| author | wenzelm | 
| Wed, 10 Nov 2010 20:43:22 +0100 | |
| changeset 40475 | 8a57ff2c2600 | 
| parent 38795 | 848be46708dc | 
| child 41075 | 4bed56dc95fb | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 25614 | 5 | header {* Abstract orderings *}
 | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 32215 | 9 | uses | 
| 10 | "~~/src/Provers/order.ML" | |
| 11 | "~~/src/Provers/quasi.ML" (* FIXME unused? *) | |
| 15524 | 12 | begin | 
| 13 | ||
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 14 | subsection {* Syntactic orders *}
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 15 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 16 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 17 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 18 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 19 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 20 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 21 | notation | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 22 |   less_eq  ("op <=") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 23 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 24 |   less  ("op <") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 25 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 26 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 27 | notation (xsymbols) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 28 |   less_eq  ("op \<le>") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 29 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 30 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 31 | notation (HTML output) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 32 |   less_eq  ("op \<le>") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 33 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 34 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 35 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 36 | greater_eq (infix ">=" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 37 | "x >= y \<equiv> y <= x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 38 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 39 | notation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 40 | greater_eq (infix "\<ge>" 50) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 41 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 42 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 43 | greater (infix ">" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 44 | "x > y \<equiv> y < x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 45 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 46 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 47 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 48 | |
| 27682 | 49 | subsection {* Quasi orders *}
 | 
| 15524 | 50 | |
| 27682 | 51 | class preorder = ord + | 
| 52 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 53 | and order_refl [iff]: "x \<le> x" | 
| 54 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 55 | begin | 
| 56 | ||
| 15524 | 57 | text {* Reflexivity. *}
 | 
| 58 | ||
| 25062 | 59 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 15524 | 60 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 61 | by (erule ssubst) (rule order_refl) | 
| 15524 | 62 | |
| 25062 | 63 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 64 | by (simp add: less_le_not_le) | 
| 65 | ||
| 66 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 67 | unfolding less_le_not_le by blast | |
| 68 | ||
| 69 | ||
| 70 | text {* Asymmetry. *}
 | |
| 71 | ||
| 72 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 73 | by (simp add: less_le_not_le) | |
| 74 | ||
| 75 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 76 | by (drule less_not_sym, erule contrapos_np) simp | |
| 77 | ||
| 78 | ||
| 79 | text {* Transitivity. *}
 | |
| 80 | ||
| 81 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 82 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 83 | ||
| 84 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 85 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 86 | ||
| 87 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 88 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 89 | ||
| 90 | ||
| 91 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 92 | ||
| 93 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 94 | by (blast elim: less_asym) | |
| 95 | ||
| 96 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 97 | by (blast elim: less_asym) | |
| 98 | ||
| 99 | ||
| 100 | text {* Transitivity rules for calculational reasoning *}
 | |
| 101 | ||
| 102 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 103 | by (rule less_asym) | |
| 104 | ||
| 105 | ||
| 106 | text {* Dual order *}
 | |
| 107 | ||
| 108 | lemma dual_preorder: | |
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 109 | "class.preorder (op \<ge>) (op >)" | 
| 28823 | 110 | proof qed (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 111 | |
| 112 | end | |
| 113 | ||
| 114 | ||
| 115 | subsection {* Partial orders *}
 | |
| 116 | ||
| 117 | class order = preorder + | |
| 118 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 119 | begin | |
| 120 | ||
| 121 | text {* Reflexivity. *}
 | |
| 122 | ||
| 123 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | |
| 124 | by (auto simp add: less_le_not_le intro: antisym) | |
| 15524 | 125 | |
| 25062 | 126 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 15524 | 127 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 128 | by (simp add: less_le) blast | 
| 15524 | 129 | |
| 25062 | 130 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 131 | unfolding less_le by blast | 
| 15524 | 132 | |
| 21329 | 133 | |
| 134 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 135 | ||
| 25062 | 136 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 137 | by auto | 
| 21329 | 138 | |
| 25062 | 139 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 140 | by auto | 
| 21329 | 141 | |
| 142 | ||
| 143 | text {* Transitivity rules for calculational reasoning *}
 | |
| 144 | ||
| 25062 | 145 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 23212 | 146 | by (simp add: less_le) | 
| 21329 | 147 | |
| 25062 | 148 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 23212 | 149 | by (simp add: less_le) | 
| 21329 | 150 | |
| 15524 | 151 | |
| 152 | text {* Asymmetry. *}
 | |
| 153 | ||
| 25062 | 154 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 155 | by (blast intro: antisym) | 
| 15524 | 156 | |
| 25062 | 157 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 158 | by (blast intro: antisym) | 
| 15524 | 159 | |
| 25062 | 160 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 161 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21248 | 162 | |
| 21083 | 163 | |
| 27107 | 164 | text {* Least value operator *}
 | 
| 165 | ||
| 27299 | 166 | definition (in ord) | 
| 27107 | 167 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 168 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 169 | ||
| 170 | lemma Least_equality: | |
| 171 | assumes "P x" | |
| 172 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 173 | shows "Least P = x" | |
| 174 | unfolding Least_def by (rule the_equality) | |
| 175 | (blast intro: assms antisym)+ | |
