| author | haftmann | 
| Sat, 06 Feb 2010 08:42:22 +0100 | |
| changeset 35007 | 8c339c73495c | 
| parent 34943 | e97b22500a5c | 
| child 35028 | 108662d50512 | 
| permissions | -rw-r--r-- | 
| 10249 | 1 | (* Title: HOL/Library/Multiset.thy | 
| 15072 | 2 | Author: Tobias Nipkow, Markus Wenzel, Lawrence C Paulson, Norbert Voelker | 
| 10249 | 3 | *) | 
| 4 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 5 | header {* (Finite) multisets *}
 | 
| 10249 | 6 | |
| 15131 | 7 | theory Multiset | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 8 | imports Main | 
| 15131 | 9 | begin | 
| 10249 | 10 | |
| 11 | subsection {* The type of multisets *}
 | |
| 12 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 13 | typedef 'a multiset = "{f :: 'a => nat. finite {x. f x > 0}}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 14 | morphisms count Abs_multiset | 
| 10249 | 15 | proof | 
| 11464 | 16 | show "(\<lambda>x. 0::nat) \<in> ?multiset" by simp | 
| 10249 | 17 | qed | 
| 18 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 19 | lemmas multiset_typedef = Abs_multiset_inverse count_inverse count | 
| 19086 | 20 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 21 | abbreviation Melem :: "'a => 'a multiset => bool"  ("(_/ :# _)" [50, 51] 50) where
 | 
| 25610 | 22 | "a :# M == 0 < count M a" | 
| 23 | ||
| 26145 | 24 | notation (xsymbols) | 
| 25 | Melem (infix "\<in>#" 50) | |
| 10249 | 26 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 27 | lemma multiset_eq_conv_count_eq: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 28 | "M = N \<longleftrightarrow> (\<forall>a. count M a = count N a)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 29 | by (simp only: count_inject [symmetric] expand_fun_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 30 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 31 | lemma multi_count_ext: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 32 | "(\<And>x. count A x = count B x) \<Longrightarrow> A = B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 33 | using multiset_eq_conv_count_eq by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 34 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 35 | text {*
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 36 |  \medskip Preservation of the representing set @{term multiset}.
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 37 | *} | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 38 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 39 | lemma const0_in_multiset: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 40 | "(\<lambda>a. 0) \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 41 | by (simp add: multiset_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 42 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 43 | lemma only1_in_multiset: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 44 | "(\<lambda>b. if b = a then n else 0) \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 45 | by (simp add: multiset_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 46 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 47 | lemma union_preserves_multiset: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 48 | "M \<in> multiset \<Longrightarrow> N \<in> multiset \<Longrightarrow> (\<lambda>a. M a + N a) \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 49 | by (simp add: multiset_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 50 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 51 | lemma diff_preserves_multiset: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 52 | assumes "M \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 53 | shows "(\<lambda>a. M a - N a) \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 54 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 55 |   have "{x. N x < M x} \<subseteq> {x. 0 < M x}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 56 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 57 | with assms show ?thesis | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 58 | by (auto simp add: multiset_def intro: finite_subset) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 59 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 60 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 61 | lemma MCollect_preserves_multiset: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 62 | assumes "M \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 63 | shows "(\<lambda>x. if P x then M x else 0) \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 64 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 65 |   have "{x. (P x \<longrightarrow> 0 < M x) \<and> P x} \<subseteq> {x. 0 < M x}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 66 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 67 | with assms show ?thesis | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 68 | by (auto simp add: multiset_def intro: finite_subset) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 69 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 70 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 71 | lemmas in_multiset = const0_in_multiset only1_in_multiset | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 72 | union_preserves_multiset diff_preserves_multiset MCollect_preserves_multiset | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 73 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 74 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 75 | subsection {* Representing multisets *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 76 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 77 | text {* Multiset comprehension *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 78 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 79 | definition MCollect :: "'a multiset => ('a => bool) => 'a multiset" where
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 80 | "MCollect M P = Abs_multiset (\<lambda>x. if P x then count M x else 0)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 81 | |
| 10249 | 82 | syntax | 
| 26033 | 83 |   "_MCollect" :: "pttrn => 'a multiset => bool => 'a multiset"    ("(1{# _ :# _./ _#})")
 | 
| 10249 | 84 | translations | 
| 26033 | 85 |   "{#x :# M. P#}" == "CONST MCollect M (\<lambda>x. P)"
 | 
| 10249 | 86 | |
| 87 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 88 | text {* Multiset enumeration *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 89 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 90 | instantiation multiset :: (type) "{zero, plus}"
 | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 91 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 92 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 93 | definition Mempty_def: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 94 | "0 = Abs_multiset (\<lambda>a. 0)" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 95 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 96 | abbreviation Mempty :: "'a multiset" ("{#}") where
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 97 | "Mempty \<equiv> 0" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 98 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 99 | definition union_def: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 100 | "M + N = Abs_multiset (\<lambda>a. count M a + count N a)" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 101 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 102 | instance .. | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 103 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25507diff
changeset | 104 | end | 
| 10249 | 105 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 106 | definition single :: "'a => 'a multiset" where | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 107 | "single a = Abs_multiset (\<lambda>b. if b = a then 1 else 0)" | 
| 15869 | 108 | |
| 26145 | 109 | syntax | 
| 26176 | 110 |   "_multiset" :: "args => 'a multiset"    ("{#(_)#}")
 | 
| 25507 | 111 | translations | 
| 112 |   "{#x, xs#}" == "{#x#} + {#xs#}"
 | |
| 113 |   "{#x#}" == "CONST single x"
 | |
| 114 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 115 | lemma count_empty [simp]: "count {#} a = 0"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 116 | by (simp add: Mempty_def in_multiset multiset_typedef) | 
| 10249 | 117 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 118 | lemma count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 119 | by (simp add: single_def in_multiset multiset_typedef) | 
| 29901 | 120 | |
| 10249 | 121 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 122 | subsection {* Basic operations *}
 | 
| 10249 | 123 | |
| 124 | subsubsection {* Union *}
 | |
| 125 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 126 | lemma count_union [simp]: "count (M + N) a = count M a + count N a" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 127 | by (simp add: union_def in_multiset multiset_typedef) | 
| 10249 | 128 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 129 | instance multiset :: (type) cancel_comm_monoid_add proof | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 130 | qed (simp_all add: multiset_eq_conv_count_eq) | 
| 10277 | 131 | |
| 10249 | 132 | |
| 133 | subsubsection {* Difference *}
 | |
| 134 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 135 | instantiation multiset :: (type) minus | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 136 | begin | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 137 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 138 | definition diff_def: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 139 | "M - N = Abs_multiset (\<lambda>a. count M a - count N a)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 140 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 141 | instance .. | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 142 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 143 | end | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 144 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 145 | lemma count_diff [simp]: "count (M - N) a = count M a - count N a" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 146 | by (simp add: diff_def in_multiset multiset_typedef) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 147 | |
| 17161 | 148 | lemma diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}"
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 149 | by (simp add: Mempty_def diff_def in_multiset multiset_typedef) | 
| 10249 | 150 | |
| 17161 | 151 | lemma diff_union_inverse2 [simp]: "M + {#a#} - {#a#} = M"
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 152 | by (rule multi_count_ext) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 153 | (auto simp del: count_single simp add: union_def diff_def in_multiset multiset_typedef) | 
| 10249 | 154 | |
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26033diff
changeset | 155 | lemma diff_cancel: "A - A = {#}"
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 156 | by (rule multi_count_ext) simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 157 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 158 | lemma insert_DiffM: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 159 |   "x \<in># M \<Longrightarrow> {#x#} + (M - {#x#}) = M"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 160 | by (clarsimp simp: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 161 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 162 | lemma insert_DiffM2 [simp]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 163 |   "x \<in># M \<Longrightarrow> M - {#x#} + {#x#} = M"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 164 | by (clarsimp simp: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 165 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 166 | lemma diff_right_commute: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 167 | "(M::'a multiset) - N - Q = M - Q - N" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 168 | by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 169 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 170 | lemma diff_union_swap: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 171 |   "a \<noteq> b \<Longrightarrow> M - {#a#} + {#b#} = M + {#b#} - {#a#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 172 | by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 173 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 174 | lemma diff_union_single_conv: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 175 |   "a \<in># J \<Longrightarrow> I + J - {#a#} = I + (J - {#a#})"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 176 | by (simp add: multiset_eq_conv_count_eq) | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26033diff
changeset | 177 | |
| 10249 | 178 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 179 | subsubsection {* Intersection *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 180 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 181 | definition multiset_inter :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" (infixl "#\<inter>" 70) where | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 182 | "multiset_inter A B = A - (A - B)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 183 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 184 | lemma multiset_inter_count: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 185 | "count (A #\<inter> B) x = min (count A x) (count B x)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 186 | by (simp add: multiset_inter_def multiset_typedef) | 
| 10249 | 187 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 188 | lemma multiset_inter_commute: "A #\<inter> B = B #\<inter> A" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 189 | by (rule multi_count_ext) (simp add: multiset_inter_count) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 190 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 191 | lemma multiset_inter_assoc: "A #\<inter> (B #\<inter> C) = A #\<inter> B #\<inter> C" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 192 | by (rule multi_count_ext) (simp add: multiset_inter_count) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 193 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 194 | lemma multiset_inter_left_commute: "A #\<inter> (B #\<inter> C) = B #\<inter> (A #\<inter> C)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 195 | by (rule multi_count_ext) (simp add: multiset_inter_count) | 
| 10249 | 196 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 197 | lemmas multiset_inter_ac = | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 198 | multiset_inter_commute | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 199 | multiset_inter_assoc | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 200 | multiset_inter_left_commute | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 201 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 202 | lemma multiset_inter_single: "a \<noteq> b \<Longrightarrow> {#a#} #\<inter> {#b#} = {#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 203 | by (rule multi_count_ext) (auto simp add: multiset_inter_count) | 
| 10249 | 204 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 205 | lemma multiset_union_diff_commute: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 206 |   assumes "B #\<inter> C = {#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 207 | shows "A + B - C = A - C + B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 208 | proof (rule multi_count_ext) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 209 | fix x | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 210 | from assms have "min (count B x) (count C x) = 0" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 211 | by (auto simp add: multiset_inter_count multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 212 | then have "count B x = 0 \<or> count C x = 0" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 213 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 214 | then show "count (A + B - C) x = count (A - C + B) x" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 215 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 216 | qed | 
| 10249 | 217 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 218 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 219 | subsubsection {* Comprehension (filter) *}
