> thm list -> thm list -> thm list |
|
15 |
val tgoal: theory -> thm list -> thm list |
|
16 |
val std_postprocessor: claset -> simpset -> thm list -> theory -> |
|
17 |
{induction: thm, rules: thm, TCs: term list list} -> |
|
18 |
{induction: thm, rules: thm, nested_tcs: thm list} |
|
19 |
val define_i: theory -> claset -> simpset -> thm list -> thm list -> xstring -> |
|
20 |
term -> term list -> theory * {rules: (thm * int) list, induct: thm, tcs: term list} |
|
21 |
val define: theory -> claset -> simpset -> thm list -> thm list -> xstring -> |
|
22 |
string -> string list -> theory * {rules: (thm * int) list, induct: thm, tcs: term list} |
|
23 |
val defer_i: theory -> thm list -> xstring -> term list -> theory * thm |
|
24 |
val defer: theory -> thm list -> xstring -> string list -> theory * thm |
|
25 |
end; |
|
3191 | 26 |
|
27 |
structure Tfl: TFL = |
|
2112 | 28 |
struct |
29 |
||
9866 | 30 |
structure S = USyntax |
8817 | 31 |
|
32 |
||
9866 | 33 |
(* messages *) |
34 |
||
35 |
val trace = Prim.trace |
|
6524 | 36 |
|
9866 | 37 |
val quiet_mode = ref false; |
38 |
fun message s = if ! quiet_mode then () else writeln s; |
|
39 |
||
6524 | 40 |
|
9866 | 41 |
(* misc *) |
42 |
||
43 |
fun read_term thy = Sign.simple_read_term (Theory.sign_of thy) HOLogic.termT; |
|
6498 | 44 |
|
8817 | 45 |
|
9866 | 46 |
(*--------------------------------------------------------------------------- |
47 |
* Extract termination goals so that they can be put it into a goalstack, or |
|
48 |
* have a tactic directly applied to them. |
|
49 |
*--------------------------------------------------------------------------*) |
|
50 |
fun termination_goals rules = |
|
51 |
map (#1 o Type.freeze_thaw o HOLogic.dest_Trueprop) |
|
52 |
(foldr (fn (th,A) => union_term (prems_of th, A)) (rules, [])); |
|
3191 | 53 |
|
9866 | 54 |
(*--------------------------------------------------------------------------- |
55 |
* Finds the termination conditions in (highly massaged) definition and |
|
56 |
* puts them into a goalstack. |
|
57 |
*--------------------------------------------------------------------------*) |
|
58 |
fun tgoalw thy defs rules = |
|
59 |
case termination_goals rules of |
|
60 |
[] => error "tgoalw: no termination conditions to prove" |
|
61 |
| L => goalw_cterm defs |
|
62 |
(Thm.cterm_of (Theory.sign_of thy) |
|
63 |
(HOLogic.mk_Trueprop(USyntax.list_mk_conj L))); |
|
6498 | 64 |
|
9866 | 65 |
fun tgoal thy = tgoalw thy []; |
6498 | 66 |
|
9866 | 67 |
(*--------------------------------------------------------------------------- |
6498 | 68 |
* Three postprocessors are applied to the definition. It |
69 |
* attempts to prove wellfoundedness of the given relation, simplifies the |
|
9866 | 70 |
* non-proved termination conditions, and finally attempts to prove the |
6498 | 71 |
* simplified termination conditions. |
3405 | 72 |
*--------------------------------------------------------------------------*) |
9866 | 73 |
fun std_postprocessor cs ss wfs = |
74 |
Prim.postprocess |
|
75 |
{wf_tac = REPEAT (ares_tac wfs 1), |
|
76 |
terminator = asm_simp_tac ss 1 |
|
77 |
THEN TRY (fast_tac (cs addSDs [not0_implies_Suc] addss ss) 1), |
|
78 |
simplifier = Rules.simpl_conv ss []}; |
|
2112 | 79 |
|
80 |
||
81 |
||
9866 | 82 |
val concl = #2 o Rules.dest_thm; |
2112 | 83 |
|
3191 | 84 |
(*--------------------------------------------------------------------------- |
9866 | 85 |