| 176 | ||
| 177 | lemma LeastI2_order: | |
| 178 | assumes "P x" | |
| 179 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 180 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 181 | shows "Q (Least P)" | |
| 182 | unfolding Least_def by (rule theI2) | |
| 183 | (blast intro: assms antisym)+ | |
| 184 | ||
| 185 | ||
| 26014 | 186 | text {* Dual order *}
 | 
| 22916 | 187 | |
| 26014 | 188 | lemma dual_order: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 189 | "class.order (op \<ge>) (op >)" | 
| 27682 | 190 | by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) | 
| 22916 | 191 | |
| 21248 | 192 | end | 
| 15524 | 193 | |
| 21329 | 194 | |
| 195 | subsection {* Linear (total) orders *}
 | |
| 196 | ||
| 22316 | 197 | class linorder = order + | 
| 25207 | 198 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 199 | begin | 
| 200 | ||
| 25062 | 201 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 202 | unfolding less_le using less_le linear by blast | 
| 21248 | 203 | |
| 25062 | 204 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 205 | by (simp add: le_less less_linear) | 
| 21248 | 206 | |
| 207 | lemma le_cases [case_names le ge]: | |
| 25062 | 208 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 209 | using linear by blast | 
| 21248 | 210 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 211 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 212 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 213 | using less_linear by blast | 
| 21248 | 214 | |
| 25062 | 215 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 216 | apply (simp add: less_le) | 
| 217 | using linear apply (blast intro: antisym) | |
| 218 | done | |
| 219 | ||
| 220 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 221 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 222 | apply(simp add:not_less le_less) | 
| 223 | apply blast | |
| 224 | done | |
| 15524 | 225 | |
| 25062 | 226 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 227 | apply (simp add: less_le) | 
| 228 | using linear apply (blast intro: antisym) | |
| 229 | done | |
| 15524 | 230 | |
| 25062 | 231 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 232 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 233 | |
| 25062 | 234 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 235 | by (simp add: neq_iff) blast | 
| 15524 | 236 | |
| 25062 | 237 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 238 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 239 | |
| 25062 | 240 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 241 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 242 | |
| 25062 | 243 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 244 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 245 | |
| 25062 | 246 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 247 | unfolding not_less . | 
| 16796 | 248 | |
| 25062 | 249 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 250 | unfolding not_less . | 
| 16796 | 251 | |
| 252 | (*FIXME inappropriate name (or delete altogether)*) | |
| 25062 | 253 | lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 254 | unfolding not_le . | 
| 21248 | 255 | |
| 22916 | 256 | |
| 26014 | 257 | text {* Dual order *}
 | 
| 22916 | 258 | |
| 26014 | 259 | lemma dual_linorder: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 260 | "class.linorder (op \<ge>) (op >)" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 261 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 262 | |
| 263 | ||
| 23881 | 264 | text {* min/max *}
 | 
| 265 | ||
| 27299 | 266 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 37767 | 267 | "min a b = (if a \<le> b then a else b)" | 
| 23881 | 268 | |
| 27299 | 269 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 37767 | 270 | "max a b = (if a \<le> b then b else a)" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 271 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 272 | lemma min_le_iff_disj: | 
| 25062 | 273 | "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" | 
| 23212 | 274 | unfolding min_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 275 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 276 | lemma le_max_iff_disj: | 
| 25062 | 277 | "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" | 
| 23212 | 278 | unfolding max_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 279 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 280 | lemma min_less_iff_disj: | 
| 25062 | 281 | "min x y < z \<longleftrightarrow> x < z \<or> y < z" | 
| 23212 | 282 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 283 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 284 | lemma less_max_iff_disj: | 
| 25062 | 285 | "z < max x y \<longleftrightarrow> z < x \<or> z < y" | 
| 23212 | 286 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 287 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 288 | lemma min_less_iff_conj [simp]: | 
| 25062 | 289 | "z < min x y \<longleftrightarrow> z < x \<and> z < y" | 
| 23212 | 290 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 291 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 292 | lemma max_less_iff_conj [simp]: | 
| 25062 | 293 | "max x y < z \<longleftrightarrow> x < z \<and> y < z" | 
| 23212 | 294 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 295 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 296 | lemma split_min [no_atp]: | 
| 25062 | 297 | "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" | 
| 23212 | 298 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 299 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 300 | lemma split_max [no_atp]: | 
| 25062 | 301 | "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" | 
| 23212 | 302 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 303 | |
| 21248 | 304 | end | 
| 305 | ||
| 28516 | 306 | text {* Explicit dictionaries for code generation *}
 | 
| 307 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
30929diff
changeset | 308 | lemma min_ord_min [code, code_unfold, code_inline del]: | 
| 28516 | 309 | "min = ord.min (op \<le>)" | 
| 310 | by (rule ext)+ (simp add: min_def ord.min_def) | |
| 311 | ||
| 312 | declare ord.min_def [code] | |
| 313 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
30929diff
changeset | 314 | lemma max_ord_max [code, code_unfold, code_inline del]: | 
| 28516 | 315 | "max = ord.max (op \<le>)" | 
| 316 | by (rule ext)+ (simp add: max_def ord.max_def) | |
| 317 | ||
| 318 | declare ord.max_def [code] | |
| 319 | ||
| 23948 | 320 | |
| 21083 | 321 | subsection {* Reasoning tools setup *}
 | 
| 322 | ||
| 21091 | 323 | ML {*
 | 
| 324 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 325 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 326 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 327 | val print_structures: Proof.context -> unit | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 328 | val setup: theory -> theory | 
| 32215 | 329 | val order_tac: Proof.context -> thm list -> int -> tactic | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 330 | end; | 
| 21091 | 331 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 332 | structure Orders: ORDERS = | 
