author | haftmann |
Fri, 22 Jan 2010 13:38:28 +0100 | |
changeset 34943 | e97b22500a5c |
parent 33102 | e3463e6db704 |
child 35028 | 108662d50512 |
permissions | -rw-r--r-- |
10249 | 1 |
(* Title: HOL/Library/Multiset.thy |
15072 | 2 |
Author: Tobias Nipkow, Markus Wenzel, Lawrence C Paulson, Norbert Voelker |
10249 | 3 |
*) |
4 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
5 |
header {* (Finite) multisets *} |
10249 | 6 |
|
15131 | 7 |
theory Multiset |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
8 |
imports Main |
15131 | 9 |
begin |
10249 | 10 |
|
11 |
subsection {* The type of multisets *} |
|
12 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
13 |
typedef 'a multiset = "{f :: 'a => nat. finite {x. f x > 0}}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
14 |
morphisms count Abs_multiset |
10249 | 15 |
proof |
11464 | 16 |
show "(\<lambda>x. 0::nat) \<in> ?multiset" by simp |
10249 | 17 |
qed |
18 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
19 |
lemmas multiset_typedef = Abs_multiset_inverse count_inverse count |
19086 | 20 |
|
28708
a1a436f09ec6
explicit check for pattern discipline before code translation
haftmann
parents:
28562
diff
changeset
|
21 |
abbreviation Melem :: "'a => 'a multiset => bool" ("(_/ :# _)" [50, 51] 50) where |
25610 | 22 |
"a :# M == 0 < count M a" |
23 |
||
26145 | 24 |
notation (xsymbols) |
25 |
Melem (infix "\<in>#" 50) |
|
10249 | 26 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
27 |
lemma multiset_eq_conv_count_eq: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
28 |
"M = N \<longleftrightarrow> (\<forall>a. count M a = count N a)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
29 |
by (simp only: count_inject [symmetric] expand_fun_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
30 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
31 |
lemma multi_count_ext: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
32 |
"(\<And>x. count A x = count B x) \<Longrightarrow> A = B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
33 |
using multiset_eq_conv_count_eq by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
34 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
35 |
text {* |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
36 |
\medskip Preservation of the representing set @{term multiset}. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
37 |
*} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
38 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
39 |
lemma const0_in_multiset: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
40 |
"(\<lambda>a. 0) \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
41 |
by (simp add: multiset_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
42 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
43 |
lemma only1_in_multiset: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
44 |
"(\<lambda>b. if b = a then n else 0) \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
45 |
by (simp add: multiset_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
46 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
47 |
lemma union_preserves_multiset: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
48 |
"M \<in> multiset \<Longrightarrow> N \<in> multiset \<Longrightarrow> (\<lambda>a. M a + N a) \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
49 |
by (simp add: multiset_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
50 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
51 |
lemma diff_preserves_multiset: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
52 |
assumes "M \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
53 |
shows "(\<lambda>a. M a - N a) \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
54 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
55 |
have "{x. N x < M x} \<subseteq> {x. 0 < M x}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
56 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
57 |
with assms show ?thesis |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
58 |
by (auto simp add: multiset_def intro: finite_subset) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
59 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
60 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
61 |
lemma MCollect_preserves_multiset: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
62 |
assumes "M \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
63 |
shows "(\<lambda>x. if P x then M x else 0) \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
64 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
65 |
have "{x. (P x \<longrightarrow> 0 < M x) \<and> P x} \<subseteq> {x. 0 < M x}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
66 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
67 |
with assms show ?thesis |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
68 |
by (auto simp add: multiset_def intro: finite_subset) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
69 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
70 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
71 |
lemmas in_multiset = const0_in_multiset only1_in_multiset |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
72 |
union_preserves_multiset diff_preserves_multiset MCollect_preserves_multiset |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
73 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
74 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
75 |
subsection {* Representing multisets *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
76 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
77 |
text {* Multiset comprehension *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
78 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
79 |
definition MCollect :: "'a multiset => ('a => bool) => 'a multiset" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
80 |
"MCollect M P = Abs_multiset (\<lambda>x. if P x then count M x else 0)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
81 |
|
10249 | 82 |
syntax |
26033 | 83 |
"_MCollect" :: "pttrn => 'a multiset => bool => 'a multiset" ("(1{# _ :# _./ _#})") |
10249 | 84 |
translations |
26033 | 85 |
"{#x :# M. P#}" == "CONST MCollect M (\<lambda>x. P)" |
10249 | 86 |
|
87 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
88 |
text {* Multiset enumeration *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
89 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
90 |
instantiation multiset :: (type) "{zero, plus}" |
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
91 |
begin |
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
92 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
93 |
definition Mempty_def: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
94 |
"0 = Abs_multiset (\<lambda>a. 0)" |
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
95 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
96 |
abbreviation Mempty :: "'a multiset" ("{#}") where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
97 |
"Mempty \<equiv> 0" |
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
98 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
99 |
definition union_def: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
100 |
"M + N = Abs_multiset (\<lambda>a. count M a + count N a)" |
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
101 |
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
102 |
instance .. |
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
103 |
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25507
diff
changeset
|
104 |
end |
10249 | 105 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
106 |
definition single :: "'a => 'a multiset" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
107 |
"single a = Abs_multiset (\<lambda>b. if b = a then 1 else 0)" |
15869 | 108 |
|
26145 | 109 |
syntax |
26176 | 110 |
"_multiset" :: "args => 'a multiset" ("{#(_)#}") |
25507 | 111 |
translations |
112 |
"{#x, xs#}" == "{#x#} + {#xs#}" |
|
113 |
"{#x#}" == "CONST single x" |
|
114 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
115 |
lemma count_empty [simp]: "count {#} a = 0" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
116 |
by (simp add: Mempty_def in_multiset multiset_typedef) |
10249 | 117 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
118 |
lemma count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
119 |
by (simp add: single_def in_multiset multiset_typedef) |
29901 | 120 |
|
10249 | 121 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
122 |
subsection {* Basic operations *} |
10249 | 123 |
|
124 |
subsubsection {* Union *} |
|
125 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
126 |
lemma count_union [simp]: "count (M + N) a = count M a + count N a" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
127 |
by (simp add: union_def in_multiset multiset_typedef) |
10249 | 128 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
129 |
instance multiset :: (type) cancel_comm_monoid_add proof |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
130 |
qed (simp_all add: multiset_eq_conv_count_eq) |
10277 | 131 |
|
10249 | 132 |
|
133 |
subsubsection {* Difference *} |
|
134 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
135 |