 | 
| 26016 | 220 | |
| 221 | lemma count_MCollect [simp]: | |
| 26178 | 222 |   "count {# x:#M. P x #} a = (if P a then count M a else 0)"
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 223 | by (simp add: MCollect_def in_multiset multiset_typedef) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 224 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 225 | lemma MCollect_empty [simp]: "MCollect {#} P = {#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 226 | by (rule multi_count_ext) simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 227 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 228 | lemma MCollect_single [simp]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 229 |   "MCollect {#x#} P = (if P x then {#x#} else {#})"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 230 | by (rule multi_count_ext) simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 231 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 232 | lemma MCollect_union [simp]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 233 | "MCollect (M + N) f = MCollect M f + MCollect N f" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 234 | by (rule multi_count_ext) simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 235 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 236 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 237 | subsubsection {* Equality of multisets *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 238 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 239 | lemma single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 240 | by (simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 241 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 242 | lemma single_eq_single [simp]: "{#a#} = {#b#} \<longleftrightarrow> a = b"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 243 | by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 244 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 245 | lemma union_eq_empty [iff]: "M + N = {#} \<longleftrightarrow> M = {#} \<and> N = {#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 246 | by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 247 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 248 | lemma empty_eq_union [iff]: "{#} = M + N \<longleftrightarrow> M = {#} \<and> N = {#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 249 | by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 250 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 251 | lemma multi_self_add_other_not_self [simp]: "M = M + {#x#} \<longleftrightarrow> False"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 252 | by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 253 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 254 | lemma diff_single_trivial: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 255 |   "\<not> x \<in># M \<Longrightarrow> M - {#x#} = M"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 256 | by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 257 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 258 | lemma diff_single_eq_union: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 259 |   "x \<in># M \<Longrightarrow> M - {#x#} = N \<longleftrightarrow> M = N + {#x#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 260 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 261 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 262 | lemma union_single_eq_diff: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 263 |   "M + {#x#} = N \<Longrightarrow> M = N - {#x#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 264 | by (auto dest: sym) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 265 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 266 | lemma union_single_eq_member: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 267 |   "M + {#x#} = N \<Longrightarrow> x \<in># N"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 268 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 269 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 270 | lemma union_is_single: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 271 |   "M + N = {#a#} \<longleftrightarrow> M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#}" (is "?lhs = ?rhs")
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 272 | proof | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 273 | assume ?rhs then show ?lhs by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 274 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 275 | assume ?lhs | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 276 | then have "\<And>b. count (M + N) b = (if b = a then 1 else 0)" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 277 | then have *: "\<And>b. count M b + count N b = (if b = a then 1 else 0)" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 278 | then have "count M a + count N a = 1" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 279 | then have **: "count M a = 1 \<and> count N a = 0 \<or> count M a = 0 \<and> count N a = 1" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 280 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 281 | from * have "\<And>b. b \<noteq> a \<Longrightarrow> count M b + count N b = 0" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 282 | then have ***: "\<And>b. b \<noteq> a \<Longrightarrow> count M b = 0 \<and> count N b = 0" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 283 | from ** and *** have | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 284 | "(\<forall>b. count M b = (if b = a then 1 else 0) \<and> count N b = 0) \<or> | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 285 | (\<forall>b. count M b = 0 \<and> count N b = (if b = a then 1 else 0))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 286 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 287 | then have | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 288 | "(\<forall>b. count M b = (if b = a then 1 else 0)) \<and> (\<forall>b. count N b = 0) \<or> | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 289 | (\<forall>b. count M b = 0) \<and> (\<forall>b. count N b = (if b = a then 1 else 0))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 290 | by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 291 | then show ?rhs by (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 292 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 293 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 294 | lemma single_is_union: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 295 |   "{#a#} = M + N \<longleftrightarrow> {#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 296 |   by (auto simp add: eq_commute [of "{#a#}" "M + N"] union_is_single)
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 297 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 298 | lemma add_eq_conv_diff: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 299 |   "M + {#a#} = N + {#b#} \<longleftrightarrow> M = N \<and> a = b \<or> M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#}"  (is "?lhs = ?rhs")
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 300 | proof | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 301 | assume ?rhs then show ?lhs | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 302 |   by (auto simp add: add_assoc add_commute [of "{#b#}"])
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 303 | (drule sym, simp add: add_assoc [symmetric]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 304 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 305 | assume ?lhs | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 306 | show ?rhs | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 307 | proof (cases "a = b") | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 308 | case True with `?lhs` show ?thesis by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 309 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 310 | case False | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 311 |     from `?lhs` have "a \<in># N + {#b#}" by (rule union_single_eq_member)
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 312 | with False have "a \<in># N" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 313 |     moreover from `?lhs` have "M = N + {#b#} - {#a#}" by (rule union_single_eq_diff)
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 314 | moreover note False | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 315 |     ultimately show ?thesis by (auto simp add: diff_right_commute [of _ "{#a#}"] diff_union_swap)
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 316 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 317 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 318 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 319 | lemma insert_noteq_member: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 320 |   assumes BC: "B + {#b#} = C + {#c#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 321 | and bnotc: "b \<noteq> c" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 322 | shows "c \<in># B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 323 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 324 |   have "c \<in># C + {#c#}" by simp
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 325 |   have nc: "\<not> c \<in># {#b#}" using bnotc by simp
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 326 |   then have "c \<in># B + {#b#}" using BC by simp
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 327 | then show "c \<in># B" using nc by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 328 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 329 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 330 | lemma add_eq_conv_ex: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 331 |   "(M + {#a#} = N + {#b#}) =
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 332 |     (M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 333 | by (auto simp add: add_eq_conv_diff) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 334 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 335 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 336 | subsubsection {* Pointwise ordering induced by count *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 337 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 338 | definition mset_le :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "\<le>#" 50) where | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 339 | "A \<le># B \<longleftrightarrow> (\<forall>a. count A a \<le> count B a)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 340 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 341 | definition mset_less :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<#" 50) where | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 342 | "A <# B \<longleftrightarrow> A \<le># B \<and> A \<noteq> B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 343 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 344 | notation mset_le (infix "\<subseteq>#" 50) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 345 | notation mset_less (infix "\<subset>#" 50) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 346 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 347 | lemma mset_less_eqI: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 348 | "(\<And>x. count A x \<le> count B x) \<Longrightarrow> A \<subseteq># B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 349 | by (simp add: mset_le_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 350 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 351 | lemma mset_le_refl[simp]: "A \<le># A" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 352 | unfolding mset_le_def by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 353 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 354 | lemma mset_le_trans: "A \<le># B \<Longrightarrow> B \<le># C \<Longrightarrow> A \<le># C" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 355 | unfolding mset_le_def by (fast intro: order_trans) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 356 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 357 | lemma mset_le_antisym: "A \<le># B \<Longrightarrow> B \<le># A \<Longrightarrow> A = B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 358 | apply (unfold mset_le_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 359 | apply (rule multiset_eq_conv_count_eq [THEN iffD2]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 360 | apply (blast intro: order_antisym) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 361 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 362 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 363 | lemma mset_le_exists_conv: "(A \<le># B) = (\<exists>C. B = A + C)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 364 | apply (unfold mset_le_def, rule iffI, rule_tac x = "B - A" in exI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 365 | apply (auto intro: multiset_eq_conv_count_eq [THEN iffD2]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 366 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 367 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 368 | lemma mset_le_mono_add_right_cancel[simp]: "(A + C \<le># B + C) = (A \<le># B)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 369 | unfolding mset_le_def by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 370 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 371 | lemma mset_le_mono_add_left_cancel[simp]: "(C + A \<le># C + B) = (A \<le># B)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 372 | unfolding mset_le_def by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 373 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 374 | lemma mset_le_mono_add: "\<lbrakk> A \<le># B; C \<le># D \<rbrakk> \<Longrightarrow> A + C \<le># B + D" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 375 | apply (unfold mset_le_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 376 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 377 | apply (erule_tac x = a in allE)+ | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 378 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 379 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 380 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 381 | lemma mset_le_add_left[simp]: "A \<le># A + B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 382 | unfolding mset_le_def by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 383 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 384 | lemma mset_le_add_right[simp]: "B \<le># A + B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 385 | unfolding mset_le_def by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 386 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 387 | lemma mset_le_single: "a :# B \<Longrightarrow> {#a#} \<le># B"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 388 | by (simp add: mset_le_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 389 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 390 | lemma multiset_diff_union_assoc: "C \<le># B \<Longrightarrow> A + B - C = A + (B - C)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 391 | by (simp add: multiset_eq_conv_count_eq mset_le_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 392 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 393 | lemma mset_le_multiset_union_diff_commute: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 394 | assumes "B \<le># A" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 395 | shows "A - B + C = A + C - B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 396 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 397 | from mset_le_exists_conv [of "B" "A"] assms have "\<exists>D. A = B + D" .. | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 398 | from this obtain D where "A = B + D" .. | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 399 | then show ?thesis | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 400 | apply simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 401 | apply (subst add_commute) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 402 | apply (subst multiset_diff_union_assoc) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 