| 21248 | 333 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 334 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 335 | (** Theory and context data **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 336 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 337 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 338 | (s1 = s2) andalso eq_list (op aconv) (ts1, ts2); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 339 | |
| 33519 | 340 | structure Data = Generic_Data | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 341 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 342 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 343 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 344 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 345 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 346 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 347 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 348 | val extend = I; | 
| 33519 | 349 | fun merge data = AList.join struct_eq (K fst) data; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 350 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 351 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 352 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 353 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 354 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 355 | fun pretty_term t = Pretty.block | 
| 24920 | 356 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 357 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 358 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 359 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 360 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 361 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 362 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 363 | Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 364 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 365 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 366 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 367 | (** Method **) | 
| 21091 | 368 | |
| 32215 | 369 | fun struct_tac ((s, [eq, le, less]), thms) ctxt prems = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 370 | let | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 371 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 372 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 373 | fun excluded t = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 374 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 375 | let val T = type_of t | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 376 | in | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 377 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 378 | end; | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 379 | fun rel (bin_op $ t1 $ t2) = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 380 | if excluded t1 then NONE | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 381 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 382 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 383 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 384 | else NONE | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 385 | | rel _ = NONE; | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 386 |         fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 387 | of NONE => NONE | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 388 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 389 | | dec x = rel x; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 390 | in dec t end | 
| 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 391 | | decomp thy _ = NONE; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 392 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 393 | case s of | 
| 32215 | 394 | "order" => Order_Tac.partial_tac decomp thms ctxt prems | 
| 395 | | "linorder" => Order_Tac.linear_tac decomp thms ctxt prems | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 396 |     | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 397 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 398 | |
| 32215 | 399 | fun order_tac ctxt prems = | 
| 400 | FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 401 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 402 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 403 | (** Attribute **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 404 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 405 | fun add_struct_thm s tag = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 406 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 407 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 408 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 409 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 410 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 411 | |
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 412 | val attrib_setup = | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 413 |   Attrib.setup @{binding order}
 | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 414 | (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 415 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 416 | Scan.repeat Args.term | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 417 | >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 418 | | ((NONE, n), ts) => del_struct (n, ts))) | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 419 | "theorems controlling transitivity reasoner"; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 420 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 421 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 422 | (** Diagnostic command **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 423 | |
| 24867 | 424 | val _ = | 
| 36960 
01594f816e3a
prefer structure Keyword, Parse, Parse_Spec, Outer_Syntax;
 wenzelm parents: 
36635diff
changeset | 425 | Outer_Syntax.improper_command "print_orders" | 
| 
01594f816e3a
prefer structure Keyword, Parse, Parse_Spec, Outer_Syntax;
 wenzelm parents: 
36635diff
changeset | 426 | "print order structures available to transitivity reasoner" Keyword.diag | 
| 30806 | 427 | (Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o | 
| 428 | Toplevel.keep (print_structures o Toplevel.context_of))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 429 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 430 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 431 | (** Setup **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 432 | |
| 24867 | 433 | val setup = | 
| 32215 | 434 |   Method.setup @{binding order} (Scan.succeed (fn ctxt => SIMPLE_METHOD' (order_tac ctxt [])))
 | 
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 435 | "transitivity reasoner" #> | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 436 | attrib_setup; | 
| 21091 | 437 | |
| 438 | end; | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 439 | |
| 21091 | 440 | *} | 
| 441 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 442 | setup Orders.setup | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 443 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 444 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 445 | text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 446 | |