instantiation multiset :: (type) minus |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
136 |
begin |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
137 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
138 |
definition diff_def: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
139 |
"M - N = Abs_multiset (\<lambda>a. count M a - count N a)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
140 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
141 |
instance .. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
142 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
143 |
end |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
144 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
145 |
lemma count_diff [simp]: "count (M - N) a = count M a - count N a" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
146 |
by (simp add: diff_def in_multiset multiset_typedef) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
147 |
|
17161 | 148 |
lemma diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}" |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
149 |
by (simp add: Mempty_def diff_def in_multiset multiset_typedef) |
10249 | 150 |
|
17161 | 151 |
lemma diff_union_inverse2 [simp]: "M + {#a#} - {#a#} = M" |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
152 |
by (rule multi_count_ext) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
153 |
(auto simp del: count_single simp add: union_def diff_def in_multiset multiset_typedef) |
10249 | 154 |
|
26143
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
bulwahn
parents:
26033
diff
changeset
|
155 |
lemma diff_cancel: "A - A = {#}" |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
156 |
by (rule multi_count_ext) simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
157 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
158 |
lemma insert_DiffM: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
159 |
"x \<in># M \<Longrightarrow> {#x#} + (M - {#x#}) = M" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
160 |
by (clarsimp simp: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
161 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
162 |
lemma insert_DiffM2 [simp]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
163 |
"x \<in># M \<Longrightarrow> M - {#x#} + {#x#} = M" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
164 |
by (clarsimp simp: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
165 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
166 |
lemma diff_right_commute: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
167 |
"(M::'a multiset) - N - Q = M - Q - N" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
168 |
by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
169 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
170 |
lemma diff_union_swap: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
171 |
"a \<noteq> b \<Longrightarrow> M - {#a#} + {#b#} = M + {#b#} - {#a#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
172 |
by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
173 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
174 |
lemma diff_union_single_conv: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
175 |
"a \<in># J \<Longrightarrow> I + J - {#a#} = I + (J - {#a#})" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
176 |
by (simp add: multiset_eq_conv_count_eq) |
26143
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
bulwahn
parents:
26033
diff
changeset
|
177 |
|
10249 | 178 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
179 |
subsubsection {* Intersection *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
180 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
181 |
definition multiset_inter :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" (infixl "#\<inter>" 70) where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
182 |
"multiset_inter A B = A - (A - B)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
183 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
184 |
lemma multiset_inter_count: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
185 |
"count (A #\<inter> B) x = min (count A x) (count B x)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
186 |
by (simp add: multiset_inter_def multiset_typedef) |
10249 | 187 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
188 |
lemma multiset_inter_commute: "A #\<inter> B = B #\<inter> A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
189 |
by (rule multi_count_ext) (simp add: multiset_inter_count) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
190 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
191 |
lemma multiset_inter_assoc: "A #\<inter> (B #\<inter> C) = A #\<inter> B #\<inter> C" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
192 |
by (rule multi_count_ext) (simp add: multiset_inter_count) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
193 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
194 |
lemma multiset_inter_left_commute: "A #\<inter> (B #\<inter> C) = B #\<inter> (A #\<inter> C)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
195 |
by (rule multi_count_ext) (simp add: multiset_inter_count) |
10249 | 196 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
197 |
lemmas multiset_inter_ac = |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
198 |
multiset_inter_commute |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
199 |
multiset_inter_assoc |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
200 |
multiset_inter_left_commute |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
201 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
202 |
lemma multiset_inter_single: "a \<noteq> b \<Longrightarrow> {#a#} #\<inter> {#b#} = {#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
203 |
by (rule multi_count_ext) (auto simp add: multiset_inter_count) |
10249 | 204 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
205 |
lemma multiset_union_diff_commute: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
206 |
assumes "B #\<inter> C = {#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
207 |
shows "A + B - C = A - C + B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
208 |
proof (rule multi_count_ext) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
209 |
fix x |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
210 |
from assms have "min (count B x) (count C x) = 0" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
211 |
by (auto simp add: multiset_inter_count multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
212 |
then have "count B x = 0 \<or> count C x = 0" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
213 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
214 |
then show "count (A + B - C) x = count (A - C + B) x" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
215 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
216 |
qed |
10249 | 217 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
218 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
219 |
subsubsection {* Comprehension (filter) *} |
26016 | 220 |
|
221 |
lemma count_MCollect [simp]: |
|
26178 | 222 |
"count {# x:#M. P x #} a = (if P a then count M a else 0)" |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
223 |
by (simp add: MCollect_def in_multiset multiset_typedef) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
224 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
225 |
lemma MCollect_empty [simp]: "MCollect {#} P = {#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
226 |
by (rule multi_count_ext) simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
227 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
228 |
lemma MCollect_single [simp]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
229 |
"MCollect {#x#} P = (if P x then {#x#} else {#})" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
230 |
by (rule multi_count_ext) simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
231 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
232 |
lemma MCollect_union [simp]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
233 |
"MCollect (M + N) f = MCollect M f + MCollect N f" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
234 |
by (rule multi_count_ext) simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
235 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
236 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
237 |
subsubsection {* Equality of multisets *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
238 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
239 |
lemma single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
240 |
by (simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
241 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
242 |
lemma single_eq_single [simp]: "{#a#} = {#b#} \<longleftrightarrow> a = b" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
243 |
by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
244 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
245 |
lemma union_eq_empty [iff]: "M + N = {#} \<longleftrightarrow> M = {#} \<and> N = {#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
246 |
by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