403 | apply simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 404 | apply (simp add: diff_cancel) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 405 | apply (subst add_assoc) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 406 | apply (subst add_commute [of "B" _]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 407 | apply (subst multiset_diff_union_assoc) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 408 | apply simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 409 | apply (simp add: diff_cancel) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 410 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 411 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 412 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 413 | interpretation mset_order: order "op \<le>#" "op <#" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 414 | proof qed (auto intro: order.intro mset_le_refl mset_le_antisym | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 415 | mset_le_trans simp: mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 416 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 417 | interpretation mset_order_cancel_semigroup: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 418 | pordered_cancel_ab_semigroup_add "op +" "op \<le>#" "op <#" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 419 | proof qed (erule mset_le_mono_add [OF mset_le_refl]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 420 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 421 | interpretation mset_order_semigroup_cancel: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 422 | pordered_ab_semigroup_add_imp_le "op +" "op \<le>#" "op <#" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 423 | proof qed simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 424 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 425 | lemma mset_lessD: "A \<subset># B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 426 | apply (clarsimp simp: mset_le_def mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 427 | apply (erule_tac x=x in allE) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 428 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 429 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 430 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 431 | lemma mset_leD: "A \<subseteq># B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 432 | apply (clarsimp simp: mset_le_def mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 433 | apply (erule_tac x = x in allE) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 434 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 435 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 436 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 437 | lemma mset_less_insertD: "(A + {#x#} \<subset># B) \<Longrightarrow> (x \<in># B \<and> A \<subset># B)"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 438 | apply (rule conjI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 439 | apply (simp add: mset_lessD) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 440 | apply (clarsimp simp: mset_le_def mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 441 | apply safe | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 442 | apply (erule_tac x = a in allE) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 443 | apply (auto split: split_if_asm) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 444 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 445 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 446 | lemma mset_le_insertD: "(A + {#x#} \<subseteq># B) \<Longrightarrow> (x \<in># B \<and> A \<subseteq># B)"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 447 | apply (rule conjI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 448 | apply (simp add: mset_leD) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 449 | apply (force simp: mset_le_def mset_less_def split: split_if_asm) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 450 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 451 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 452 | lemma mset_less_of_empty[simp]: "A \<subset># {#} \<longleftrightarrow> False"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 453 | by (auto simp add: mset_less_def mset_le_def multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 454 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 455 | lemma multi_psub_of_add_self[simp]: "A \<subset># A + {#x#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 456 | by (auto simp: mset_le_def mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 457 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 458 | lemma multi_psub_self[simp]: "A \<subset># A = False" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 459 | by (auto simp: mset_le_def mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 460 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 461 | lemma mset_less_add_bothsides: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 462 |   "T + {#x#} \<subset># S + {#x#} \<Longrightarrow> T \<subset># S"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 463 | by (auto simp: mset_le_def mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 464 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 465 | lemma mset_less_empty_nonempty: "({#} \<subset># S) = (S \<noteq> {#})"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 466 | by (auto simp: mset_le_def mset_less_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 467 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 468 | lemma mset_less_diff_self: "c \<in># B \<Longrightarrow> B - {#c#} \<subset># B"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 469 | by (auto simp: mset_le_def mset_less_def multiset_eq_conv_count_eq) | 
| 10249 | 470 | |
| 471 | ||
| 472 | subsubsection {* Set of elements *}
 | |
| 473 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 474 | definition set_of :: "'a multiset => 'a set" where | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 475 |   "set_of M = {x. x :# M}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 476 | |
| 17161 | 477 | lemma set_of_empty [simp]: "set_of {#} = {}"
 | 
| 26178 | 478 | by (simp add: set_of_def) | 
| 10249 | 479 | |
| 17161 | 480 | lemma set_of_single [simp]: "set_of {#b#} = {b}"
 | 
| 26178 | 481 | by (simp add: set_of_def) | 
| 10249 | 482 | |
| 17161 | 483 | lemma set_of_union [simp]: "set_of (M + N) = set_of M \<union> set_of N" | 
| 26178 | 484 | by (auto simp add: set_of_def) | 
| 10249 | 485 | |
| 17161 | 486 | lemma set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})"
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 487 | by (auto simp add: set_of_def multiset_eq_conv_count_eq) | 
| 10249 | 488 | |
| 17161 | 489 | lemma mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)" | 
| 26178 | 490 | by (auto simp add: set_of_def) | 
| 26016 | 491 | |
| 26033 | 492 | lemma set_of_MCollect [simp]: "set_of {# x:#M. P x #} = set_of M \<inter> {x. P x}"
 | 
| 26178 | 493 | by (auto simp add: set_of_def) | 
| 10249 | 494 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 495 | lemma finite_set_of [iff]: "finite (set_of M)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 496 | using count [of M] by (simp add: multiset_def set_of_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 497 | |
| 10249 | 498 | |
| 499 | subsubsection {* Size *}
 | |
| 500 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 501 | instantiation multiset :: (type) size | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 502 | begin | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 503 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 504 | definition size_def: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 505 | "size M = setsum (count M) (set_of M)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 506 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 507 | instance .. | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 508 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 509 | end | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 510 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 511 | lemma size_empty [simp]: "size {#} = 0"
 | 
| 26178 | 512 | by (simp add: size_def) | 
| 10249 | 513 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 514 | lemma size_single [simp]: "size {#b#} = 1"
 | 
| 26178 | 515 | by (simp add: size_def) | 
| 10249 | 516 | |
| 17161 | 517 | lemma setsum_count_Int: | 
| 26178 | 518 | "finite A ==> setsum (count N) (A \<inter> set_of N) = setsum (count N) A" | 
| 519 | apply (induct rule: finite_induct) | |
| 520 | apply simp | |
| 521 | apply (simp add: Int_insert_left set_of_def) | |
| 522 | done | |
| 10249 | 523 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 524 | lemma size_union [simp]: "size (M + N::'a multiset) = size M + size N" | 
| 26178 | 525 | apply (unfold size_def) | 
| 526 | apply (subgoal_tac "count (M + N) = (\<lambda>a. count M a + count N a)") | |
| 527 | prefer 2 | |
| 528 | apply (rule ext, simp) | |
| 529 | apply (simp (no_asm_simp) add: setsum_Un_nat setsum_addf setsum_count_Int) | |
| 530 | apply (subst Int_commute) | |
| 531 | apply (simp (no_asm_simp) add: setsum_count_Int) | |
| 532 | done | |
| 10249 | 533 | |
| 17161 | 534 | lemma size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})"
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 535 | by (auto simp add: size_def multiset_eq_conv_count_eq) | 
| 26016 | 536 | |
| 537 | lemma nonempty_has_size: "(S \<noteq> {#}) = (0 < size S)"
 | |
| 26178 | 538 | by (metis gr0I gr_implies_not0 size_empty size_eq_0_iff_empty) | 
| 10249 | 539 | |
| 17161 | 540 | lemma size_eq_Suc_imp_elem: "size M = Suc n ==> \<exists>a. a :# M" | 
| 26178 | 541 | apply (unfold size_def) | 
| 542 | apply (drule setsum_SucD) | |
| 543 | apply auto | |
| 544 | done | |
| 10249 | 545 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 546 | lemma size_eq_Suc_imp_eq_union: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 547 | assumes "size M = Suc n" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 548 |   shows "\<exists>a N. M = N + {#a#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 549 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 550 | from assms obtain a where "a \<in># M" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 551 | by (erule size_eq_Suc_imp_elem [THEN exE]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 552 |   then have "M = M - {#a#} + {#a#}" by simp
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 553 | then show ?thesis by blast | 
| 23611 | 554 | qed | 
| 15869 | 555 | |
| 26016 | 556 | |
| 557 | subsection {* Induction and case splits *}
 | |
| 10249 | 558 | |
| 559 | lemma setsum_decr: | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11655diff
changeset | 560 | "finite F ==> (0::nat) < f a ==> | 
| 15072 | 561 | setsum (f (a := f a - 1)) F = (if a\<in>F then setsum f F - 1 else setsum f F)" | 
| 26178 | 562 | apply (induct rule: finite_induct) | 
| 563 | apply auto | |
| 564 | apply (drule_tac a = a in mk_disjoint_insert, auto) | |
| 565 | done | |
| 10249 | 566 | |
| 10313 | 567 | lemma rep_multiset_induct_aux: | 
| 26178 | 568 | assumes 1: "P (\<lambda>a. (0::nat))" | 
| 569 | and 2: "!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))" | |
| 570 | shows "\<forall>f. f \<in> multiset --> setsum f {x. f x \<noteq> 0} = n --> P f"
 | |
| 571 | apply (unfold multiset_def) | |
| 572 | apply (induct_tac n, simp, clarify) | |
| 573 | apply (subgoal_tac "f = (\<lambda>a.0)") | |
| 574 | apply simp | |
| 575 | apply (rule 1) | |
| 576 | apply (rule ext, force, clarify) | |
| 577 | apply (frule setsum_SucD, clarify) | |
| 578 | apply (rename_tac a) | |
| 579 | apply (subgoal_tac "finite {x. (f (a := f a - 1)) x > 0}")
 | |
| 580 | prefer 2 | |
| 581 | apply (rule finite_subset) | |
| 582 | prefer 2 | |
| 583 | apply assumption | |
| 584 | apply simp | |
| 585 | apply blast | |
| 586 | apply (subgoal_tac "f = (f (a := f a - 1))(a := (f (a := f a - 1)) a + 1)") | |
| 587 | prefer 2 | |
| 588 | apply (rule ext) | |
| 589 | apply (simp (no_asm_simp)) | |
| 590 | apply (erule ssubst, rule 2 [unfolded multiset_def], blast) | |
| 591 | apply (erule allE, erule impE, erule_tac [2] mp, blast) | |
| 592 | apply (simp (no_asm_simp) add: setsum_decr del: fun_upd_apply One_nat_def) | |
| 593 | apply (subgoal_tac "{x. x \<noteq> a --> f x \<noteq> 0} = {x. f x \<noteq> 0}")
 | |
| 594 | prefer 2 | |
| 595 | apply blast | |
| 596 | apply (subgoal_tac "{x. x \<noteq> a \<and> f x \<noteq> 0} = {x. f x \<noteq> 0} - {a}")
 | |
| 597 | prefer 2 | |
| 598 | apply blast | |
| 599 | apply (simp add: le_imp_diff_is_add setsum_diff1_nat cong: conj_cong) | |
| 600 | done | |
| 10249 | 601 | |
| 10313 | 602 | theorem rep_multiset_induct: | 
| 11464 | 603 | "f \<in> multiset ==> P (\<lambda>a. 0) ==> | 
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11655diff
changeset | 604 | (!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))) ==> P f" | 
| 26178 | 605 | using rep_multiset_induct_aux by blast | 
| 10249 | 606 | |
| 18258 | 607 | theorem multiset_induct [case_names empty add, induct type: multiset]: | 
| 26178 | 608 | assumes empty: "P {#}"
 | 
| 609 |   and add: "!!M x. P M ==> P (M + {#x#})"
 | |
| 610 | shows "P M" | |
| 10249 | 611 | proof - | 
| 612 | note defns = union_def single_def Mempty_def | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 613 | note add' = add [unfolded defns, simplified] | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 614 | have aux: "\<And>a::'a. count (Abs_multiset (\<lambda>b. if b = a then 1 else 0)) = | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 615 | (\<lambda>b. if b = a then 1 else 0)" by (simp add: Abs_multiset_inverse in_multiset) | 
| 10249 | 616 | show ?thesis | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 617 | apply (rule count_inverse [THEN subst]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 618 | apply (rule count [THEN rep_multiset_induct]) | 
| 18258 | 619 | apply (rule empty [unfolded defns]) | 
| 15072 | 620 | apply (subgoal_tac "f(b := f b + 1) = (\<lambda>a. f a + (if a=b then 1 else 0))") | 
| 10249 | 621 | prefer 2 | 
| 622 | apply (simp add: expand_fun_eq) | |
| 623 | apply (erule ssubst) | |
| 17200 | 624 | apply (erule Abs_multiset_inverse [THEN subst]) | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 625 | apply (drule add') | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 626 | apply (simp add: aux) | 
| 10249 | 627 | done | 
| 628 | qed | |
| 629 | ||
| 25610 | 630 | lemma multi_nonempty_split: "M \<noteq> {#} \<Longrightarrow> \<exists>A a. M = A + {#a#}"
 | 
| 26178 | 631 | by (induct M) auto | 
| 25610 | 632 | |
| 633 | lemma multiset_cases [cases type, case_names empty add]: | |
| 26178 | 634 | assumes em:  "M = {#} \<Longrightarrow> P"
 | 
| 635 | assumes add: "\<And>N x. M = N + {#x#} \<Longrightarrow> P"
 | |
| 636 | shows "P" | |
| 25610 | 637 | proof (cases "M = {#}")
 | 
| 26145 | 638 |   assume "M = {#}" then show ?thesis using em by simp
 | 
| 25610 | 639 | next | 
| 640 |   assume "M \<noteq> {#}"
 | |
| 641 |   then obtain M' m where "M = M' + {#m#}" 
 | |
| 642 | by (blast dest: multi_nonempty_split) | |
| 26145 | 643 | then show ?thesis using add by simp | 
| 25610 | 644 | qed | 
| 645 | ||
| 646 | lemma multi_member_split: "x \<in># M \<Longrightarrow> \<exists>A. M = A + {#x#}"
 | |
| 26178 | 647 | apply (cases M) | 
| 648 | apply simp | |
| 649 | apply (rule_tac x="M - {#x#}" in exI, simp)
 | |
| 650 | done | |
| 25610 | 651 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 652 | lemma multi_drop_mem_not_eq: "c \<in># B \<Longrightarrow> B - {#c#} \<noteq> B"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 653 | by (cases "B = {#}") (auto dest: multi_member_split)
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 654 | |
| 26033 | 655 | lemma multiset_partition: "M = {# x:#M. P x #} + {# x:#M. \<not> P x #}"
 | 
| 26178 | 656 | apply (subst multiset_eq_conv_count_eq) | 
| 657 | apply auto | |
| 658 | done | |