| 25076 | 447 | context order | 
| 448 | begin | |
| 449 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 450 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 451 | is not a parameter of the locale. *) | 
| 25076 | 452 | |
| 27689 | 453 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 454 | ||
| 455 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 456 | ||
| 457 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 458 | ||
| 459 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 460 | ||
| 461 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 462 | ||
| 463 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 464 | ||
| 465 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 466 | ||
| 467 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 468 | ||
| 469 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 470 | ||
| 471 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 472 | ||
| 473 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 474 | ||
| 475 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 476 | ||
| 477 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 478 | ||
| 479 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 480 | ||
| 481 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 482 | |
| 25076 | 483 | end | 
| 484 | ||
| 485 | context linorder | |
| 486 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 487 | |
| 27689 | 488 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 489 | ||
| 490 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 491 | ||
| 492 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 493 | ||
| 494 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 495 | ||
| 496 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 497 | ||
| 498 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 499 | ||
| 500 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 501 | ||
| 502 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 503 | ||
| 504 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 505 | ||
| 506 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 507 | |
| 27689 | 508 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 509 | ||
| 510 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 511 | ||
| 512 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 513 | ||
| 514 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 515 | ||
| 516 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 517 | ||
| 518 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 519 | ||
| 520 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 521 | ||
| 522 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 523 | ||
| 524 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 525 | ||
| 526 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 527 | |
| 25076 | 528 | end | 
| 529 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 530 | |
| 21083 | 531 | setup {*
 | 
| 532 | let | |
| 533 | ||
| 534 | fun prp t thm = (#prop (rep_thm thm) = t); | |
| 15524 | 535 | |
| 21083 | 536 | fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = | 
| 537 | let val prems = prems_of_ss ss; | |
| 22916 | 538 |       val less = Const (@{const_name less}, T);
 | 
| 21083 | 539 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 540 | in case find_first (prp t) prems of | |
| 541 | NONE => | |
| 542 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 543 | in case find_first (prp t) prems of | |
| 544 | NONE => NONE | |
| 24422 | 545 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
 | 
| 21083 | 546 | end | 
| 24422 | 547 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
 | 
| 21083 | 548 | end | 
| 549 | handle THM _ => NONE; | |
| 15524 | 550 | |
| 21083 | 551 | fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 552 | let val prems = prems_of_ss ss; | |
| 22916 | 553 |       val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 554 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 555 | in case find_first (prp t) prems of | |
| 556 | NONE => | |
| 557 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 558 | in case find_first (prp t) prems of | |
| 559 | NONE => NONE | |
| 24422 | 560 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
 | 
| 21083 | 561 | end | 
| 24422 | 562 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
 | 
| 21083 | 563 | end | 
| 564 | handle THM _ => NONE; | |
| 15524 | 565 | |
| 21248 | 566 | fun add_simprocs procs thy = | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 567 | Simplifier.map_simpset (fn ss => ss | 
| 21248 | 568 | addsimprocs (map (fn (name, raw_ts, proc) => | 
| 38715 
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
 wenzelm parents: 
38705diff
changeset | 569 | Simplifier.simproc_global thy name raw_ts proc) procs)) thy; | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 570 | fun add_solver name tac = | 
| 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 571 | Simplifier.map_simpset (fn ss => ss addSolver | 
| 32215 | 572 | mk_solver' name (fn ss => tac (Simplifier.the_context ss) (Simplifier.prems_of_ss ss))); | 
| 21083 | 573 | |
| 574 | in | |
| 21248 | 575 | add_simprocs [ | 
| 576 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 577 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 578 | ] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 579 | #> add_solver "Transitivity" Orders.order_tac | 
| 21248 | 580 | (* Adding the transitivity reasoners also as safe solvers showed a slight | 
| 581 | speed up, but the reasoning strength appears to be not higher (at least | |
| 582 | no breaking of additional proofs in the entire HOL distribution, as | |
| 583 | of 5 March 2004, was observed). *) | |
| 21083 | 584 | end | 
| 585 | *} | |
| 15524 | 586 | |
| 587 | ||
| 21083 | 588 | subsection {* Bounded quantifiers *}
 | 
| 589 | ||
| 590 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 591 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 592 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 593 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 594 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 595 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 596 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 597 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 598 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 599 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 600 | |
| 601 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 602 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 603 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 604 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 605 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 606 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 607 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 608 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 609 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 610 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 611 | |
| 612 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 613 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 614 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 615 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 616 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 617 | |