* Postprocess a definition made by "define". This is a separate stage of |
3191 | 86 |
* processing from the definition stage. |
2112 | 87 |
*---------------------------------------------------------------------------*) |
9866 | 88 |
local |
89 |
structure R = Rules |
|
90 |
structure U = Utils |
|
2112 | 91 |
|
9866 | 92 |
(* The rest of these local definitions are for the tricky nested case *) |
93 |
val solved = not o U.can S.dest_eq o #2 o S.strip_forall o concl |
|
2112 | 94 |
|
9866 | 95 |
fun id_thm th = |
96 |
let val {lhs,rhs} = S.dest_eq(#2(S.strip_forall(#2 (R.dest_thm th)))) |
|
97 |
in lhs aconv rhs |
|
10015 | 98 |
end handle _ => false (* FIXME do not handle _ !!! *) |
2112 | 99 |
|
9866 | 100 |
fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]); |
101 |
val P_imp_P_iff_True = prover "P --> (P= True)" RS mp; |
|
102 |
val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection; |
|
103 |
fun mk_meta_eq r = case concl_of r of |
|
104 |
Const("==",_)$_$_ => r |
|
105 |
| _ $(Const("op =",_)$_$_) => r RS eq_reflection |
|
106 |
| _ => r RS P_imp_P_eq_True |
|
3405 | 107 |
|
9866 | 108 |
(*Is this the best way to invoke the simplifier??*) |
109 |
fun rewrite L = rewrite_rule (map mk_meta_eq (filter(not o id_thm) L)) |
|
2112 | 110 |
|
9866 | 111 |
fun join_assums th = |
112 |
let val {sign,...} = rep_thm th |
|
113 |
val tych = cterm_of sign |
|
114 |
val {lhs,rhs} = S.dest_eq(#2 (S.strip_forall (concl th))) |
|
115 |
val cntxtl = (#1 o S.strip_imp) lhs (* cntxtl should = cntxtr *) |
|
116 |
val cntxtr = (#1 o S.strip_imp) rhs (* but union is solider *) |
|
117 |
val cntxt = gen_union (op aconv) (cntxtl, cntxtr) |
|
118 |
in |
|
119 |
R.GEN_ALL |
|
120 |
(R.DISCH_ALL |
|
121 |
(rewrite (map (R.ASSUME o tych) cntxt) (R.SPEC_ALL th))) |
|
122 |
end |
|
123 |
val gen_all = S.gen_all |
|
124 |
in |
|
125 |
fun proof_stage cs ss wfs theory {f, R, rules, full_pats_TCs, TCs} = |
|
126 |
let |
|
127 |
val _ = message "Proving induction theorem ..." |
|
128 |
val ind = Prim.mk_induction theory {fconst=f, R=R, SV=[], pat_TCs_list=full_pats_TCs} |
|
129 |
val _ = message "Postprocessing ..."; |
|
130 |
val {rules, induction, nested_tcs} = |
|
131 |
std_postprocessor cs ss wfs theory {rules=rules, induction=ind, TCs=TCs} |
|
132 |
in |
|
133 |
case nested_tcs |
|
134 |
of [] => {induction=induction, rules=rules,tcs=[]} |
|
135 |
| L => let val dummy = message "Simplifying nested TCs ..." |
|
136 |
val (solved,simplified,stubborn) = |
|
137 |
U.itlist (fn th => fn (So,Si,St) => |
|
138 |
if (id_thm th) then (So, Si, th::St) else |
|
139 |
if (solved th) then (th::So, Si, St) |
|
140 |
else (So, th::Si, St)) nested_tcs ([],[],[]) |
|
141 |
val simplified' = map join_assums simplified |
|
142 |
val rewr = full_simplify (ss addsimps (solved @ simplified')); |
|
143 |
val induction' = rewr induction |
|
144 |
and rules' = rewr rules |
|
145 |
in |
|
146 |
{induction = induction', |
|
147 |
rules = rules', |
|
148 |
tcs = map (gen_all o S.rhs o #2 o S.strip_forall o concl) |
|
149 |
(simplified@stubborn)} |
|
150 |
end |
|
151 |
end; |
|
3191 | 152 |
|
153 |
||
9866 | 154 |
(*lcp: curry the predicate of the induction rule*) |
155 |
fun curry_rule rl = split_rule_var |
|
156 |
(head_of (HOLogic.dest_Trueprop (concl_of rl)), |
|
157 |
rl); |
|
3191 | 158 |
|
9866 | 159 |
(*lcp: put a theorem into Isabelle form, using meta-level connectives*) |
160 |
val meta_outer = |
|
161 |
curry_rule o standard o |
|
162 |
rule_by_tactic (REPEAT |