| 10249 | 659 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 660 | lemma mset_less_size: "A \<subset># B \<Longrightarrow> size A < size B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 661 | proof (induct A arbitrary: B) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 662 | case (empty M) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 663 |   then have "M \<noteq> {#}" by (simp add: mset_less_empty_nonempty)
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 664 |   then obtain M' x where "M = M' + {#x#}" 
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 665 | by (blast dest: multi_nonempty_split) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 666 | then show ?case by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 667 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 668 | case (add S x T) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 669 | have IH: "\<And>B. S \<subset># B \<Longrightarrow> size S < size B" by fact | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 670 |   have SxsubT: "S + {#x#} \<subset># T" by fact
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 671 | then have "x \<in># T" and "S \<subset># T" by (auto dest: mset_less_insertD) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 672 |   then obtain T' where T: "T = T' + {#x#}" 
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 673 | by (blast dest: multi_member_split) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 674 | then have "S \<subset># T'" using SxsubT | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 675 | by (blast intro: mset_less_add_bothsides) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 676 | then have "size S < size T'" using IH by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 677 | then show ?case using T by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 678 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 679 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 680 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 681 | subsubsection {* Strong induction and subset induction for multisets *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 682 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 683 | text {* Well-foundedness of proper subset operator: *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 684 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 685 | text {* proper multiset subset *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 686 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 687 | definition | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 688 |   mset_less_rel :: "('a multiset * 'a multiset) set" where
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 689 |   "mset_less_rel = {(A,B). A \<subset># B}"
 | 
| 10249 | 690 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 691 | lemma multiset_add_sub_el_shuffle: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 692 | assumes "c \<in># B" and "b \<noteq> c" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 693 |   shows "B - {#c#} + {#b#} = B + {#b#} - {#c#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 694 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 695 |   from `c \<in># B` obtain A where B: "B = A + {#c#}" 
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 696 | by (blast dest: multi_member_split) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 697 |   have "A + {#b#} = A + {#b#} + {#c#} - {#c#}" by simp
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 698 |   then have "A + {#b#} = A + {#c#} + {#b#} - {#c#}" 
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 699 | by (simp add: add_ac) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 700 | then show ?thesis using B by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 701 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 702 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 703 | lemma wf_mset_less_rel: "wf mset_less_rel" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 704 | apply (unfold mset_less_rel_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 705 | apply (rule wf_measure [THEN wf_subset, where f1=size]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 706 | apply (clarsimp simp: measure_def inv_image_def mset_less_size) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 707 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 708 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 709 | text {* The induction rules: *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 710 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 711 | lemma full_multiset_induct [case_names less]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 712 | assumes ih: "\<And>B. \<forall>A. A \<subset># B \<longrightarrow> P A \<Longrightarrow> P B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 713 | shows "P B" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 714 | apply (rule wf_mset_less_rel [THEN wf_induct]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 715 | apply (rule ih, auto simp: mset_less_rel_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 716 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 717 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 718 | lemma multi_subset_induct [consumes 2, case_names empty add]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 719 | assumes "F \<subseteq># A" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 720 |   and empty: "P {#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 721 |   and insert: "\<And>a F. a \<in># A \<Longrightarrow> P F \<Longrightarrow> P (F + {#a#})"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 722 | shows "P F" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 723 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 724 | from `F \<subseteq># A` | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 725 | show ?thesis | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 726 | proof (induct F) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 727 |     show "P {#}" by fact
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 728 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 729 | fix x F | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 730 |     assume P: "F \<subseteq># A \<Longrightarrow> P F" and i: "F + {#x#} \<subseteq># A"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 731 |     show "P (F + {#x#})"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 732 | proof (rule insert) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 733 | from i show "x \<in># A" by (auto dest: mset_le_insertD) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 734 | from i have "F \<subseteq># A" by (auto dest: mset_le_insertD) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 735 | with P show "P F" . | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 736 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 737 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 738 | qed | 
| 26145 | 739 | |
| 17161 | 740 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 741 | subsection {* Alternative representations *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 742 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 743 | subsubsection {* Lists *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 744 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 745 | primrec multiset_of :: "'a list \<Rightarrow> 'a multiset" where | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 746 |   "multiset_of [] = {#}" |
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 747 |   "multiset_of (a # x) = multiset_of x + {# a #}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 748 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 749 | lemma multiset_of_zero_iff[simp]: "(multiset_of x = {#}) = (x = [])"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 750 | by (induct x) auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 751 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 752 | lemma multiset_of_zero_iff_right[simp]: "({#} = multiset_of x) = (x = [])"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 753 | by (induct x) auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 754 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 755 | lemma set_of_multiset_of[simp]: "set_of(multiset_of x) = set x" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 756 | by (induct x) auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 757 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 758 | lemma mem_set_multiset_eq: "x \<in> set xs = (x :# multiset_of xs)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 759 | by (induct xs) auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 760 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 761 | lemma multiset_of_append [simp]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 762 | "multiset_of (xs @ ys) = multiset_of xs + multiset_of ys" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 763 | by (induct xs arbitrary: ys) (auto simp: add_ac) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 764 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 765 | lemma surj_multiset_of: "surj multiset_of" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 766 | apply (unfold surj_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 767 | apply (rule allI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 768 | apply (rule_tac M = y in multiset_induct) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 769 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 770 | apply (rule_tac x = "x # xa" in exI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 771 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 772 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 773 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 774 | lemma set_count_greater_0: "set x = {a. count (multiset_of x) a > 0}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 775 | by (induct x) auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 776 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 777 | lemma distinct_count_atmost_1: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 778 | "distinct x = (! a. count (multiset_of x) a = (if a \<in> set x then 1 else 0))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 779 | apply (induct x, simp, rule iffI, simp_all) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 780 | apply (rule conjI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 781 | apply (simp_all add: set_of_multiset_of [THEN sym] del: set_of_multiset_of) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 782 | apply (erule_tac x = a in allE, simp, clarify) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 783 | apply (erule_tac x = aa in allE, simp) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 784 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 785 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 786 | lemma multiset_of_eq_setD: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 787 | "multiset_of xs = multiset_of ys \<Longrightarrow> set xs = set ys" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 788 | by (rule) (auto simp add:multiset_eq_conv_count_eq set_count_greater_0) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 789 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 790 | lemma set_eq_iff_multiset_of_eq_distinct: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 791 | "distinct x \<Longrightarrow> distinct y \<Longrightarrow> | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 792 | (set x = set y) = (multiset_of x = multiset_of y)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 793 | by (auto simp: multiset_eq_conv_count_eq distinct_count_atmost_1) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 794 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 795 | lemma set_eq_iff_multiset_of_remdups_eq: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 796 | "(set x = set y) = (multiset_of (remdups x) = multiset_of (remdups y))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 797 | apply (rule iffI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 798 | apply (simp add: set_eq_iff_multiset_of_eq_distinct[THEN iffD1]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 799 | apply (drule distinct_remdups [THEN distinct_remdups | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 800 | [THEN set_eq_iff_multiset_of_eq_distinct [THEN iffD2]]]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 801 | apply simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 802 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 803 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 804 | lemma multiset_of_compl_union [simp]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 805 | "multiset_of [x\<leftarrow>xs. P x] + multiset_of [x\<leftarrow>xs. \<not>P x] = multiset_of xs" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 806 | by (induct xs) (auto simp: add_ac) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 807 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 808 | lemma count_filter: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 809 | "count (multiset_of xs) x = length [y \<leftarrow> xs. y = x]" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 810 | by (induct xs) auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 811 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 812 | lemma nth_mem_multiset_of: "i < length ls \<Longrightarrow> (ls ! i) :# multiset_of ls" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 813 | apply (induct ls arbitrary: i) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 814 | apply simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 815 | apply (case_tac i) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 816 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 817 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 818 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 819 | lemma multiset_of_remove1: "multiset_of (remove1 a xs) = multiset_of xs - {#a#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 820 | by (induct xs) (auto simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 821 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 822 | lemma multiset_of_eq_length: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 823 | assumes "multiset_of xs = multiset_of ys" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 824 | shows "length xs = length ys" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 825 | using assms | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 826 | proof (induct arbitrary: ys rule: length_induct) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 827 | case (1 xs ys) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 828 | show ?case | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 829 | proof (cases xs) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 830 | case Nil with "1.prems" show ?thesis by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 831 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 832 | case (Cons x xs') | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 833 | note xCons = Cons | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 834 | show ?thesis | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 835 | proof (cases ys) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 836 | case Nil | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 837 | with "1.prems" Cons show ?thesis by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 838 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 839 | case (Cons y ys') | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 840 | have x_in_ys: "x = y \<or> x \<in> set ys'" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 841 | proof (cases "x = y") | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 842 | case True then show ?thesis .. | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 843 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 844 | case False | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 845 |         from "1.prems" [symmetric] xCons Cons have "x :# multiset_of ys' + {#y#}" by simp