| 618 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 619 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 620 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 621 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 622 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 623 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 624 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 625 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 626 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 627 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 628 | |
| 629 | translations | |
| 630 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 631 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 632 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 633 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 634 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 635 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 636 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 637 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 638 | ||
| 639 | print_translation {*
 | |
| 640 | let | |
| 22916 | 641 |   val All_binder = Syntax.binder_name @{const_syntax All};
 | 
| 642 |   val Ex_binder = Syntax.binder_name @{const_syntax Ex};
 | |
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38715diff
changeset | 643 |   val impl = @{const_syntax HOL.implies};
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 644 |   val conj = @{const_syntax HOL.conj};
 | 
| 22916 | 645 |   val less = @{const_syntax less};
 | 
| 646 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 647 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 648 | val trans = | 
| 35115 | 649 | [((All_binder, impl, less), | 
| 650 |     (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
 | |
| 651 | ((All_binder, impl, less_eq), | |
| 652 |     (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
 | |
| 653 | ((Ex_binder, conj, less), | |
| 654 |     (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
 | |
| 655 | ((Ex_binder, conj, less_eq), | |
| 656 |     (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 657 | |
| 35115 | 658 | fun matches_bound v t = | 
| 659 | (case t of | |
| 35364 | 660 |       Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
 | 
| 35115 | 661 | | _ => false); | 
| 662 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 663 | fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P; | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 664 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 665 | fun tr' q = (q, | 
| 35364 | 666 |     fn [Const (@{syntax_const "_bound"}, _) $ Free (v, _),
 | 
| 667 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | |
| 35115 | 668 | (case AList.lookup (op =) trans (q, c, d) of | 
| 669 | NONE => raise Match | |
| 670 | | SOME (l, g) => | |
| 671 | if matches_bound v t andalso not (contains_var v u) then mk v l u P | |
| 672 | else if matches_bound v u andalso not (contains_var v t) then mk v g t P | |
| 673 | else raise Match) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 674 | | _ => raise Match); | 
| 21524 | 675 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 676 | *} | 
| 677 | ||
| 678 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 679 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 680 | |
| 25193 | 681 | context ord | 
| 682 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 683 | |
| 25193 | 684 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 685 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 686 | |
| 25193 | 687 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 688 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 689 | |
| 25193 | 690 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 691 | by (rule subst) | |
| 692 | ||
| 693 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 694 | by (rule ssubst) | |
| 695 | ||
| 696 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 697 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 698 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 701 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 702 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 704 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 705 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 706 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 707 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 708 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 710 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 711 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 712 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 713 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 714 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 715 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 716 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 717 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 718 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 719 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 720 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 721 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 722 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 723 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 724 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 725 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 726 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 727 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 728 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 729 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 730 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 731 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 732 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 733 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 735 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 736 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 738 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 739 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 740 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 741 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 742 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 743 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 744 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 745 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 746 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 747 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 748 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 749 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 750 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 751 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 755 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 758 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 760 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 764 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 767 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 769 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 773 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 776 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 782 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 785 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 791 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 794 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | |
| 27682 | 810 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 826 | mp | 
| 27682 | 827 | |
| 828 | lemmas (in order) [trans] = | |
| 829 | neq_le_trans | |
| 830 | le_neq_trans | |
| 831 | ||
| 832 | lemmas (in preorder) [trans] = | |
| 833 | less_trans | |
| 834 | less_asym' | |
| 835 | le_less_trans | |
| 836 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | order_trans | 
| 27682 | 838 | |
| 839 | lemmas (in order) [trans] = | |
| 840 | antisym | |
| 841 | ||
| 842 | lemmas (in ord) [trans] = | |
| 843 | ord_le_eq_trans | |
| 844 | ord_eq_le_trans | |
| 845 | ord_less_eq_trans | |
| 846 | ord_eq_less_trans | |
| 847 | ||
| 848 | lemmas [trans] = | |
| 849 | trans | |
| 850 | ||
| 851 | lemmas order_trans_rules = | |
| 852 | order_less_subst2 | |
| 853 | order_less_subst1 | |
| 854 | order_le_less_subst2 | |
| 855 | order_le_less_subst1 | |
| 856 | order_less_le_subst2 | |
| 857 | order_less_le_subst1 | |
| 858 | order_subst2 | |
| 859 | order_subst1 | |
| 860 | ord_le_eq_subst | |
| 861 | ord_eq_le_subst | |
| 862 | ord_less_eq_subst | |
| 863 | ord_eq_less_subst | |
| 864 | forw_subst | |
| 865 | back_subst | |
| 866 | rev_mp | |
| 867 | mp | |
| 868 | neq_le_trans | |
| 869 | le_neq_trans | |
| 870 | less_trans | |
| 871 | less_asym' | |
| 872 | le_less_trans | |
| 873 | less_le_trans | |
| 874 | order_trans | |
| 875 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 878 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 880 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 881 | |
| 21083 | 882 | text {* These support proving chains of decreasing inequalities
 | 
| 883 | a >= b >= c ... in Isar proofs. *} | |
| 884 | ||
| 885 | lemma xt1: | |
| 886 | "a = b ==> b > c ==> a > c" | |
| 887 | "a > b ==> b = c ==> a > c" | |
| 888 | "a = b ==> b >= c ==> a >= c" | |
| 889 | "a >= b ==> b = c ==> a >= c" | |
| 890 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 891 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 892 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 893 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 894 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 895 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 896 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 897 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 898 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 899 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 900 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 901 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 902 | by auto | 
| 21083 | 903 | |
| 904 | lemma xt2: | |
| 905 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 906 | by (subgoal_tac "f b >= f c", force, force) | |
| 907 | ||
| 908 | lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | |
| 909 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 910 | by (subgoal_tac "f a >= f b", force, force) | |
| 911 | ||
| 912 | lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | |
| 913 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | |
| 914 | by (subgoal_tac "f b >= f c", force, force) | |
| 915 | ||
| 916 | lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | |
| 917 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 918 | by (subgoal_tac "f a > f b", force, force) | |
| 919 | ||
| 920 | lemma xt6: "(a::'a::order) >= f b ==> b > c ==> | |
| 921 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 922 | by (subgoal_tac "f b > f c", force, force) | |
| 923 | ||
| 924 | lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | |
| 925 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | |
| 926 | by (subgoal_tac "f a >= f b", force, force) | |
| 927 | ||
| 928 | lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | |
| 929 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 930 | by (subgoal_tac "f b > f c", force, force) | |
| 931 | ||
| 932 | lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | |
| 933 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 934 | by (subgoal_tac "f a > f b", force, force) | |
| 935 | ||
| 936 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | |
| 937 | ||
| 938 | (* | |
| 939 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 940 | for the wrong thing in an Isar proof. | |
| 941 | ||
| 942 | The extra transitivity rules can be used as follows: | |
| 943 | ||
| 944 | lemma "(a::'a::order) > z" | |
| 945 | proof - | |
| 946 | have "a >= b" (is "_ >= ?rhs") | |
| 947 | sorry | |
| 948 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 949 | sorry | |
| 950 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 951 | sorry | |
| 952 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 953 | sorry | |
| 954 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 955 | sorry | |
| 956 | also (xtrans) have "?rhs > z" | |
| 957 | sorry | |
| 958 | finally (xtrans) show ?thesis . | |
| 959 | qed | |
| 960 | ||
| 961 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 962 | leave out the "(xtrans)" above. | |
| 963 | *) | |
| 964 | ||
| 23881 | 965 | |
| 966 | subsection {* Monotonicity, least value operator and min/max *}
 | |
| 21083 | 967 | |
| 25076 | 968 | context order | 
| 969 | begin | |
| 970 | ||
| 30298 | 971 | definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 25076 | 972 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 973 | ||
| 974 | lemma monoI [intro?]: | |
| 975 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 976 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | |
| 977 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 978 | |
| 25076 | 979 | lemma monoD [dest?]: | 
| 980 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 981 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 982 | unfolding mono_def by iprover | |
| 983 | ||
| 30298 | 984 | definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 985 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | |
| 986 | ||
| 987 | lemma strict_monoI [intro?]: | |
| 988 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 989 | shows "strict_mono f" | |
| 990 | using assms unfolding strict_mono_def by auto | |
| 991 | ||
| 992 | lemma strict_monoD [dest?]: | |
| 993 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 994 | unfolding strict_mono_def by auto | |
| 995 | ||
| 996 | lemma strict_mono_mono [dest?]: | |
| 997 | assumes "strict_mono f" | |
| 998 | shows "mono f" | |
| 999 | proof (rule monoI) | |
| 1000 | fix x y | |
| 1001 | assume "x \<le> y" | |
| 1002 | show "f x \<le> f y" | |
| 1003 | proof (cases "x = y") | |
| 1004 | case True then show ?thesis by simp | |
| 1005 | next | |
| 1006 | case False with `x \<le> y` have "x < y" by simp | |
| 1007 | with assms strict_monoD have "f x < f y" by auto | |
| 1008 | then show ?thesis by simp | |
| 1009 | qed | |
| 1010 | qed | |
| 1011 | ||
| 25076 | 1012 | end | 
| 1013 | ||
| 1014 | context linorder | |
| 1015 | begin | |
| 1016 | ||
| 30298 | 1017 | lemma strict_mono_eq: | 
| 1018 | assumes "strict_mono f" | |
| 1019 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1020 | proof | |