247 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
248 |
lemma empty_eq_union [iff]: "{#} = M + N \<longleftrightarrow> M = {#} \<and> N = {#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
249 |
by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
250 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
251 |
lemma multi_self_add_other_not_self [simp]: "M = M + {#x#} \<longleftrightarrow> False" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
252 |
by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
253 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
254 |
lemma diff_single_trivial: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
255 |
"\<not> x \<in># M \<Longrightarrow> M - {#x#} = M" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
256 |
by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
257 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
258 |
lemma diff_single_eq_union: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
259 |
"x \<in># M \<Longrightarrow> M - {#x#} = N \<longleftrightarrow> M = N + {#x#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
260 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
261 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
262 |
lemma union_single_eq_diff: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
263 |
"M + {#x#} = N \<Longrightarrow> M = N - {#x#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
264 |
by (auto dest: sym) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
265 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
266 |
lemma union_single_eq_member: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
267 |
"M + {#x#} = N \<Longrightarrow> x \<in># N" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
268 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
269 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
270 |
lemma union_is_single: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
271 |
"M + N = {#a#} \<longleftrightarrow> M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#}" (is "?lhs = ?rhs") |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
272 |
proof |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
273 |
assume ?rhs then show ?lhs by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
274 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
275 |
assume ?lhs |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
276 |
then have "\<And>b. count (M + N) b = (if b = a then 1 else 0)" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
277 |
then have *: "\<And>b. count M b + count N b = (if b = a then 1 else 0)" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
278 |
then have "count M a + count N a = 1" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
279 |
then have **: "count M a = 1 \<and> count N a = 0 \<or> count M a = 0 \<and> count N a = 1" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
280 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
281 |
from * have "\<And>b. b \<noteq> a \<Longrightarrow> count M b + count N b = 0" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
282 |
then have ***: "\<And>b. b \<noteq> a \<Longrightarrow> count M b = 0 \<and> count N b = 0" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
283 |
from ** and *** have |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
284 |
"(\<forall>b. count M b = (if b = a then 1 else 0) \<and> count N b = 0) \<or> |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
285 |
(\<forall>b. count M b = 0 \<and> count N b = (if b = a then 1 else 0))" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
286 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
287 |
then have |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
288 |
"(\<forall>b. count M b = (if b = a then 1 else 0)) \<and> (\<forall>b. count N b = 0) \<or> |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
289 |
(\<forall>b. count M b = 0) \<and> (\<forall>b. count N b = (if b = a then 1 else 0))" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
290 |
by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
291 |
then show ?rhs by (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
292 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
293 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
294 |
lemma single_is_union: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
295 |
"{#a#} = M + N \<longleftrightarrow> {#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
296 |
by (auto simp add: eq_commute [of "{#a#}" "M + N"] union_is_single) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
297 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
298 |
lemma add_eq_conv_diff: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
299 |
"M + {#a#} = N + {#b#} \<longleftrightarrow> M = N \<and> a = b \<or> M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#}" (is "?lhs = ?rhs") |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
300 |
proof |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
301 |
assume ?rhs then show ?lhs |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
302 |
by (auto simp add: add_assoc add_commute [of "{#b#}"]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
303 |
(drule sym, simp add: add_assoc [symmetric]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
304 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
305 |
assume ?lhs |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
306 |
show ?rhs |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
307 |
proof (cases "a = b") |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
308 |
case True with `?lhs` show ?thesis by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
309 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
310 |
case False |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
311 |
from `?lhs` have "a \<in># N + {#b#}" by (rule union_single_eq_member) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
312 |
with False have "a \<in># N" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
313 |
moreover from `?lhs` have "M = N + {#b#} - {#a#}" by (rule union_single_eq_diff) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
314 |
moreover note False |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
315 |
ultimately show ?thesis by (auto simp add: diff_right_commute [of _ "{#a#}"] diff_union_swap) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
316 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
317 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
318 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
319 |
lemma insert_noteq_member: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
320 |
assumes BC: "B + {#b#} = C + {#c#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
321 |
and bnotc: "b \<noteq> c" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
322 |
shows "c \<in># B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
323 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
324 |
have "c \<in># C + {#c#}" by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
325 |
have nc: "\<not> c \<in># {#b#}" using bnotc by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
326 |
then have "c \<in># B + {#b#}" using BC by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
327 |
then show "c \<in># B" using nc by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
328 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
329 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
330 |
lemma add_eq_conv_ex: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
331 |
"(M + {#a#} = N + {#b#}) = |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
332 |
(M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
333 |
by (auto simp add: add_eq_conv_diff) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
334 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
335 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
336 |
subsubsection {* Pointwise ordering induced by count *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
337 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
338 |
definition mset_le :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "\<le>#" 50) where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
339 |
"A \<le># B \<longleftrightarrow> (\<forall>a. count A a \<le> count B a)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
340 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
341 |
definition mset_less :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<#" 50) where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
342 |
"A <# B \<longleftrightarrow> A \<le># B \<and> A \<noteq> B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
343 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
344 |
notation mset_le (infix "\<subseteq>#" 50) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
345 |
notation mset_less (infix "\<subset>#" 50) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
346 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
347 |
lemma mset_less_eqI: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
348 |
"(\<And>x. count A x \<le> count B x) \<Longrightarrow> A \<subseteq># B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
349 |
by (simp add: mset_le_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