|
163 |
(FIRSTGOAL (resolve_tac [allI, impI, conjI] |
|
164 |
ORELSE' etac conjE))); |
|
2112 | 165 |
|
9866 | 166 |
(*Strip off the outer !P*) |
167 |
val spec'= read_instantiate [("x","P::?'b=>bool")] spec; |
|
3459
112cbb8301dc
Removal of structure Context and its replacement by a theorem list of
paulson
parents:
3405
diff
changeset
|
168 |
|
9866 | 169 |
fun simplify_defn thy cs ss congs wfs id pats def0 = |
170 |
let val def = freezeT def0 RS meta_eq_to_obj_eq |
|
171 |
val {theory,rules,rows,TCs,full_pats_TCs} = Prim.post_definition congs (thy, (def,pats)) |
|
172 |
val {lhs=f,rhs} = S.dest_eq (concl def) |
|
173 |
val (_,[R,_]) = S.strip_comb rhs |
|
174 |
val {induction, rules, tcs} = |
|
175 |
proof_stage cs ss wfs theory |
|
176 |
{f = f, R = R, rules = rules, |
|
177 |
full_pats_TCs = full_pats_TCs, |
|
178 |
TCs = TCs} |
|
9904 | 179 |
val rules' = map (standard o Rulify.rulify_no_asm) (R.CONJUNCTS rules) |
180 |
in {induct = meta_outer (Rulify.rulify_no_asm (induction RS spec')), |
|
9866 | 181 |
rules = ListPair.zip(rules', rows), |
182 |
tcs = (termination_goals rules') @ tcs} |
|
183 |
end |
|
184 |
handle Utils.ERR {mesg,func,module} => |
|
185 |
error (mesg ^ |
|
186 |
"\n (In TFL function " ^ module ^ "." ^ func ^ ")"); |
|
2112 | 187 |
|
3191 | 188 |
(*--------------------------------------------------------------------------- |
9866 | 189 |
* Defining a function with an associated termination relation. |
7262 | 190 |
*---------------------------------------------------------------------------*) |
9866 | 191 |
fun define_i thy cs ss congs wfs fid R eqs = |
192 |
let val {functional,pats} = Prim.mk_functional thy eqs |
|
193 |
val (thy, def) = Prim.wfrec_definition0 thy (Sign.base_name fid) R functional |
|
194 |
in (thy, simplify_defn thy cs ss congs wfs fid pats def) end; |
|
7262 | 195 |
|
9866 | 196 |
fun define thy cs ss congs wfs fid R seqs = |
197 |
define_i thy cs ss congs wfs fid (read_term thy R) (map (read_term thy) seqs) |
|
198 |
handle Utils.ERR {mesg,...} => error mesg; |
|
7262 | 199 |
|
200 |
||
201 |
(*--------------------------------------------------------------------------- |
|
3191 | 202 |
* |
6498 | 203 |
* Definitions with synthesized termination relation |
3191 | 204 |
* |
205 |
*---------------------------------------------------------------------------*) |
|
6498 | 206 |
|
9866 | 207 |
local open USyntax |
208 |
in |
|
209 |
fun func_of_cond_eqn tm = |
|
210 |
#1(strip_comb(#lhs(dest_eq(#2 (strip_forall(#2(strip_imp tm))))))) |
|
211 |
end; |
|
6498 | 212 |
|
9866 | 213 |
fun defer_i thy congs fid eqs = |
214 |
let val {rules,R,theory,full_pats_TCs,SV,...} = |
|
215 |
Prim.lazyR_def thy (Sign.base_name fid) congs eqs |
|
10015 | 216 |
val f = func_of_cond_eqn (concl(R.CONJUNCT1 rules handle _ => rules)) (* FIXME do not handle _ !!! *) |
9866 | 217 |
val dummy = message "Proving induction theorem ..."; |
218 |
val induction = Prim.mk_induction theory |
|
219 |
{fconst=f, R=R, SV=SV, pat_TCs_list=full_pats_TCs} |
|
220 |
in (theory, |
|
221 |
(*return the conjoined induction rule and recursion equations, |
|
222 |
with assumptions remaining to discharge*) |
|
223 |
standard (induction RS (rules RS conjI))) |
|
224 |
end |
|
6498 | 225 |
|
9866 | 226 |
fun defer thy congs fid seqs = |
227 |
defer_i thy congs fid (map (read_term thy) seqs) |
|
228 |
handle Utils.ERR {mesg,...} => error mesg; |
|
229 |
end; |
|
6498 | 230 |
|
2112 | 231 |
end; |