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 846 | with False show ?thesis by (simp add: mem_set_multiset_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 847 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 848 | from "1.hyps" have IH: "length xs' < length xs \<longrightarrow> | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 849 | (\<forall>x. multiset_of xs' = multiset_of x \<longrightarrow> length xs' = length x)" by blast | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 850 | from "1.prems" x_in_ys Cons xCons have "multiset_of xs' = multiset_of (remove1 x (y#ys'))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 851 | apply - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 852 | apply (simp add: multiset_of_remove1, simp only: add_eq_conv_diff) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 853 | apply fastsimp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 854 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 855 | with IH xCons have IH': "length xs' = length (remove1 x (y#ys'))" by fastsimp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 856 | from x_in_ys have "x \<noteq> y \<Longrightarrow> length ys' > 0" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 857 | with Cons xCons x_in_ys IH' show ?thesis by (auto simp add: length_remove1) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 858 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 859 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 860 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 861 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 862 | text {*
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 863 | This lemma shows which properties suffice to show that a function | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 864 |   @{text "f"} with @{text "f xs = ys"} behaves like sort.
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 865 | *} | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 866 | lemma properties_for_sort: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 867 | "multiset_of ys = multiset_of xs \<Longrightarrow> sorted ys \<Longrightarrow> sort xs = ys" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 868 | proof (induct xs arbitrary: ys) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 869 | case Nil then show ?case by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 870 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 871 | case (Cons x xs) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 872 | then have "x \<in> set ys" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 873 | by (auto simp add: mem_set_multiset_eq intro!: ccontr) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 874 | with Cons.prems Cons.hyps [of "remove1 x ys"] show ?case | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 875 | by (simp add: sorted_remove1 multiset_of_remove1 insort_remove1) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 876 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 877 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 878 | lemma multiset_of_remdups_le: "multiset_of (remdups xs) \<le># multiset_of xs" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 879 | apply (induct xs) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 880 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 881 | apply (rule mset_le_trans) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 882 | apply auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 883 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 884 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 885 | lemma multiset_of_update: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 886 |   "i < length ls \<Longrightarrow> multiset_of (ls[i := v]) = multiset_of ls - {#ls ! i#} + {#v#}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 887 | proof (induct ls arbitrary: i) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 888 | case Nil then show ?case by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 889 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 890 | case (Cons x xs) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 891 | show ?case | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 892 | proof (cases i) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 893 | case 0 then show ?thesis by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 894 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 895 | case (Suc i') | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 896 | with Cons show ?thesis | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 897 | apply simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 898 | apply (subst add_assoc) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 899 |       apply (subst add_commute [of "{#v#}" "{#x#}"])
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 900 | apply (subst add_assoc [symmetric]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 901 | apply simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 902 | apply (rule mset_le_multiset_union_diff_commute) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 903 | apply (simp add: mset_le_single nth_mem_multiset_of) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 904 | done | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 905 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 906 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 907 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 908 | lemma multiset_of_swap: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 909 | "i < length ls \<Longrightarrow> j < length ls \<Longrightarrow> | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 910 | multiset_of (ls[j := ls ! i, i := ls ! j]) = multiset_of ls" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 911 | by (cases "i = j") (simp_all add: multiset_of_update nth_mem_multiset_of) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 912 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 913 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 914 | subsubsection {* Association lists -- including rudimentary code generation *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 915 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 916 | definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat" where
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 917 | "count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 918 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 919 | lemma count_of_multiset: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 920 | "count_of xs \<in> multiset" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 921 | proof - | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 922 |   let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0\<Colon>nat | Some (n\<Colon>nat) \<Rightarrow> n)}"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 923 | have "?A \<subseteq> dom (map_of xs)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 924 | proof | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 925 | fix x | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 926 | assume "x \<in> ?A" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 927 | then have "0 < (case map_of xs x of None \<Rightarrow> 0\<Colon>nat | Some (n\<Colon>nat) \<Rightarrow> n)" by simp | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 928 | then have "map_of xs x \<noteq> None" by (cases "map_of xs x") auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 929 | then show "x \<in> dom (map_of xs)" by auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 930 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 931 | with finite_dom_map_of [of xs] have "finite ?A" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 932 | by (auto intro: finite_subset) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 933 | then show ?thesis | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 934 | by (simp add: count_of_def expand_fun_eq multiset_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 935 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 936 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 937 | lemma count_simps [simp]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 938 | "count_of [] = (\<lambda>_. 0)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 939 | "count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 940 | by (simp_all add: count_of_def expand_fun_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 941 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 942 | lemma count_of_empty: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 943 | "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 944 | by (induct xs) (simp_all add: count_of_def) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 945 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 946 | lemma count_of_filter: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 947 | "count_of (filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 948 | by (induct xs) auto | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 949 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 950 | definition Bag :: "('a \<times> nat) list \<Rightarrow> 'a multiset" where
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 951 | "Bag xs = Abs_multiset (count_of xs)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 952 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 953 | code_datatype Bag | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 954 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 955 | lemma count_Bag [simp, code]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 956 | "count (Bag xs) = count_of xs" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 957 | by (simp add: Bag_def count_of_multiset Abs_multiset_inverse) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 958 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 959 | lemma Mempty_Bag [code]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 960 |   "{#} = Bag []"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 961 | by (simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 962 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 963 | lemma single_Bag [code]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 964 |   "{#x#} = Bag [(x, 1)]"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 965 | by (simp add: multiset_eq_conv_count_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 966 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 967 | lemma MCollect_Bag [code]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 968 | "MCollect (Bag xs) P = Bag (filter (P \<circ> fst) xs)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 969 | by (simp add: multiset_eq_conv_count_eq count_of_filter) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 970 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 971 | lemma mset_less_eq_Bag [code]: | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 972 | "Bag xs \<subseteq># A \<longleftrightarrow> (\<forall>(x, n) \<in> set xs. count_of xs x \<le> count A x)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 973 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 974 | proof | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 975 | assume ?lhs then show ?rhs | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 976 | by (auto simp add: mset_le_def count_Bag) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 977 | next | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 978 | assume ?rhs | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 979 | show ?lhs | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 980 | proof (rule mset_less_eqI) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 981 | fix x | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 982 | from `?rhs` have "count_of xs x \<le> count A x" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 983 | by (cases "x \<in> fst ` set xs") (auto simp add: count_of_empty) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 984 | then show "count (Bag xs) x \<le> count A x" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 985 | by (simp add: mset_le_def count_Bag) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 986 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 987 | qed | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 988 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 989 | instantiation multiset :: (eq) eq | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 990 | begin | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 991 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 992 | definition | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 993 | "HOL.eq A B \<longleftrightarrow> A \<subseteq># B \<and> B \<subseteq># A" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 994 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 995 | instance proof | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 996 | qed (simp add: eq_multiset_def mset_order.eq_iff) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 997 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 998 | end | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 999 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1000 | definition (in term_syntax) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1001 |   bagify :: "('a\<Colon>typerep \<times> nat) list \<times> (unit \<Rightarrow> Code_Evaluation.term)
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1002 | \<Rightarrow> 'a multiset \<times> (unit \<Rightarrow> Code_Evaluation.term)" where | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1003 |   [code_unfold]: "bagify xs = Code_Evaluation.valtermify Bag {\<cdot>} xs"
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1004 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1005 | notation fcomp (infixl "o>" 60) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1006 | notation scomp (infixl "o\<rightarrow>" 60) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1007 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1008 | instantiation multiset :: (random) random | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1009 | begin | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1010 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1011 | definition | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1012 | "Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>xs. Pair (bagify xs))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1013 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1014 | instance .. | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1015 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1016 | end | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1017 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1018 | no_notation fcomp (infixl "o>" 60) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1019 | no_notation scomp (infixl "o\<rightarrow>" 60) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1020 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1021 | hide (open) const bagify | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1022 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1023 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1024 | subsection {* The multiset order *}
 | 
| 10249 | 1025 | |
| 1026 | subsubsection {* Well-foundedness *}
 | |
| 1027 | ||
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1028 | definition mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
 | 
| 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1029 |   [code del]: "mult1 r = {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
 | 
| 23751 | 1030 | (\<forall>b. b :# K --> (b, a) \<in> r)}" | 
| 10249 | 1031 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1032 | definition mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1033 | [code del]: "mult r = (mult1 r)\<^sup>+" | 
| 10249 | 1034 | |
| 23751 | 1035 | lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
 | 
| 26178 | 1036 | by (simp add: mult1_def) | 
| 10249 | 1037 | |
| 23751 | 1038 | lemma less_add: "(N, M0 + {#a#}) \<in> mult1 r ==>
 | 
| 1039 |     (\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or>
 | |
| 1040 | (\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K)" | |
| 19582 | 1041 | (is "_ \<Longrightarrow> ?case1 (mult1 r) \<or> ?case2") | 
| 10249 | 1042 | proof (unfold mult1_def) | 
| 23751 | 1043 | let ?r = "\<lambda>K a. \<forall>b. b :# K --> (b, a) \<in> r" | 