350 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
351 |
lemma mset_le_refl[simp]: "A \<le># A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
352 |
unfolding mset_le_def by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
353 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
354 |
lemma mset_le_trans: "A \<le># B \<Longrightarrow> B \<le># C \<Longrightarrow> A \<le># C" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
355 |
unfolding mset_le_def by (fast intro: order_trans) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
356 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
357 |
lemma mset_le_antisym: "A \<le># B \<Longrightarrow> B \<le># A \<Longrightarrow> A = B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
358 |
apply (unfold mset_le_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
359 |
apply (rule multiset_eq_conv_count_eq [THEN iffD2]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
360 |
apply (blast intro: order_antisym) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
361 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
362 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
363 |
lemma mset_le_exists_conv: "(A \<le># B) = (\<exists>C. B = A + C)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
364 |
apply (unfold mset_le_def, rule iffI, rule_tac x = "B - A" in exI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
365 |
apply (auto intro: multiset_eq_conv_count_eq [THEN iffD2]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
366 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
367 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
368 |
lemma mset_le_mono_add_right_cancel[simp]: "(A + C \<le># B + C) = (A \<le># B)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
369 |
unfolding mset_le_def by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
370 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
371 |
lemma mset_le_mono_add_left_cancel[simp]: "(C + A \<le># C + B) = (A \<le># B)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
372 |
unfolding mset_le_def by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
373 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
374 |
lemma mset_le_mono_add: "\<lbrakk> A \<le># B; C \<le># D \<rbrakk> \<Longrightarrow> A + C \<le># B + D" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
375 |
apply (unfold mset_le_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
376 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
377 |
apply (erule_tac x = a in allE)+ |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
378 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
379 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
380 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
381 |
lemma mset_le_add_left[simp]: "A \<le># A + B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
382 |
unfolding mset_le_def by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
383 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
384 |
lemma mset_le_add_right[simp]: "B \<le># A + B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
385 |
unfolding mset_le_def by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
386 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
387 |
lemma mset_le_single: "a :# B \<Longrightarrow> {#a#} \<le># B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
388 |
by (simp add: mset_le_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
389 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
390 |
lemma multiset_diff_union_assoc: "C \<le># B \<Longrightarrow> A + B - C = A + (B - C)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
391 |
by (simp add: multiset_eq_conv_count_eq mset_le_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
392 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
393 |
lemma mset_le_multiset_union_diff_commute: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
394 |
assumes "B \<le># A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
395 |
shows "A - B + C = A + C - B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
396 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
397 |
from mset_le_exists_conv [of "B" "A"] assms have "\<exists>D. A = B + D" .. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
398 |
from this obtain D where "A = B + D" .. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
399 |
then show ?thesis |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
400 |
apply simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
401 |
apply (subst add_commute) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
402 |
apply (subst multiset_diff_union_assoc) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
403 |
apply simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
404 |
apply (simp add: diff_cancel) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
405 |
apply (subst add_assoc) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
406 |
apply (subst add_commute [of "B" _]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
407 |
apply (subst multiset_diff_union_assoc) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
408 |
apply simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
409 |
apply (simp add: diff_cancel) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
410 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
411 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
412 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
413 |
interpretation mset_order: order "op \<le>#" "op <#" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
414 |
proof qed (auto intro: order.intro mset_le_refl mset_le_antisym |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
415 |
mset_le_trans simp: mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
416 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
417 |
interpretation mset_order_cancel_semigroup: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
418 |
pordered_cancel_ab_semigroup_add "op +" "op \<le>#" "op <#" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
419 |
proof qed (erule mset_le_mono_add [OF mset_le_refl]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
420 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
421 |
interpretation mset_order_semigroup_cancel: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
422 |
pordered_ab_semigroup_add_imp_le "op +" "op \<le>#" "op <#" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
423 |
proof qed simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
424 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
425 |
lemma mset_lessD: "A \<subset># B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
426 |
apply (clarsimp simp: mset_le_def mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
427 |
apply (erule_tac x=x in allE) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
428 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
429 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
430 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
431 |
lemma mset_leD: "A \<subseteq># B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
432 |
apply (clarsimp simp: mset_le_def mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
433 |
apply (erule_tac x = x in allE) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
434 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
435 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
436 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
437 |
lemma mset_less_insertD: "(A + {#x#} \<subset># B) \<Longrightarrow> (x \<in># B \<and> A \<subset># B)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
438 |
apply (rule conjI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
439 |
apply (simp add: mset_lessD) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
440 |
apply (clarsimp simp: mset_le_def mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
441 |
apply safe |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
442 |
apply (erule_tac x = a in allE) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
443 |
apply (auto split: split_if_asm) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
444 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
445 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
446 |
lemma mset_le_insertD: "(A + {#x#} \<subseteq># B) \<Longrightarrow> (x \<in># B \<and> A \<subseteq># B)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
447 |
apply (rule conjI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
448 |
apply (simp add: mset_leD) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
449 |
apply (force simp: mset_le_def mset_less_def split: split_if_asm) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
450 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
451 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
452 |
lemma mset_less_of_empty[simp]: "A \<subset># {#} \<longleftrightarrow> False" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
453 |
by (auto simp add: mset_less_def mset_le_def multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
454 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
455 |
lemma multi_psub_of_add_self[simp]: "A \<subset># A + {#x#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