| 1021 | assume "f x = f y" | |
| 1022 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1023 | case less with assms strict_monoD have "f x < f y" by auto | |
| 1024 | with `f x = f y` show ?thesis by simp | |
| 1025 | next | |
| 1026 | case equal then show ?thesis . | |
| 1027 | next | |
| 1028 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 1029 | with `f x = f y` show ?thesis by simp | |
| 1030 | qed | |
| 1031 | qed simp | |
| 1032 | ||
| 1033 | lemma strict_mono_less_eq: | |
| 1034 | assumes "strict_mono f" | |
| 1035 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1036 | proof | |
| 1037 | assume "x \<le> y" | |
| 1038 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1039 | next | |
| 1040 | assume "f x \<le> f y" | |
| 1041 | show "x \<le> y" proof (rule ccontr) | |
| 1042 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1043 | with assms strict_monoD have "f y < f x" by auto | |
| 1044 | with `f x \<le> f y` show False by simp | |
| 1045 | qed | |
| 1046 | qed | |
| 1047 | ||
| 1048 | lemma strict_mono_less: | |
| 1049 | assumes "strict_mono f" | |
| 1050 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1051 | using assms | |
| 1052 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1053 | ||
| 25076 | 1054 | lemma min_of_mono: | 
| 1055 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1056 | shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" | 
| 25076 | 1057 | by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) | 
| 1058 | ||
| 1059 | lemma max_of_mono: | |
| 1060 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1061 | shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" | 
| 25076 | 1062 | by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) | 
| 1063 | ||
| 1064 | end | |
| 21083 | 1065 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1066 | lemma min_leastL: "(!!x. least <= x) ==> min least x = least" | 
| 23212 | 1067 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1068 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1069 | lemma max_leastL: "(!!x. least <= x) ==> max least x = x" | 
| 23212 | 1070 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1071 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1072 | lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" | 
| 23212 | 1073 | apply (simp add: min_def) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1074 | apply (blast intro: antisym) | 
| 23212 | 1075 | done | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1076 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1077 | lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" | 
| 23212 | 1078 | apply (simp add: max_def) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1079 | apply (blast intro: antisym) | 
| 23212 | 1080 | done | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1081 | |
| 27823 | 1082 | |
| 28685 | 1083 | subsection {* Top and bottom elements *}
 | 
| 1084 | ||
| 1085 | class top = preorder + | |
| 1086 | fixes top :: 'a | |
| 1087 | assumes top_greatest [simp]: "x \<le> top" | |
| 1088 | ||
| 1089 | class bot = preorder + | |
| 1090 | fixes bot :: 'a | |
| 1091 | assumes bot_least [simp]: "bot \<le> x" | |
| 1092 | ||
| 1093 | ||
| 27823 | 1094 | subsection {* Dense orders *}
 | 
| 1095 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34974diff
changeset | 1096 | class dense_linorder = linorder + | 
| 27823 | 1097 | assumes gt_ex: "\<exists>y. x < y" | 
| 1098 | and lt_ex: "\<exists>y. y < x" | |
| 1099 | and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1100 | begin | 
| 27823 | 1101 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1102 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1103 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1104 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1105 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1106 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1107 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1108 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1109 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1110 | obtain x where "x < y" and "z < x" by safe | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1111 | moreover have "x \<le> z" using assms[OF `x < y`] . | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1112 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1113 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1114 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1115 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1116 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1117 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1118 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1119 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1120 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1121 | fix w assume "w < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1122 | from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1123 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1124 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1125 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1126 | assume "u \<le> w" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1127 | from less_le_trans[OF `x < u` `u \<le> w`] `w < y` | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1128 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1129 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1130 | assume "w \<le> u" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1131 | from `w \<le> u` *[OF `x < u` `u < y`] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1132 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1133 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1134 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1135 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1136 | end | 
| 27823 | 1137 | |
| 1138 | subsection {* Wellorders *}
 | |
| 1139 | ||
| 1140 | class wellorder = linorder + | |
| 1141 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1142 | begin | |
| 1143 | ||
| 1144 | lemma wellorder_Least_lemma: | |
| 1145 | fixes k :: 'a | |
| 1146 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1147 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1148 | proof - | 
| 1149 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1150 | using assms proof (induct k rule: less_induct) | |
| 1151 | case (less x) then have "P x" by simp | |
| 1152 | show ?case proof (rule classical) | |
| 1153 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1154 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1155 | proof (rule classical) | |
| 1156 | fix y | |
| 38705 | 1157 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1158 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1159 | by (auto simp add: not_le) | |
| 1160 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1161 | by auto | |
| 1162 | then show "x \<le> y" by auto | |
| 1163 | qed | |
| 1164 | with `P x` have Least: "(LEAST a. P a) = x" | |
| 1165 | by (rule Least_equality) | |
| 1166 | with `P x` show ?thesis by simp | |
| 1167 | qed | |
| 1168 | qed | |
| 1169 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1170 | qed | |
| 1171 | ||
| 1172 | -- "The following 3 lemmas are due to Brian Huffman" | |