| 11464 | 1044 |   let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a"
 | 
| 23751 | 1045 |   let ?case1 = "?case1 {(N, M). ?R N M}"
 | 
| 10249 | 1046 | |
| 23751 | 1047 |   assume "(N, M0 + {#a#}) \<in> {(N, M). ?R N M}"
 | 
| 18258 | 1048 | then have "\<exists>a' M0' K. | 
| 11464 | 1049 |       M0 + {#a#} = M0' + {#a'#} \<and> N = M0' + K \<and> ?r K a'" by simp
 | 
| 18258 | 1050 | then show "?case1 \<or> ?case2" | 
| 10249 | 1051 | proof (elim exE conjE) | 
| 1052 | fix a' M0' K | |
| 1053 | assume N: "N = M0' + K" and r: "?r K a'" | |
| 1054 |     assume "M0 + {#a#} = M0' + {#a'#}"
 | |
| 18258 | 1055 | then have "M0 = M0' \<and> a = a' \<or> | 
| 11464 | 1056 |         (\<exists>K'. M0 = K' + {#a'#} \<and> M0' = K' + {#a#})"
 | 
| 10249 | 1057 | by (simp only: add_eq_conv_ex) | 
| 18258 | 1058 | then show ?thesis | 
| 10249 | 1059 | proof (elim disjE conjE exE) | 
| 1060 | assume "M0 = M0'" "a = a'" | |
| 11464 | 1061 | with N r have "?r K a \<and> N = M0 + K" by simp | 
| 18258 | 1062 | then have ?case2 .. then show ?thesis .. | 
| 10249 | 1063 | next | 
| 1064 | fix K' | |
| 1065 |       assume "M0' = K' + {#a#}"
 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1066 |       with N have n: "N = K' + K + {#a#}" by (simp add: add_ac)
 | 
| 10249 | 1067 | |
| 1068 |       assume "M0 = K' + {#a'#}"
 | |
| 1069 | with r have "?R (K' + K) M0" by blast | |
| 18258 | 1070 | with n have ?case1 by simp then show ?thesis .. | 
| 10249 | 1071 | qed | 
| 1072 | qed | |
| 1073 | qed | |
| 1074 | ||
| 23751 | 1075 | lemma all_accessible: "wf r ==> \<forall>M. M \<in> acc (mult1 r)" | 
| 10249 | 1076 | proof | 
| 1077 | let ?R = "mult1 r" | |
| 1078 | let ?W = "acc ?R" | |
| 1079 |   {
 | |
| 1080 | fix M M0 a | |
| 23751 | 1081 | assume M0: "M0 \<in> ?W" | 
| 1082 |       and wf_hyp: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
 | |
| 1083 |       and acc_hyp: "\<forall>M. (M, M0) \<in> ?R --> M + {#a#} \<in> ?W"
 | |
| 1084 |     have "M0 + {#a#} \<in> ?W"
 | |
| 1085 |     proof (rule accI [of "M0 + {#a#}"])
 | |
| 10249 | 1086 | fix N | 
| 23751 | 1087 |       assume "(N, M0 + {#a#}) \<in> ?R"
 | 
| 1088 |       then have "((\<exists>M. (M, M0) \<in> ?R \<and> N = M + {#a#}) \<or>
 | |
| 1089 | (\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K))" | |
| 10249 | 1090 | by (rule less_add) | 
| 23751 | 1091 | then show "N \<in> ?W" | 
| 10249 | 1092 | proof (elim exE disjE conjE) | 
| 23751 | 1093 |         fix M assume "(M, M0) \<in> ?R" and N: "N = M + {#a#}"
 | 
| 1094 |         from acc_hyp have "(M, M0) \<in> ?R --> M + {#a#} \<in> ?W" ..
 | |
| 1095 |         from this and `(M, M0) \<in> ?R` have "M + {#a#} \<in> ?W" ..
 | |
| 1096 | then show "N \<in> ?W" by (simp only: N) | |
| 10249 | 1097 | next | 
| 1098 | fix K | |
| 1099 | assume N: "N = M0 + K" | |
| 23751 | 1100 | assume "\<forall>b. b :# K --> (b, a) \<in> r" | 
| 1101 | then have "M0 + K \<in> ?W" | |
| 10249 | 1102 | proof (induct K) | 
| 18730 | 1103 | case empty | 
| 23751 | 1104 |           from M0 show "M0 + {#} \<in> ?W" by simp
 | 
| 18730 | 1105 | next | 
| 1106 | case (add K x) | |
| 23751 | 1107 | from add.prems have "(x, a) \<in> r" by simp | 
| 1108 |           with wf_hyp have "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast
 | |
| 1109 | moreover from add have "M0 + K \<in> ?W" by simp | |
| 1110 |           ultimately have "(M0 + K) + {#x#} \<in> ?W" ..
 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1111 |           then show "M0 + (K + {#x#}) \<in> ?W" by (simp only: add_assoc)
 | 
| 10249 | 1112 | qed | 
| 23751 | 1113 | then show "N \<in> ?W" by (simp only: N) | 
| 10249 | 1114 | qed | 
| 1115 | qed | |
| 1116 | } note tedious_reasoning = this | |
| 1117 | ||
| 23751 | 1118 | assume wf: "wf r" | 
| 10249 | 1119 | fix M | 
| 23751 | 1120 | show "M \<in> ?W" | 
| 10249 | 1121 | proof (induct M) | 
| 23751 | 1122 |     show "{#} \<in> ?W"
 | 
| 10249 | 1123 | proof (rule accI) | 
| 23751 | 1124 |       fix b assume "(b, {#}) \<in> ?R"
 | 
| 1125 | with not_less_empty show "b \<in> ?W" by contradiction | |
| 10249 | 1126 | qed | 
| 1127 | ||
| 23751 | 1128 | fix M a assume "M \<in> ?W" | 
| 1129 |     from wf have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
 | |
| 10249 | 1130 | proof induct | 
| 1131 | fix a | |
| 23751 | 1132 |       assume r: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
 | 
| 1133 |       show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
 | |
| 10249 | 1134 | proof | 
| 23751 | 1135 | fix M assume "M \<in> ?W" | 
| 1136 |         then show "M + {#a#} \<in> ?W"
 | |
| 23373 | 1137 | by (rule acc_induct) (rule tedious_reasoning [OF _ r]) | 
| 10249 | 1138 | qed | 
| 1139 | qed | |
| 23751 | 1140 |     from this and `M \<in> ?W` show "M + {#a#} \<in> ?W" ..
 | 
| 10249 | 1141 | qed | 
| 1142 | qed | |
| 1143 | ||
| 23751 | 1144 | theorem wf_mult1: "wf r ==> wf (mult1 r)" | 
| 26178 | 1145 | by (rule acc_wfI) (rule all_accessible) | 
| 10249 | 1146 | |
| 23751 | 1147 | theorem wf_mult: "wf r ==> wf (mult r)" | 
| 26178 | 1148 | unfolding mult_def by (rule wf_trancl) (rule wf_mult1) | 
| 10249 | 1149 | |
| 1150 | ||
| 1151 | subsubsection {* Closure-free presentation *}
 | |
| 1152 | ||
| 1153 | text {* One direction. *}
 | |
| 1154 | ||
| 1155 | lemma mult_implies_one_step: | |
| 23751 | 1156 | "trans r ==> (M, N) \<in> mult r ==> | 
| 11464 | 1157 |     \<exists>I J K. N = I + J \<and> M = I + K \<and> J \<noteq> {#} \<and>
 | 
| 23751 | 1158 | (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r)" | 
| 26178 | 1159 | apply (unfold mult_def mult1_def set_of_def) | 
| 1160 | apply (erule converse_trancl_induct, clarify) | |
| 1161 | apply (rule_tac x = M0 in exI, simp, clarify) | |
| 1162 | apply (case_tac "a :# K") | |
| 1163 | apply (rule_tac x = I in exI) | |
| 1164 | apply (simp (no_asm)) | |
| 1165 |  apply (rule_tac x = "(K - {#a#}) + Ka" in exI)
 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1166 | apply (simp (no_asm_simp) add: add_assoc [symmetric]) | 
| 26178 | 1167 |  apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong)
 | 
| 1168 | apply (simp add: diff_union_single_conv) | |
| 1169 | apply (simp (no_asm_use) add: trans_def) | |
| 1170 | apply blast | |
| 1171 | apply (subgoal_tac "a :# I") | |
| 1172 |  apply (rule_tac x = "I - {#a#}" in exI)
 | |
| 1173 |  apply (rule_tac x = "J + {#a#}" in exI)
 | |
| 1174 | apply (rule_tac x = "K + Ka" in exI) | |
| 1175 | apply (rule conjI) | |
| 1176 | apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split) | |
| 1177 | apply (rule conjI) | |
| 1178 |   apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong, simp)
 | |
| 1179 | apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split) | |
| 1180 | apply (simp (no_asm_use) add: trans_def) | |
| 1181 | apply blast | |
| 1182 | apply (subgoal_tac "a :# (M0 + {#a#})")
 | |
| 1183 | apply simp | |
| 1184 | apply (simp (no_asm)) | |
| 1185 | done | |
| 10249 | 1186 | |
| 1187 | lemma one_step_implies_mult_aux: | |
| 23751 | 1188 | "trans r ==> | 
| 1189 |     \<forall>I J K. (size J = n \<and> J \<noteq> {#} \<and> (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r))
 | |
| 1190 | --> (I + K, I + J) \<in> mult r" | |
| 26178 | 1191 | apply (induct_tac n, auto) | 
| 1192 | apply (frule size_eq_Suc_imp_eq_union, clarify) | |
| 1193 | apply (rename_tac "J'", simp) | |
| 1194 | apply (erule notE, auto) | |
| 1195 | apply (case_tac "J' = {#}")
 | |
| 1196 | apply (simp add: mult_def) | |
| 1197 | apply (rule r_into_trancl) | |
| 1198 | apply (simp add: mult1_def set_of_def, blast) | |
| 1199 | txt {* Now we know @{term "J' \<noteq> {#}"}. *}
 | |
| 1200 | apply (cut_tac M = K and P = "\<lambda>x. (x, a) \<in> r" in multiset_partition) | |
| 1201 | apply (erule_tac P = "\<forall>k \<in> set_of K. ?P k" in rev_mp) | |
| 1202 | apply (erule ssubst) | |
| 1203 | apply (simp add: Ball_def, auto) | |
| 1204 | apply (subgoal_tac | |
| 1205 |   "((I + {# x :# K. (x, a) \<in> r #}) + {# x :# K. (x, a) \<notin> r #},
 | |
| 1206 |     (I + {# x :# K. (x, a) \<in> r #}) + J') \<in> mult r")
 | |
| 1207 | prefer 2 | |
| 1208 | apply force | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1209 | apply (simp (no_asm_use) add: add_assoc [symmetric] mult_def) | 
| 26178 | 1210 | apply (erule trancl_trans) | 
| 1211 | apply (rule r_into_trancl) | |
| 1212 | apply (simp add: mult1_def set_of_def) | |
| 1213 | apply (rule_tac x = a in exI) | |
| 1214 | apply (rule_tac x = "I + J'" in exI) | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1215 | apply (simp add: add_ac) | 
| 26178 | 1216 | done | 
| 10249 | 1217 | |
| 17161 | 1218 | lemma one_step_implies_mult: | 
| 23751 | 1219 |   "trans r ==> J \<noteq> {#} ==> \<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r
 | 
| 1220 | ==> (I + K, I + J) \<in> mult r" | |
| 26178 | 1221 | using one_step_implies_mult_aux by blast | 
| 10249 | 1222 | |
| 1223 | ||
| 1224 | subsubsection {* Partial-order properties *}
 | |
| 1225 | ||
| 26567 
7bcebb8c2d33
instantiation replacing primitive instance plus overloaded defs; more conservative type arities
 haftmann parents: 
26178diff
changeset | 1226 | instantiation multiset :: (order) order | 
| 
7bcebb8c2d33
instantiation replacing primitive instance plus overloaded defs; more conservative type arities
 haftmann parents: 
26178diff
changeset | 1227 | begin | 
| 10249 | 1228 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1229 | definition less_multiset_def: | 
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1230 |   "M' < M \<longleftrightarrow> (M', M) \<in> mult {(x', x). x' < x}"
 | 
| 26567 
7bcebb8c2d33
instantiation replacing primitive instance plus overloaded defs; more conservative type arities
 haftmann parents: 
26178diff
changeset | 1231 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1232 | definition le_multiset_def: | 
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1233 | "M' <= M \<longleftrightarrow> M' = M \<or> M' < (M::'a multiset)" | 
| 10249 | 1234 | |
| 23751 | 1235 | lemma trans_base_order: "trans {(x', x). x' < (x::'a::order)}"
 | 
| 26178 | 1236 | unfolding trans_def by (blast intro: order_less_trans) | 
| 10249 | 1237 | |
| 1238 | text {*
 | |
| 1239 | \medskip Irreflexivity. | |
| 1240 | *} | |
| 1241 | ||
| 1242 | lemma mult_irrefl_aux: | |
| 26178 | 1243 |   "finite A ==> (\<forall>x \<in> A. \<exists>y \<in> A. x < (y::'a::order)) \<Longrightarrow> A = {}"
 | 
| 1244 | by (induct rule: finite_induct) (auto intro: order_less_trans) | |
| 10249 | 1245 | |
| 17161 | 1246 | lemma mult_less_not_refl: "\<not> M < (M::'a::order multiset)" | 
| 26178 | 1247 | apply (unfold less_multiset_def, auto) | 
| 1248 | apply (drule trans_base_order [THEN mult_implies_one_step], auto) | |
| 1249 | apply (drule finite_set_of [THEN mult_irrefl_aux [rule_format (no_asm)]]) | |
| 1250 | apply (simp add: set_of_eq_empty_iff) | |
| 1251 | done | |
| 10249 | 1252 | |
| 1253 | lemma mult_less_irrefl [elim!]: "M < (M::'a::order multiset) ==> R" | |
| 26178 | 1254 | using insert mult_less_not_refl by fast | 
| 10249 | 1255 | |
| 1256 | ||
| 1257 | text {* Transitivity. *}
 | |
| 1258 | ||
| 1259 | theorem mult_less_trans: "K < M ==> M < N ==> K < (N::'a::order multiset)" | |
| 26178 | 1260 | unfolding less_multiset_def mult_def by (blast intro: trancl_trans) | 
| 10249 | 1261 | |
| 1262 | text {* Asymmetry. *}
 | |
| 1263 | ||
| 11464 | 1264 | theorem mult_less_not_sym: "M < N ==> \<not> N < (M::'a::order multiset)" | 
| 26178 | 1265 | apply auto | 
| 1266 | apply (rule mult_less_not_refl [THEN notE]) | |
| 1267 | apply (erule mult_less_trans, assumption) | |
| 1268 | done | |
| 10249 | 1269 | |
| 1270 | theorem mult_less_asym: | |
| 26178 | 1271 | "M < N ==> (\<not> P ==> N < (M::'a::order multiset)) ==> P" | 
| 1272 | using mult_less_not_sym by blast | |
| 10249 | 1273 | |
| 1274 | theorem mult_le_refl [iff]: "M <= (M::'a::order multiset)" | |
| 26178 | 1275 | unfolding le_multiset_def by auto | 
| 10249 | 1276 | |
| 1277 | text {* Anti-symmetry. *}
 | |
| 1278 | ||
| 1279 | theorem mult_le_antisym: | |
| 26178 | 1280 | "M <= N ==> N <= M ==> M = (N::'a::order multiset)" | 
| 1281 | unfolding le_multiset_def by (blast dest: mult_less_not_sym) | |
| 10249 | 1282 | |
| 1283 | text {* Transitivity. *}
 | |
| 1284 | ||
| 1285 | theorem mult_le_trans: | |
| 26178 | 1286 | "K <= M ==> M <= N ==> K <= (N::'a::order multiset)" | 
| 1287 | unfolding le_multiset_def by (blast intro: mult_less_trans) | |
| 10249 | 1288 | |
| 11655 | 1289 | theorem mult_less_le: "(M < N) = (M <= N \<and> M \<noteq> (N::'a::order multiset))" | 
| 26178 | 1290 | unfolding le_multiset_def by auto | 
| 10249 | 1291 | |
| 27682 | 1292 | instance proof | 
| 1293 | qed (auto simp add: mult_less_le dest: mult_le_antisym elim: mult_le_trans) | |
| 10277 | 1294 | |
| 26567 
7bcebb8c2d33
instantiation replacing primitive instance plus overloaded defs; more conservative type arities
 haftmann parents: 
26178diff
changeset | 1295 | end | 
| 
7bcebb8c2d33
instantiation replacing primitive instance plus overloaded defs; more conservative type arities
 haftmann parents: 
26178diff
changeset | 1296 | |
| 10249 | 1297 | |
| 1298 | subsubsection {* Monotonicity of multiset union *}
 | |
| 1299 | ||
| 17161 | 1300 | lemma mult1_union: | 
| 26178 | 1301 | "(B, D) \<in> mult1 r ==> trans r ==> (C + B, C + D) \<in> mult1 r" | 
| 1302 | apply (unfold mult1_def) | |
| 1303 | apply auto | |
| 1304 | apply (rule_tac x = a in exI) | |
| 1305 | apply (rule_tac x = "C + M0" in exI) | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1306 | apply (simp add: add_assoc) | 
| 26178 | 1307 | done | 
| 10249 | 1308 | |
| 1309 | lemma union_less_mono2: "B < D ==> C + B < C + (D::'a::order multiset)" | |
| 26178 | 1310 | apply (unfold less_multiset_def mult_def) | 
| 1311 | apply (erule trancl_induct) | |
| 1312 | apply (blast intro: mult1_union transI order_less_trans r_into_trancl) | |
| 1313 | apply (blast intro: mult1_union transI order_less_trans r_into_trancl trancl_trans) | |
| 1314 | done | |
| 10249 | 1315 | |
| 1316 | lemma union_less_mono1: "B < D ==> B + C < D + (C::'a::order multiset)" | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1317 | apply (subst add_commute [of B C]) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1318 | apply (subst add_commute [of D C]) | 
| 26178 | 1319 | apply (erule union_less_mono2) | 
| 1320 | done | |
| 10249 | 1321 | |
| 17161 | 1322 | lemma union_less_mono: | 
| 26178 | 1323 | "A < C ==> B < D ==> A + B < C + (D::'a::order multiset)" | 
| 1324 | by (blast intro!: union_less_mono1 union_less_mono2 mult_less_trans) | |
| 10249 | 1325 | |
| 17161 | 1326 | lemma union_le_mono: | 
| 26178 | 1327 | "A <= C ==> B <= D ==> A + B <= C + (D::'a::order multiset)" | 
| 1328 | unfolding le_multiset_def | |
| 1329 | by (blast intro: union_less_mono union_less_mono1 union_less_mono2) | |
| 10249 | 1330 | |
| 17161 | 1331 | lemma empty_leI [iff]: "{#} <= (M::'a::order multiset)"
 | 
| 26178 | 1332 | apply (unfold le_multiset_def less_multiset_def) | 
| 1333 | apply (case_tac "M = {#}")
 | |
| 1334 | prefer 2 | |
| 1335 |  apply (subgoal_tac "({#} + {#}, {#} + M) \<in> mult (Collect (split op <))")
 | |
| 1336 | prefer 2 | |
| 1337 | apply (rule one_step_implies_mult) | |
| 1338 | apply (simp only: trans_def) | |
| 1339 | apply auto | |
| 1340 | done | |
| 10249 | 1341 | |
| 17161 | 1342 | lemma union_upper1: "A <= A + (B::'a::order multiset)" | 
| 15072 | 1343 | proof - | 
| 17200 | 1344 |   have "A + {#} <= A + B" by (blast intro: union_le_mono)
 | 
| 18258 | 1345 | then show ?thesis by simp | 
| 15072 | 1346 | qed | 
| 1347 | ||
| 17161 | 1348 | lemma union_upper2: "B <= A + (B::'a::order multiset)" | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1349 | by (subst add_commute) (rule union_upper1) | 
| 15072 | 1350 | |
| 23611 | 1351 | instance multiset :: (order) pordered_ab_semigroup_add | 
| 26178 | 1352 | apply intro_classes | 
| 1353 | apply (erule union_le_mono[OF mult_le_refl]) | |
| 1354 | done | |
| 26145 | 1355 | |
| 15072 | 1356 | |
| 25610 | 1357 | subsection {* The fold combinator *}
 | 
| 1358 | ||
| 26145 | 1359 | text {*
 | 
| 1360 | The intended behaviour is | |
| 1361 |   @{text "fold_mset f z {#x\<^isub>1, ..., x\<^isub>n#} = f x\<^isub>1 (\<dots> (f x\<^isub>n z)\<dots>)"}
 | |
| 1362 |   if @{text f} is associative-commutative. 