456 |
by (auto simp: mset_le_def mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
457 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
458 |
lemma multi_psub_self[simp]: "A \<subset># A = False" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
459 |
by (auto simp: mset_le_def mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
460 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
461 |
lemma mset_less_add_bothsides: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
462 |
"T + {#x#} \<subset># S + {#x#} \<Longrightarrow> T \<subset># S" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
463 |
by (auto simp: mset_le_def mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
464 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
465 |
lemma mset_less_empty_nonempty: "({#} \<subset># S) = (S \<noteq> {#})" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
466 |
by (auto simp: mset_le_def mset_less_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
467 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
468 |
lemma mset_less_diff_self: "c \<in># B \<Longrightarrow> B - {#c#} \<subset># B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
469 |
by (auto simp: mset_le_def mset_less_def multiset_eq_conv_count_eq) |
10249 | 470 |
|
471 |
||
472 |
subsubsection {* Set of elements *} |
|
473 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
474 |
definition set_of :: "'a multiset => 'a set" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
475 |
"set_of M = {x. x :# M}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
476 |
|
17161 | 477 |
lemma set_of_empty [simp]: "set_of {#} = {}" |
26178 | 478 |
by (simp add: set_of_def) |
10249 | 479 |
|
17161 | 480 |
lemma set_of_single [simp]: "set_of {#b#} = {b}" |
26178 | 481 |
by (simp add: set_of_def) |
10249 | 482 |
|
17161 | 483 |
lemma set_of_union [simp]: "set_of (M + N) = set_of M \<union> set_of N" |
26178 | 484 |
by (auto simp add: set_of_def) |
10249 | 485 |
|
17161 | 486 |
lemma set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})" |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
487 |
by (auto simp add: set_of_def multiset_eq_conv_count_eq) |
10249 | 488 |
|
17161 | 489 |
lemma mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)" |
26178 | 490 |
by (auto simp add: set_of_def) |
26016 | 491 |
|
26033 | 492 |
lemma set_of_MCollect [simp]: "set_of {# x:#M. P x #} = set_of M \<inter> {x. P x}" |
26178 | 493 |
by (auto simp add: set_of_def) |
10249 | 494 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
495 |
lemma finite_set_of [iff]: "finite (set_of M)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
496 |
using count [of M] by (simp add: multiset_def set_of_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
497 |
|
10249 | 498 |
|
499 |
subsubsection {* Size *} |
|
500 |
||
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
501 |
instantiation multiset :: (type) size |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
502 |
begin |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
503 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
504 |
definition size_def: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
505 |
"size M = setsum (count M) (set_of M)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
506 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
507 |
instance .. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
508 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
509 |
end |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
510 |
|
28708
a1a436f09ec6
explicit check for pattern discipline before code translation
haftmann
parents:
28562
diff
changeset
|
511 |
lemma size_empty [simp]: "size {#} = 0" |
26178 | 512 |
by (simp add: size_def) |
10249 | 513 |
|
28708
a1a436f09ec6
explicit check for pattern discipline before code translation
haftmann
parents:
28562
diff
changeset
|
514 |
lemma size_single [simp]: "size {#b#} = 1" |
26178 | 515 |
by (simp add: size_def) |
10249 | 516 |
|
17161 | 517 |
lemma setsum_count_Int: |
26178 | 518 |
"finite A ==> setsum (count N) (A \<inter> set_of N) = setsum (count N) A" |
519 |
apply (induct rule: finite_induct) |
|
520 |
apply simp |
|
521 |
apply (simp add: Int_insert_left set_of_def) |
|
522 |
done |
|
10249 | 523 |
|
28708
a1a436f09ec6
explicit check for pattern discipline before code translation
haftmann
parents:
28562
diff
changeset
|
524 |
lemma size_union [simp]: "size (M + N::'a multiset) = size M + size N" |
26178 | 525 |
apply (unfold size_def) |
526 |
apply (subgoal_tac "count (M + N) = (\<lambda>a. count M a + count N a)") |
|
527 |
prefer 2 |
|
528 |
apply (rule ext, simp) |
|
529 |
apply (simp (no_asm_simp) add: setsum_Un_nat setsum_addf setsum_count_Int) |
|
530 |
apply (subst Int_commute) |
|
531 |
apply (simp (no_asm_simp) add: setsum_count_Int) |
|
532 |
done |
|
10249 | 533 |
|
17161 | 534 |
lemma size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})" |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
535 |
by (auto simp add: size_def multiset_eq_conv_count_eq) |
26016 | 536 |
|
537 |
lemma nonempty_has_size: "(S \<noteq> {#}) = (0 < size S)" |
|
26178 | 538 |
by (metis gr0I gr_implies_not0 size_empty size_eq_0_iff_empty) |
10249 | 539 |
|
17161 | 540 |
lemma size_eq_Suc_imp_elem: "size M = Suc n ==> \<exists>a. a :# M" |
26178 | 541 |
apply (unfold size_def) |
542 |
apply (drule setsum_SucD) |
|
543 |
apply auto |
|
544 |
done |
|
10249 | 545 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
546 |
lemma size_eq_Suc_imp_eq_union: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
547 |
assumes "size M = Suc n" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
548 |
shows "\<exists>a N. M = N + {#a#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
549 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
550 |
from assms obtain a where "a \<in># M" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
551 |
by (erule size_eq_Suc_imp_elem [THEN exE]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
552 |
then have "M = M - {#a#} + {#a#}" by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
553 |
then show ?thesis by blast |
23611 | 554 |
qed |
15869 | 555 |
|
26016 | 556 |
|
557 |
subsection {* Induction and case splits *} |
|
10249 | 558 |
|
559 |
lemma setsum_decr: |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
560 |
"finite F ==> (0::nat) < f a ==> |
15072 | 561 |
setsum (f (a := f a - 1)) F = (if a\<in>F then setsum f F - 1 else setsum f F)" |
26178 | 562 |
apply (induct rule: finite_induct) |
563 |
apply auto |
|
564 |
apply (drule_tac a = a in mk_disjoint_insert, auto) |
|
565 |
done |
|
10249 | 566 |
|
10313 | 567 |
lemma rep_multiset_induct_aux: |
26178 | 568 |
assumes 1: "P (\<lambda>a. (0::nat))" |
569 |
and 2: "!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))" |
|
570 |
shows "\<forall>f. f \<in> multiset --> setsum f {x. f x \<noteq> 0} = n --> P f" |
|
571 |
apply (unfold multiset_def) |
|
572 |
apply (induct_tac n, simp, clarify) |
|
573 |
apply (subgoal_tac "f = (\<lambda>a.0)") |
|
574 |
apply simp |
|
575 |
apply (rule 1) |
|
576 |
apply (rule ext, force, clarify) |
|
577 |
apply (frule setsum_SucD, clarify) |
|
578 |
apply (rename_tac a) |
|
579 |
apply (subgoal_tac "finite {x. (f (a := f a - 1)) x > 0}") |
|
580 |
prefer 2 |
|
581 |
apply (rule finite_subset) |
|
582 |
prefer 2 |
|
583 |
apply assumption |
|
584 |
apply simp |
|
585 |
apply blast |
|
586 |
apply (subgoal_tac "f = (f (a := f a - 1))(a := (f (a := f a - 1)) a + 1)") |
|
587 |
prefer 2 |
|
588 |
apply (rule ext) |
|
589 |
apply (simp (no_asm_simp)) |
|
590 |
apply (erule ssubst, rule 2 [unfolded multiset_def], blast) |
|
591 |
apply (erule allE, erule impE, erule_tac [2] mp, blast) |
|
592 |
apply (simp (no_asm_simp) add: setsum_decr del: fun_upd_apply One_nat_def) |
|
593 |
apply (subgoal_tac "{x. x \<noteq> a --> f x \<noteq> 0} = {x. f x \<noteq> 0}") |
|
594 |
prefer 2 |
|
595 |
apply blast |
|
596 |
apply (subgoal_tac "{x. x \<noteq> a \<and> f x \<noteq> 0} = {x. f x \<noteq> 0} - {a}") |
|
597 |
prefer 2 |
|
598 |
apply blast |
|
599 |
apply (simp add: le_imp_diff_is_add setsum_diff1_nat cong: conj_cong) |
|
600 |
done |
|
10249 | 601 |
|
10313 | 602 |
theorem rep_multiset_induct: |
11464 | 603 |
"f \<in> multiset ==> P (\<lambda>a. 0) ==> |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
604 |
(!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))) ==> P f" |
26178 | 605 |
using rep_multiset_induct_aux by blast |
10249 | 606 |
|
18258 | 607 |
theorem multiset_induct [case_names empty add, induct type: multiset]: |
26178 | 608 |
assumes empty: "P {#}" |
609 |
and add: "!!M x. P M ==> P (M + {#x#})" |
|
610 |
shows "P M" |
|
10249 | 611 |
proof - |
612 |
note defns = union_def single_def Mempty_def |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
613 |
note add' = add [unfolded defns, simplified] |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
614 |
have aux: "\<And>a::'a. count (Abs_multiset (\<lambda>b. if b = a then 1 else 0)) = |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
615 |
(\<lambda>b. if b = a then 1 else 0)" by (simp add: Abs_multiset_inverse in_multiset) |
10249 | 616 |
show ?thesis |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