| 1173 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | |
| 1174 | by (erule exE) (erule LeastI) | |
| 1175 | ||
| 1176 | lemma LeastI2: | |
| 1177 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1178 | by (blast intro: LeastI) | |
| 1179 | ||
| 1180 | lemma LeastI2_ex: | |
| 1181 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1182 | by (blast intro: LeastI_ex) | |
| 1183 | ||
| 38705 | 1184 | lemma LeastI2_wellorder: | 
| 1185 | assumes "P a" | |
| 1186 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1187 | shows "Q (Least P)" | |
| 1188 | proof (rule LeastI2_order) | |
| 1189 | show "P (Least P)" using `P a` by (rule LeastI) | |
| 1190 | next | |
| 1191 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1192 | next | |
| 1193 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1194 | qed | |
| 1195 | ||
| 27823 | 1196 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 1197 | apply (simp (no_asm_use) add: not_le [symmetric]) | |
| 1198 | apply (erule contrapos_nn) | |
| 1199 | apply (erule Least_le) | |
| 1200 | done | |
| 1201 | ||
| 38705 | 1202 | end | 
| 27823 | 1203 | |
| 28685 | 1204 | |
| 1205 | subsection {* Order on bool *}
 | |
| 1206 | ||
| 1207 | instantiation bool :: "{order, top, bot}"
 | |
| 1208 | begin | |
| 1209 | ||
| 1210 | definition | |
| 37767 | 1211 | le_bool_def: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1212 | |
| 1213 | definition | |
| 37767 | 1214 | less_bool_def: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1215 | |
| 1216 | definition | |
| 1217 | top_bool_eq: "top = True" | |
| 1218 | ||
| 1219 | definition | |
| 1220 | bot_bool_eq: "bot = False" | |
| 1221 | ||
| 1222 | instance proof | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1223 | qed (auto simp add: bot_bool_eq top_bool_eq less_bool_def, auto simp add: le_bool_def) | 
| 28685 | 1224 | |
| 15524 | 1225 | end | 
| 28685 | 1226 | |
| 1227 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 32899 | 1228 | by (simp add: le_bool_def) | 
| 28685 | 1229 | |
| 1230 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 32899 | 1231 | by (simp add: le_bool_def) | 
| 28685 | 1232 | |
| 1233 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 32899 | 1234 | by (simp add: le_bool_def) | 
| 28685 | 1235 | |
| 1236 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 32899 | 1237 | by (simp add: le_bool_def) | 
| 1238 | ||
| 1239 | lemma bot_boolE: "bot \<Longrightarrow> P" | |
| 1240 | by (simp add: bot_bool_eq) | |
| 1241 | ||
| 1242 | lemma top_boolI: top | |
| 1243 | by (simp add: top_bool_eq) | |
| 28685 | 1244 | |
| 1245 | lemma [code]: | |
| 1246 | "False \<le> b \<longleftrightarrow> True" | |
| 1247 | "True \<le> b \<longleftrightarrow> b" | |
| 1248 | "False < b \<longleftrightarrow> b" | |
| 1249 | "True < b \<longleftrightarrow> False" | |
| 1250 | unfolding le_bool_def less_bool_def by simp_all | |
| 1251 | ||
| 1252 | ||
| 1253 | subsection {* Order on functions *}
 | |
| 1254 | ||
| 1255 | instantiation "fun" :: (type, ord) ord | |
| 1256 | begin | |
| 1257 | ||
| 1258 | definition | |
| 37767 | 1259 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1260 | |
| 1261 | definition | |
| 37767 | 1262 | less_fun_def: "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1263 | |
| 1264 | instance .. | |
| 1265 | ||
| 1266 | end | |
| 1267 | ||
| 1268 | instance "fun" :: (type, preorder) preorder proof | |
| 1269 | qed (auto simp add: le_fun_def less_fun_def | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1270 | intro: order_trans antisym intro!: ext) | 
| 28685 | 1271 | |
| 1272 | instance "fun" :: (type, order) order proof | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1273 | qed (auto simp add: le_fun_def intro: antisym ext) | 
| 28685 | 1274 | |
| 1275 | instantiation "fun" :: (type, top) top | |
| 1276 | begin | |
| 1277 | ||
| 1278 | definition | |
| 38650 
f22a564ac820
"no_atp" fact that leads to unsound proofs in Sledgehammer
 blanchet parents: 
37767diff
changeset | 1279 | top_fun_eq [no_atp]: "top = (\<lambda>x. top)" | 
| 
f22a564ac820
"no_atp" fact that leads to unsound proofs in Sledgehammer
 blanchet parents: 
37767diff
changeset | 1280 | declare top_fun_eq_raw [no_atp] | 
| 28685 | 1281 | |
| 1282 | instance proof | |
| 1283 | qed (simp add: top_fun_eq le_fun_def) | |
| 1284 | ||
| 1285 | end | |
| 1286 | ||
| 1287 | instantiation "fun" :: (type, bot) bot | |
| 1288 | begin | |
| 1289 | ||
| 1290 | definition | |
| 1291 | bot_fun_eq: "bot = (\<lambda>x. bot)" | |
| 1292 | ||
| 1293 | instance proof | |
| 1294 | qed (simp add: bot_fun_eq le_fun_def) | |
| 1295 | ||
| 1296 | end | |
| 1297 | ||
| 1298 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1299 | unfolding le_fun_def by simp | |
| 1300 | ||
| 1301 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1302 | unfolding le_fun_def by simp | |
| 1303 | ||
| 1304 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 1305 | unfolding le_fun_def by simp | |
| 1306 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1307 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1308 | subsection {* Name duplicates *}
 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1309 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1310 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1311 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1312 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1313 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1314 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1315 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1316 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1317 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1318 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1319 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1320 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1321 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1322 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1323 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1324 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1325 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1326 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1327 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1328 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1329 | lemmas order_antisym = order_class.antisym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1330 | lemmas order_eq_iff = order_class.eq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1331 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1332 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1333 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1334 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1335 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1336 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1337 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1338 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1339 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1340 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1341 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1342 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1343 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1344 | |
| 28685 | 1345 | end |