 | |
| 25610 | 1363 | *} | 
| 1364 | ||
| 26145 | 1365 | text {*
 | 
| 1366 |   The graph of @{text "fold_mset"}, @{text "z"}: the start element,
 | |
| 1367 |   @{text "f"}: folding function, @{text "A"}: the multiset, @{text
 | |
| 1368 | "y"}: the result. | |
| 1369 | *} | |
| 25610 | 1370 | inductive | 
| 25759 | 1371 |   fold_msetG :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a multiset \<Rightarrow> 'b \<Rightarrow> bool" 
 | 
| 25610 | 1372 | for f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1373 | and z :: 'b | |
| 1374 | where | |
| 25759 | 1375 |   emptyI [intro]:  "fold_msetG f z {#} z"
 | 
| 1376 | | insertI [intro]: "fold_msetG f z A y \<Longrightarrow> fold_msetG f z (A + {#x#}) (f x y)"
 | |
| 25610 | 1377 | |
| 25759 | 1378 | inductive_cases empty_fold_msetGE [elim!]: "fold_msetG f z {#} x"
 | 
| 1379 | inductive_cases insert_fold_msetGE: "fold_msetG f z (A + {#}) y" 
 | |
| 25610 | 1380 | |
| 1381 | definition | |
| 26145 | 1382 |   fold_mset :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a multiset \<Rightarrow> 'b" where
 | 
| 1383 | "fold_mset f z A = (THE x. fold_msetG f z A x)" | |
| 25610 | 1384 | |
| 25759 | 1385 | lemma Diff1_fold_msetG: | 
| 26145 | 1386 |   "fold_msetG f z (A - {#x#}) y \<Longrightarrow> x \<in># A \<Longrightarrow> fold_msetG f z A (f x y)"
 | 
| 26178 | 1387 | apply (frule_tac x = x in fold_msetG.insertI) | 
| 1388 | apply auto | |
| 1389 | done | |
| 25610 | 1390 | |
| 25759 | 1391 | lemma fold_msetG_nonempty: "\<exists>x. fold_msetG f z A x" | 
| 26178 | 1392 | apply (induct A) | 
| 1393 | apply blast | |
| 1394 | apply clarsimp | |
| 1395 | apply (drule_tac x = x in fold_msetG.insertI) | |
| 1396 | apply auto | |
| 1397 | done | |
| 25610 | 1398 | |
| 25759 | 1399 | lemma fold_mset_empty[simp]: "fold_mset f z {#} = z"
 | 
| 26178 | 1400 | unfolding fold_mset_def by blast | 
| 25610 | 1401 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1402 | context fun_left_comm | 
| 26145 | 1403 | begin | 
| 25610 | 1404 | |
| 26145 | 1405 | lemma fold_msetG_determ: | 
| 1406 | "fold_msetG f z A x \<Longrightarrow> fold_msetG f z A y \<Longrightarrow> y = x" | |
| 25610 | 1407 | proof (induct arbitrary: x y z rule: full_multiset_induct) | 
| 1408 | case (less M x\<^isub>1 x\<^isub>2 Z) | |
| 1409 | have IH: "\<forall>A. A \<subset># M \<longrightarrow> | |
| 25759 | 1410 | (\<forall>x x' x''. fold_msetG f x'' A x \<longrightarrow> fold_msetG f x'' A x' | 
| 25610 | 1411 | \<longrightarrow> x' = x)" by fact | 
| 25759 | 1412 | have Mfoldx\<^isub>1: "fold_msetG f Z M x\<^isub>1" and Mfoldx\<^isub>2: "fold_msetG f Z M x\<^isub>2" by fact+ | 
| 25610 | 1413 | show ?case | 
| 25759 | 1414 | proof (rule fold_msetG.cases [OF Mfoldx\<^isub>1]) | 
| 25610 | 1415 |     assume "M = {#}" and "x\<^isub>1 = Z"
 | 
| 26145 | 1416 | then show ?case using Mfoldx\<^isub>2 by auto | 
| 25610 | 1417 | next | 
| 1418 | fix B b u | |
| 25759 | 1419 |     assume "M = B + {#b#}" and "x\<^isub>1 = f b u" and Bu: "fold_msetG f Z B u"
 | 
| 26145 | 1420 |     then have MBb: "M = B + {#b#}" and x\<^isub>1: "x\<^isub>1 = f b u" by auto
 | 
| 25610 | 1421 | show ?case | 
| 25759 | 1422 | proof (rule fold_msetG.cases [OF Mfoldx\<^isub>2]) | 
| 25610 | 1423 |       assume "M = {#}" "x\<^isub>2 = Z"
 | 
| 26145 | 1424 | then show ?case using Mfoldx\<^isub>1 by auto | 
| 25610 | 1425 | next | 
| 1426 | fix C c v | |
| 25759 | 1427 |       assume "M = C + {#c#}" and "x\<^isub>2 = f c v" and Cv: "fold_msetG f Z C v"
 | 
| 26145 | 1428 |       then have MCc: "M = C + {#c#}" and x\<^isub>2: "x\<^isub>2 = f c v" by auto
 | 
| 1429 | then have CsubM: "C \<subset># M" by simp | |
| 25610 | 1430 | from MBb have BsubM: "B \<subset># M" by simp | 
| 1431 | show ?case | |
| 1432 | proof cases | |
| 1433 | assume "b=c" | |
| 1434 | then moreover have "B = C" using MBb MCc by auto | |
| 1435 | ultimately show ?thesis using Bu Cv x\<^isub>1 x\<^isub>2 CsubM IH by auto | |
| 1436 | next | |
| 1437 | assume diff: "b \<noteq> c" | |
| 1438 |         let ?D = "B - {#c#}"
 | |
| 1439 | have cinB: "c \<in># B" and binC: "b \<in># C" using MBb MCc diff | |
| 1440 | by (auto intro: insert_noteq_member dest: sym) | |
| 1441 |         have "B - {#c#} \<subset># B" using cinB by (rule mset_less_diff_self)
 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1442 | then have DsubM: "?D \<subset># M" using BsubM by (blast intro: mset_order.less_trans) | 
| 25610 | 1443 |         from MBb MCc have "B + {#b#} = C + {#c#}" by blast
 | 
| 26145 | 1444 |         then have [simp]: "B + {#b#} - {#c#} = C"
 | 
| 25610 | 1445 | using MBb MCc binC cinB by auto | 
| 1446 |         have B: "B = ?D + {#c#}" and C: "C = ?D + {#b#}"
 | |
| 1447 | using MBb MCc diff binC cinB | |
| 1448 | by (auto simp: multiset_add_sub_el_shuffle) | |
| 25759 | 1449 | then obtain d where Dfoldd: "fold_msetG f Z ?D d" | 
| 1450 | using fold_msetG_nonempty by iprover | |
| 26145 | 1451 | then have "fold_msetG f Z B (f c d)" using cinB | 
| 25759 | 1452 | by (rule Diff1_fold_msetG) | 
| 26145 | 1453 | then have "f c d = u" using IH BsubM Bu by blast | 
| 25610 | 1454 | moreover | 
| 25759 | 1455 | have "fold_msetG f Z C (f b d)" using binC cinB diff Dfoldd | 
| 25610 | 1456 | by (auto simp: multiset_add_sub_el_shuffle | 
| 25759 | 1457 | dest: fold_msetG.insertI [where x=b]) | 
| 26145 | 1458 | then have "f b d = v" using IH CsubM Cv by blast | 
| 25610 | 1459 | ultimately show ?thesis using x\<^isub>1 x\<^isub>2 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1460 | by (auto simp: fun_left_comm) | 
| 25610 | 1461 | qed | 
| 1462 | qed | |
| 1463 | qed | |
| 1464 | qed | |
| 1465 | ||
| 26145 | 1466 | lemma fold_mset_insert_aux: | 
| 1467 |   "(fold_msetG f z (A + {#x#}) v) =
 | |
| 25759 | 1468 | (\<exists>y. fold_msetG f z A y \<and> v = f x y)" | 
| 26178 | 1469 | apply (rule iffI) | 
| 1470 | prefer 2 | |
| 1471 | apply blast | |
| 1472 | apply (rule_tac A=A and f=f in fold_msetG_nonempty [THEN exE, standard]) | |
| 1473 | apply (blast intro: fold_msetG_determ) | |
| 1474 | done | |
| 25610 | 1475 | |
| 26145 | 1476 | lemma fold_mset_equality: "fold_msetG f z A y \<Longrightarrow> fold_mset f z A = y" | 
| 26178 | 1477 | unfolding fold_mset_def by (blast intro: fold_msetG_determ) | 
| 25610 | 1478 | |
| 26145 | 1479 | lemma fold_mset_insert: | 
| 26178 | 1480 |   "fold_mset f z (A + {#x#}) = f x (fold_mset f z A)"
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1481 | apply (simp add: fold_mset_def fold_mset_insert_aux add_commute) | 
| 26178 | 1482 | apply (rule the_equality) | 
| 1483 | apply (auto cong add: conj_cong | |
| 26145 | 1484 | simp add: fold_mset_def [symmetric] fold_mset_equality fold_msetG_nonempty) | 
| 26178 | 1485 | done | 
| 25759 | 1486 | |
| 26145 | 1487 | lemma fold_mset_insert_idem: | 
| 26178 | 1488 |   "fold_mset f z (A + {#a#}) = f a (fold_mset f z A)"
 | 
| 1489 | apply (simp add: fold_mset_def fold_mset_insert_aux) | |
| 1490 | apply (rule the_equality) | |
| 1491 | apply (auto cong add: conj_cong | |
| 26145 | 1492 | simp add: fold_mset_def [symmetric] fold_mset_equality fold_msetG_nonempty) | 
| 26178 | 1493 | done | 
| 25610 | 1494 | |
| 26145 | 1495 | lemma fold_mset_commute: "f x (fold_mset f z A) = fold_mset f (f x z) A" | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1496 | by (induct A) (auto simp: fold_mset_insert fun_left_comm [of x]) | 
| 26178 | 1497 | |
| 26145 | 1498 | lemma fold_mset_single [simp]: "fold_mset f z {#x#} = f x z"
 | 
| 26178 | 1499 | using fold_mset_insert [of z "{#}"] by simp
 | 
| 25610 | 1500 | |
| 26145 | 1501 | lemma fold_mset_union [simp]: | 
| 1502 | "fold_mset f z (A+B) = fold_mset f (fold_mset f z A) B" | |
| 25759 | 1503 | proof (induct A) | 
| 26145 | 1504 | case empty then show ?case by simp | 
| 25759 | 1505 | next | 
| 26145 | 1506 | case (add A x) | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1507 |   have "A + {#x#} + B = (A+B) + {#x#}" by (simp add: add_ac)
 | 
| 26145 | 1508 |   then have "fold_mset f z (A + {#x#} + B) = f x (fold_mset f z (A + B))" 
 | 
| 1509 | by (simp add: fold_mset_insert) | |
| 1510 |   also have "\<dots> = fold_mset f (fold_mset f z (A + {#x#})) B"
 | |
| 1511 | by (simp add: fold_mset_commute[of x,symmetric] add fold_mset_insert) | |
| 1512 | finally show ?case . | |
| 25759 | 1513 | qed | 
| 1514 | ||
| 26145 | 1515 | lemma fold_mset_fusion: | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1516 | assumes "fun_left_comm g" | 
| 27611 | 1517 | shows "(\<And>x y. h (g x y) = f x (h y)) \<Longrightarrow> h (fold_mset g w A) = fold_mset f (h w) A" (is "PROP ?P") | 
| 1518 | proof - | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1519 | interpret fun_left_comm g by (fact assms) | 
| 27611 | 1520 | show "PROP ?P" by (induct A) auto | 
| 1521 | qed | |
| 25610 | 1522 | |
| 26145 | 1523 | lemma fold_mset_rec: | 
| 1524 | assumes "a \<in># A" | |
| 25759 | 1525 |   shows "fold_mset f z A = f a (fold_mset f z (A - {#a#}))"
 | 
| 25610 | 1526 | proof - | 
| 26145 | 1527 |   from assms obtain A' where "A = A' + {#a#}"
 | 
| 1528 | by (blast dest: multi_member_split) | |
| 1529 | then show ?thesis by simp | |
| 25610 | 1530 | qed | 
| 1531 | ||
| 26145 | 1532 | end | 
| 1533 | ||
| 1534 | text {*
 | |
| 1535 | A note on code generation: When defining some function containing a | |
| 1536 |   subterm @{term"fold_mset F"}, code generation is not automatic. When
 | |
| 1537 |   interpreting locale @{text left_commutative} with @{text F}, the
 | |
| 1538 |   would be code thms for @{const fold_mset} become thms like
 | |
| 1539 |   @{term"fold_mset F z {#} = z"} where @{text F} is not a pattern but
 | |
| 1540 | contains defined symbols, i.e.\ is not a code thm. Hence a separate | |
| 1541 |   constant with its own code thms needs to be introduced for @{text
 | |
| 1542 | F}. See the image operator below. | |
| 1543 | *} | |
| 1544 | ||
| 26016 | 1545 | |
| 1546 | subsection {* Image *}
 | |
| 1547 | ||
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1548 | definition image_mset :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a multiset \<Rightarrow> 'b multiset" where
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1549 |   "image_mset f = fold_mset (op + o single o f) {#}"
 | 
| 26016 | 1550 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1551 | interpretation image_left_comm: fun_left_comm "op + o single o f" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1552 | proof qed (simp add: add_ac) | 
| 26016 | 1553 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1554 | lemma image_mset_empty [simp]: "image_mset f {#} = {#}"
 | 
| 26178 | 1555 | by (simp add: image_mset_def) | 
| 26016 | 1556 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1557 | lemma image_mset_single [simp]: "image_mset f {#x#} = {#f x#}"
 | 
| 26178 | 1558 | by (simp add: image_mset_def) | 
| 26016 | 1559 | |
| 1560 | lemma image_mset_insert: | |
| 1561 |   "image_mset f (M + {#a#}) = image_mset f M + {#f a#}"
 | |
| 26178 | 1562 | by (simp add: image_mset_def add_ac) | 
| 26016 | 1563 | |
| 28708 
a1a436f09ec6
explicit check for pattern discipline before code translation
 haftmann parents: 
28562diff
changeset | 1564 | lemma image_mset_union [simp]: | 
| 26016 | 1565 | "image_mset f (M+N) = image_mset f M + image_mset f N" | 
| 26178 | 1566 | apply (induct N) | 
| 1567 | apply simp | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1568 | apply (simp add: add_assoc [symmetric] image_mset_insert) | 
| 26178 | 1569 | done | 
| 26016 | 1570 | |
| 26145 | 1571 | lemma size_image_mset [simp]: "size (image_mset f M) = size M" | 
| 26178 | 1572 | by (induct M) simp_all | 
| 26016 | 1573 | |
| 26145 | 1574 | lemma image_mset_is_empty_iff [simp]: "image_mset f M = {#} \<longleftrightarrow> M = {#}"
 | 
| 26178 | 1575 | by (cases M) auto | 
| 26016 | 1576 | |
| 26145 | 1577 | syntax | 
| 1578 | comprehension1_mset :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> 'a multiset" | |
| 1579 |       ("({#_/. _ :# _#})")
 | |
| 1580 | translations | |
| 1581 |   "{#e. x:#M#}" == "CONST image_mset (%x. e) M"
 | |
| 26016 | 1582 | |
| 26145 | 1583 | syntax | 
| 1584 | comprehension2_mset :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> bool \<Rightarrow> 'a multiset" | |
| 1585 |       ("({#_/ | _ :# _./ _#})")
 | |
| 26016 | 1586 | translations | 
| 26033 | 1587 |   "{#e | x:#M. P#}" => "{#e. x :# {# x:#M. P#}#}"
 | 
| 26016 | 1588 | |
| 26145 | 1589 | text {*
 | 
| 1590 |   This allows to write not just filters like @{term "{#x:#M. x<c#}"}
 | |
| 1591 |   but also images like @{term "{#x+x. x:#M #}"} and @{term [source]
 | |
| 1592 |   "{#x+x|x:#M. x<c#}"}, where the latter is currently displayed as
 | |
| 1593 |   @{term "{#x+x|x:#M. x<c#}"}.