617 |
apply (rule count_inverse [THEN subst]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
618 |
apply (rule count [THEN rep_multiset_induct]) |
18258 | 619 |
apply (rule empty [unfolded defns]) |
15072 | 620 |
apply (subgoal_tac "f(b := f b + 1) = (\<lambda>a. f a + (if a=b then 1 else 0))") |
10249 | 621 |
prefer 2 |
622 |
apply (simp add: expand_fun_eq) |
|
623 |
apply (erule ssubst) |
|
17200 | 624 |
apply (erule Abs_multiset_inverse [THEN subst]) |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
625 |
apply (drule add') |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
626 |
apply (simp add: aux) |
10249 | 627 |
done |
628 |
qed |
|
629 |
||
25610 | 630 |
lemma multi_nonempty_split: "M \<noteq> {#} \<Longrightarrow> \<exists>A a. M = A + {#a#}" |
26178 | 631 |
by (induct M) auto |
25610 | 632 |
|
633 |
lemma multiset_cases [cases type, case_names empty add]: |
|
26178 | 634 |
assumes em: "M = {#} \<Longrightarrow> P" |
635 |
assumes add: "\<And>N x. M = N + {#x#} \<Longrightarrow> P" |
|
636 |
shows "P" |
|
25610 | 637 |
proof (cases "M = {#}") |
26145 | 638 |
assume "M = {#}" then show ?thesis using em by simp |
25610 | 639 |
next |
640 |
assume "M \<noteq> {#}" |
|
641 |
then obtain M' m where "M = M' + {#m#}" |
|
642 |
by (blast dest: multi_nonempty_split) |
|
26145 | 643 |
then show ?thesis using add by simp |
25610 | 644 |
qed |
645 |
||
646 |
lemma multi_member_split: "x \<in># M \<Longrightarrow> \<exists>A. M = A + {#x#}" |
|
26178 | 647 |
apply (cases M) |
648 |
apply simp |
|
649 |
apply (rule_tac x="M - {#x#}" in exI, simp) |
|
650 |
done |
|
25610 | 651 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
652 |
lemma multi_drop_mem_not_eq: "c \<in># B \<Longrightarrow> B - {#c#} \<noteq> B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
653 |
by (cases "B = {#}") (auto dest: multi_member_split) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
654 |
|
26033 | 655 |
lemma multiset_partition: "M = {# x:#M. P x #} + {# x:#M. \<not> P x #}" |
26178 | 656 |
apply (subst multiset_eq_conv_count_eq) |
657 |
apply auto |
|
658 |
done |
|
10249 | 659 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
660 |
lemma mset_less_size: "A \<subset># B \<Longrightarrow> size A < size B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
661 |
proof (induct A arbitrary: B) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
662 |
case (empty M) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
663 |
then have "M \<noteq> {#}" by (simp add: mset_less_empty_nonempty) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
664 |
then obtain M' x where "M = M' + {#x#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
665 |
by (blast dest: multi_nonempty_split) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
666 |
then show ?case by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
667 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
668 |
case (add S x T) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
669 |
have IH: "\<And>B. S \<subset># B \<Longrightarrow> size S < size B" by fact |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
670 |
have SxsubT: "S + {#x#} \<subset># T" by fact |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
671 |
then have "x \<in># T" and "S \<subset># T" by (auto dest: mset_less_insertD) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
672 |
then obtain T' where T: "T = T' + {#x#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
673 |
by (blast dest: multi_member_split) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
674 |
then have "S \<subset># T'" using SxsubT |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
675 |
by (blast intro: mset_less_add_bothsides) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
676 |
then have "size S < size T'" using IH by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
677 |
then show ?case using T by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
678 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
679 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
680 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
681 |
subsubsection {* Strong induction and subset induction for multisets *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
682 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
683 |
text {* Well-foundedness of proper subset operator: *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
684 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
685 |
text {* proper multiset subset *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
686 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
687 |
definition |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
688 |
mset_less_rel :: "('a multiset * 'a multiset) set" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
689 |
"mset_less_rel = {(A,B). A \<subset># B}" |
10249 | 690 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
691 |
lemma multiset_add_sub_el_shuffle: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
692 |
assumes "c \<in># B" and "b \<noteq> c" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
693 |
shows "B - {#c#} + {#b#} = B + {#b#} - {#c#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
694 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
695 |
from `c \<in># B` obtain A where B: "B = A + {#c#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
696 |
by (blast dest: multi_member_split) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
697 |
have "A + {#b#} = A + {#b#} + {#c#} - {#c#}" by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
698 |
then have "A + {#b#} = A + {#c#} + {#b#} - {#c#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
699 |
by (simp add: add_ac) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
700 |
then show ?thesis using B by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
701 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
702 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
703 |
lemma wf_mset_less_rel: "wf mset_less_rel" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
704 |
apply (unfold mset_less_rel_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
705 |
apply (rule wf_measure [THEN wf_subset, where f1=size]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
706 |
apply (clarsimp simp: measure_def inv_image_def mset_less_size) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
707 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
708 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
709 |
text {* The induction rules: *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
710 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
711 |
lemma full_multiset_induct [case_names less]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
712 |
assumes ih: "\<And>B. \<forall>A. A \<subset># B \<longrightarrow> P A \<Longrightarrow> P B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
713 |
shows "P B" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
714 |
apply (rule wf_mset_less_rel [THEN wf_induct]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
715 |
apply (rule ih, auto simp: mset_less_rel_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
716 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
717 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
718 |
lemma multi_subset_induct [consumes 2, case_names empty add]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
719 |
assumes "F \<subseteq># A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
720 |
and empty: "P {#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
721 |
and insert: "\<And>a F. a \<in># A \<Longrightarrow> P F \<Longrightarrow> P (F + {#a#})" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
722 |
shows "P F" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
723 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
724 |
from `F \<subseteq># A` |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
725 |
show ?thesis |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
726 |
proof (induct F) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
727 |
show "P {#}" by fact |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
728 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
729 |
fix x F |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
730 |
assume P: "F \<subseteq># A \<Longrightarrow> P F" and i: "F + {#x#} \<subseteq># A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
731 |
show "P (F + {#x#})" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
732 |
proof (rule insert) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
733 |
from i show "x \<in># A" by (auto dest: mset_le_insertD) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
734 |
from i have "F \<subseteq># A" by (auto dest: mset_le_insertD) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
735 |
with P show "P F" . |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
736 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
737 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
738 |
qed |
26145 | 739 |
|
17161 | 740 |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
741 |
subsection {* Alternative representations *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
742 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