 | |
| 1594 | *} | |
| 26016 | 1595 | |
| 29125 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1596 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1597 | subsection {* Termination proofs with multiset orders *}
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1598 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1599 | lemma multi_member_skip: "x \<in># XS \<Longrightarrow> x \<in># {# y #} + XS"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1600 |   and multi_member_this: "x \<in># {# x #} + XS"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1601 |   and multi_member_last: "x \<in># {# x #}"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1602 | by auto | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1603 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1604 | definition "ms_strict = mult pair_less" | 
| 30428 | 1605 | definition [code del]: "ms_weak = ms_strict \<union> Id" | 
| 29125 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1606 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1607 | lemma ms_reduction_pair: "reduction_pair (ms_strict, ms_weak)" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1608 | unfolding reduction_pair_def ms_strict_def ms_weak_def pair_less_def | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1609 | by (auto intro: wf_mult1 wf_trancl simp: mult_def) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1610 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1611 | lemma smsI: | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1612 | "(set_of A, set_of B) \<in> max_strict \<Longrightarrow> (Z + A, Z + B) \<in> ms_strict" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1613 | unfolding ms_strict_def | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1614 | by (rule one_step_implies_mult) (auto simp add: max_strict_def pair_less_def elim!:max_ext.cases) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1615 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1616 | lemma wmsI: | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1617 |   "(set_of A, set_of B) \<in> max_strict \<or> A = {#} \<and> B = {#}
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1618 | \<Longrightarrow> (Z + A, Z + B) \<in> ms_weak" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1619 | unfolding ms_weak_def ms_strict_def | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1620 | by (auto simp add: pair_less_def max_strict_def elim!:max_ext.cases intro: one_step_implies_mult) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1621 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1622 | inductive pw_leq | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1623 | where | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1624 |   pw_leq_empty: "pw_leq {#} {#}"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1625 | | pw_leq_step:  "\<lbrakk>(x,y) \<in> pair_leq; pw_leq X Y \<rbrakk> \<Longrightarrow> pw_leq ({#x#} + X) ({#y#} + Y)"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1626 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1627 | lemma pw_leq_lstep: | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1628 |   "(x, y) \<in> pair_leq \<Longrightarrow> pw_leq {#x#} {#y#}"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1629 | by (drule pw_leq_step) (rule pw_leq_empty, simp) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1630 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1631 | lemma pw_leq_split: | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1632 | assumes "pw_leq X Y" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1633 |   shows "\<exists>A B Z. X = A + Z \<and> Y = B + Z \<and> ((set_of A, set_of B) \<in> max_strict \<or> (B = {#} \<and> A = {#}))"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1634 | using assms | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1635 | proof (induct) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1636 | case pw_leq_empty thus ?case by auto | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1637 | next | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1638 | case (pw_leq_step x y X Y) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1639 | then obtain A B Z where | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1640 | [simp]: "X = A + Z" "Y = B + Z" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1641 |       and 1[simp]: "(set_of A, set_of B) \<in> max_strict \<or> (B = {#} \<and> A = {#})" 
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1642 | by auto | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1643 | from pw_leq_step have "x = y \<or> (x, y) \<in> pair_less" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1644 | unfolding pair_leq_def by auto | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1645 | thus ?case | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1646 | proof | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1647 | assume [simp]: "x = y" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1648 | have | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1649 |       "{#x#} + X = A + ({#y#}+Z) 
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1650 |       \<and> {#y#} + Y = B + ({#y#}+Z)
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1651 |       \<and> ((set_of A, set_of B) \<in> max_strict \<or> (B = {#} \<and> A = {#}))"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1652 | by (auto simp: add_ac) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1653 | thus ?case by (intro exI) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1654 | next | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1655 | assume A: "(x, y) \<in> pair_less" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1656 |     let ?A' = "{#x#} + A" and ?B' = "{#y#} + B"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1657 |     have "{#x#} + X = ?A' + Z"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1658 |       "{#y#} + Y = ?B' + Z"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1659 | by (auto simp add: add_ac) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1660 | moreover have | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1661 | "(set_of ?A', set_of ?B') \<in> max_strict" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1662 | using 1 A unfolding max_strict_def | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1663 | by (auto elim!: max_ext.cases) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1664 | ultimately show ?thesis by blast | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1665 | qed | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1666 | qed | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1667 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1668 | lemma | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1669 | assumes pwleq: "pw_leq Z Z'" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1670 | shows ms_strictI: "(set_of A, set_of B) \<in> max_strict \<Longrightarrow> (Z + A, Z' + B) \<in> ms_strict" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1671 | and ms_weakI1: "(set_of A, set_of B) \<in> max_strict \<Longrightarrow> (Z + A, Z' + B) \<in> ms_weak" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1672 |   and   ms_weakI2:  "(Z + {#}, Z' + {#}) \<in> ms_weak"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1673 | proof - | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1674 | from pw_leq_split[OF pwleq] | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1675 | obtain A' B' Z'' | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1676 | where [simp]: "Z = A' + Z''" "Z' = B' + Z''" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1677 |     and mx_or_empty: "(set_of A', set_of B') \<in> max_strict \<or> (A' = {#} \<and> B' = {#})"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1678 | by blast | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1679 |   {
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1680 | assume max: "(set_of A, set_of B) \<in> max_strict" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1681 | from mx_or_empty | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1682 | have "(Z'' + (A + A'), Z'' + (B + B')) \<in> ms_strict" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1683 | proof | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1684 | assume max': "(set_of A', set_of B') \<in> max_strict" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1685 | with max have "(set_of (A + A'), set_of (B + B')) \<in> max_strict" | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1686 | by (auto simp: max_strict_def intro: max_ext_additive) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1687 | thus ?thesis by (rule smsI) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1688 | next | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1689 |       assume [simp]: "A' = {#} \<and> B' = {#}"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1690 | show ?thesis by (rule smsI) (auto intro: max) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1691 | qed | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1692 | thus "(Z + A, Z' + B) \<in> ms_strict" by (simp add:add_ac) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1693 | thus "(Z + A, Z' + B) \<in> ms_weak" by (simp add: ms_weak_def) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1694 | } | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1695 | from mx_or_empty | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1696 | have "(Z'' + A', Z'' + B') \<in> ms_weak" by (rule wmsI) | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1697 |   thus "(Z + {#}, Z' + {#}) \<in> ms_weak" by (simp add:add_ac)
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1698 | qed | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1699 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1700 | lemma empty_idemp: "{#} + x = x" "x + {#} = x"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1701 | and nonempty_plus: "{# x #} + rs \<noteq> {#}"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1702 | and nonempty_single: "{# x #} \<noteq> {#}"
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1703 | by auto | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1704 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1705 | setup {*
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1706 | let | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1707 |   fun msetT T = Type ("Multiset.multiset", [T]);
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1708 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1709 |   fun mk_mset T [] = Const (@{const_name Mempty}, msetT T)
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1710 |     | mk_mset T [x] = Const (@{const_name single}, T --> msetT T) $ x
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1711 | | mk_mset T (x :: xs) = | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1712 |           Const (@{const_name plus}, msetT T --> msetT T --> msetT T) $
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1713 | mk_mset T [x] $ mk_mset T xs | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1714 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1715 | fun mset_member_tac m i = | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1716 | (if m <= 0 then | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1717 |            rtac @{thm multi_member_this} i ORELSE rtac @{thm multi_member_last} i
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1718 | else | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1719 |            rtac @{thm multi_member_skip} i THEN mset_member_tac (m - 1) i)
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1720 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1721 | val mset_nonempty_tac = | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1722 |       rtac @{thm nonempty_plus} ORELSE' rtac @{thm nonempty_single}
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1723 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1724 | val regroup_munion_conv = | 
| 33102 | 1725 |       Function_Lib.regroup_conv @{const_name Multiset.Mempty} @{const_name plus}
 | 
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1726 |         (map (fn t => t RS eq_reflection) (@{thms add_ac} @ @{thms empty_idemp}))
 | 
| 29125 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1727 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1728 | fun unfold_pwleq_tac i = | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1729 |     (rtac @{thm pw_leq_step} i THEN (fn st => unfold_pwleq_tac (i + 1) st))
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1730 |       ORELSE (rtac @{thm pw_leq_lstep} i)
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1731 |       ORELSE (rtac @{thm pw_leq_empty} i)
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1732 | |
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1733 |   val set_of_simps = [@{thm set_of_empty}, @{thm set_of_single}, @{thm set_of_union},
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1734 |                       @{thm Un_insert_left}, @{thm Un_empty_left}]
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1735 | in | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1736 | ScnpReconstruct.multiset_setup (ScnpReconstruct.Multiset | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1737 |   {
 | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1738 | msetT=msetT, mk_mset=mk_mset, mset_regroup_conv=regroup_munion_conv, | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1739 | mset_member_tac=mset_member_tac, mset_nonempty_tac=mset_nonempty_tac, | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1740 | mset_pwleq_tac=unfold_pwleq_tac, set_of_simps=set_of_simps, | 
| 30595 
c87a3350f5a9
proper spacing before ML antiquotations -- note that @ may be part of symbolic ML identifiers;
 wenzelm parents: 
30428diff
changeset | 1741 |     smsI'= @{thm ms_strictI}, wmsI2''= @{thm ms_weakI2}, wmsI1= @{thm ms_weakI1},
 | 
| 
c87a3350f5a9
proper spacing before ML antiquotations -- note that @ may be part of symbolic ML identifiers;
 wenzelm parents: 
30428diff
changeset | 1742 |     reduction_pair= @{thm ms_reduction_pair}
 | 
| 29125 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1743 | }) | 
| 10249 | 1744 | end | 
| 29125 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1745 | *} | 
| 
d41182a8135c
method "sizechange" proves termination of functions; added more infrastructure for termination proofs
 krauss parents: 
28823diff
changeset | 1746 | |
| 34943 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1747 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1748 | subsection {* Legacy theorem bindings *}
 | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1749 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1750 | lemmas multi_count_eq = multiset_eq_conv_count_eq [symmetric] | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1751 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1752 | lemma union_commute: "M + N = N + (M::'a multiset)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1753 | by (fact add_commute) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1754 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1755 | lemma union_assoc: "(M + N) + K = M + (N + (K::'a multiset))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1756 | by (fact add_assoc) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1757 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1758 | lemma union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1759 | by (fact add_left_commute) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1760 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1761 | lemmas union_ac = union_assoc union_commute union_lcomm | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1762 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1763 | lemma union_right_cancel: "M + K = N + K \<longleftrightarrow> M = (N::'a multiset)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1764 | by (fact add_right_cancel) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1765 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1766 | lemma union_left_cancel: "K + M = K + N \<longleftrightarrow> M = (N::'a multiset)" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1767 | by (fact add_left_cancel) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1768 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1769 | lemma multi_union_self_other_eq: "(A::'a multiset) + X = A + Y \<Longrightarrow> X = Y" | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1770 | by (fact add_imp_eq) | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1771 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1772 | lemmas mset_less_trans = mset_order.less_trans | 
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1773 | |
| 
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
 haftmann parents: 
33102diff
changeset | 1774 | end |