743 |
subsubsection {* Lists *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
744 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
745 |
primrec multiset_of :: "'a list \<Rightarrow> 'a multiset" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
746 |
"multiset_of [] = {#}" | |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
747 |
"multiset_of (a # x) = multiset_of x + {# a #}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
748 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
749 |
lemma multiset_of_zero_iff[simp]: "(multiset_of x = {#}) = (x = [])" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
750 |
by (induct x) auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
751 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
752 |
lemma multiset_of_zero_iff_right[simp]: "({#} = multiset_of x) = (x = [])" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
753 |
by (induct x) auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
754 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
755 |
lemma set_of_multiset_of[simp]: "set_of(multiset_of x) = set x" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
756 |
by (induct x) auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
757 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
758 |
lemma mem_set_multiset_eq: "x \<in> set xs = (x :# multiset_of xs)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
759 |
by (induct xs) auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
760 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
761 |
lemma multiset_of_append [simp]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
762 |
"multiset_of (xs @ ys) = multiset_of xs + multiset_of ys" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
763 |
by (induct xs arbitrary: ys) (auto simp: add_ac) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
764 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
765 |
lemma surj_multiset_of: "surj multiset_of" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
766 |
apply (unfold surj_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
767 |
apply (rule allI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
768 |
apply (rule_tac M = y in multiset_induct) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
769 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
770 |
apply (rule_tac x = "x # xa" in exI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
771 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
772 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
773 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
774 |
lemma set_count_greater_0: "set x = {a. count (multiset_of x) a > 0}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
775 |
by (induct x) auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
776 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
777 |
lemma distinct_count_atmost_1: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
778 |
"distinct x = (! a. count (multiset_of x) a = (if a \<in> set x then 1 else 0))" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
779 |
apply (induct x, simp, rule iffI, simp_all) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
780 |
apply (rule conjI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
781 |
apply (simp_all add: set_of_multiset_of [THEN sym] del: set_of_multiset_of) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
782 |
apply (erule_tac x = a in allE, simp, clarify) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
783 |
apply (erule_tac x = aa in allE, simp) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
784 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
785 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
786 |
lemma multiset_of_eq_setD: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
787 |
"multiset_of xs = multiset_of ys \<Longrightarrow> set xs = set ys" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
788 |
by (rule) (auto simp add:multiset_eq_conv_count_eq set_count_greater_0) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
789 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
790 |
lemma set_eq_iff_multiset_of_eq_distinct: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
791 |
"distinct x \<Longrightarrow> distinct y \<Longrightarrow> |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
792 |
(set x = set y) = (multiset_of x = multiset_of y)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
793 |
by (auto simp: multiset_eq_conv_count_eq distinct_count_atmost_1) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
794 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
795 |
lemma set_eq_iff_multiset_of_remdups_eq: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
796 |
"(set x = set y) = (multiset_of (remdups x) = multiset_of (remdups y))" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
797 |
apply (rule iffI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
798 |
apply (simp add: set_eq_iff_multiset_of_eq_distinct[THEN iffD1]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
799 |
apply (drule distinct_remdups [THEN distinct_remdups |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
800 |
[THEN set_eq_iff_multiset_of_eq_distinct [THEN iffD2]]]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
801 |
apply simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
802 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
803 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
804 |
lemma multiset_of_compl_union [simp]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
805 |
"multiset_of [x\<leftarrow>xs. P x] + multiset_of [x\<leftarrow>xs. \<not>P x] = multiset_of xs" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
806 |
by (induct xs) (auto simp: add_ac) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
807 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
808 |
lemma count_filter: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
809 |
"count (multiset_of xs) x = length [y \<leftarrow> xs. y = x]" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
810 |
by (induct xs) auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
811 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
812 |
lemma nth_mem_multiset_of: "i < length ls \<Longrightarrow> (ls ! i) :# multiset_of ls" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
813 |
apply (induct ls arbitrary: i) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
814 |
apply simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
815 |
apply (case_tac i) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
816 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
817 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
818 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
819 |
lemma multiset_of_remove1: "multiset_of (remove1 a xs) = multiset_of xs - {#a#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
820 |
by (induct xs) (auto simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
821 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
822 |
lemma multiset_of_eq_length: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
823 |
assumes "multiset_of xs = multiset_of ys" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
824 |
shows "length xs = length ys" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
825 |
using assms |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
826 |
proof (induct arbitrary: ys rule: length_induct) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
827 |
case (1 xs ys) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
828 |
show ?case |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
829 |
proof (cases xs) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
830 |
case Nil with "1.prems" show ?thesis by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
831 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
832 |
case (Cons x xs') |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
833 |
note xCons = Cons |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
834 |
show ?thesis |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
835 |
proof (cases ys) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
836 |
case Nil |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
837 |
with "1.prems" Cons show ?thesis by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
838 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
839 |
case (Cons y ys') |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
840 |
have x_in_ys: "x = y \<or> x \<in> set ys'" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
841 |
proof (cases "x = y") |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
842 |
case True then show ?thesis .. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
843 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
844 |
case False |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
845 |
from "1.prems" [symmetric] xCons Cons have "x :# multiset_of ys' + {#y#}" by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
846 |
with False show ?thesis by (simp add: mem_set_multiset_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
847 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
848 |
from "1.hyps" have IH: "length xs' < length xs \<longrightarrow> |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
849 |
(\<forall>x. multiset_of xs' = multiset_of x \<longrightarrow> length xs' = length x)" by blast |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
850 |
from "1.prems" x_in_ys Cons xCons have "multiset_of xs' = multiset_of (remove1 x (y#ys'))" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
851 |
apply - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
852 |
apply (simp add: multiset_of_remove1, simp only: add_eq_conv_diff) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
853 |
apply fastsimp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
854 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
855 |
with IH xCons have IH': "length xs' = length (remove1 x (y#ys'))" by fastsimp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
856 |
from x_in_ys have "x \<noteq> y \<Longrightarrow> length ys' > 0" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
857 |
with Cons xCons x_in_ys IH' show ?thesis by (auto simp add: length_remove1) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
858 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
859 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
860 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
861 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
862 |
text {* |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
863 |
This lemma shows which properties suffice to show that a function |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
864 |
@{text "f"} with @{text "f xs = ys"} behaves like sort. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
865 |
*} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
866 |
lemma properties_for_sort: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
867 |
"multiset_of ys = multiset_of xs \<Longrightarrow> sorted ys \<Longrightarrow> sort xs = ys" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
868 |
proof (induct xs arbitrary: ys) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
869 |
case Nil then show ?case by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
870 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
871 |
case (Cons x xs) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
872 |
then have "x \<in> set ys" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
873 |
by (auto simp add: mem_set_multiset_eq intro!: ccontr) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
874 |
with Cons.prems Cons.hyps [of "remove1 x ys"] show ?case |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
875 |
by (simp add: sorted_remove1 multiset_of_remove1 insort_remove1) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
876 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
877 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
878 |
lemma multiset_of_remdups_le: "multiset_of (remdups xs) \<le># multiset_of xs" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
879 |
apply (induct xs) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
880 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
881 |
apply (rule mset_le_trans) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
882 |
apply auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
883 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
884 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
885 |
lemma multiset_of_update: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
886 |
"i < length ls \<Longrightarrow> multiset_of (ls[i := v]) = multiset_of ls - {#ls ! i#} + {#v#}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
887 |
proof (induct ls arbitrary: i) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
888 |
case Nil then show ?case by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
889 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
890 |
case (Cons x xs) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
891 |
show ?case |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
892 |
proof (cases i) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
893 |
case 0 then show ?thesis by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
894 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
895 |
case (Suc i') |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
896 |
with Cons show ?thesis |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
897 |
apply simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
898 |
apply (subst add_assoc) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
899 |
apply (subst add_commute [of "{#v#}" "{#x#}"]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
900 |
apply (subst add_assoc [symmetric]) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
901 |
apply simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
902 |
apply (rule mset_le_multiset_union_diff_commute) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
903 |
apply (simp add: mset_le_single nth_mem_multiset_of) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
904 |
done |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
905 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
906 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
907 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
908 |
lemma multiset_of_swap: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
909 |
"i < length ls \<Longrightarrow> j < length ls \<Longrightarrow> |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
910 |
multiset_of (ls[j := ls ! i, i := ls ! j]) = multiset_of ls" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
911 |
by (cases "i = j") (simp_all add: multiset_of_update nth_mem_multiset_of) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
912 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
913 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
914 |
subsubsection {* Association lists -- including rudimentary code generation *} |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
915 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
916 |
definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
917 |
"count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
918 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
919 |
lemma count_of_multiset: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
920 |
"count_of xs \<in> multiset" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
921 |
proof - |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
922 |
let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0\<Colon>nat | Some (n\<Colon>nat) \<Rightarrow> n)}" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
923 |
have "?A \<subseteq> dom (map_of xs)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
924 |
proof |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
925 |
fix x |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
926 |
assume "x \<in> ?A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
927 |
then have "0 < (case map_of xs x of None \<Rightarrow> 0\<Colon>nat | Some (n\<Colon>nat) \<Rightarrow> n)" by simp |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
928 |
then have "map_of xs x \<noteq> None" by (cases "map_of xs x") auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
929 |
then show "x \<in> dom (map_of xs)" by auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
930 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
931 |
with finite_dom_map_of [of xs] have "finite ?A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
932 |
by (auto intro: finite_subset) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
933 |
then show ?thesis |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
934 |
by (simp add: count_of_def expand_fun_eq multiset_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
935 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
936 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
937 |
lemma count_simps [simp]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
938 |
"count_of [] = (\<lambda>_. 0)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
939 |
"count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
940 |
by (simp_all add: count_of_def expand_fun_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
941 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
942 |
lemma count_of_empty: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
943 |
"x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
944 |
by (induct xs) (simp_all add: count_of_def) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
945 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
946 |
lemma count_of_filter: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
947 |
"count_of (filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
948 |
by (induct xs) auto |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
949 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
950 |
definition Bag :: "('a \<times> nat) list \<Rightarrow> 'a multiset" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
951 |
"Bag xs = Abs_multiset (count_of xs)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
952 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
953 |
code_datatype Bag |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
954 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
955 |
lemma count_Bag [simp, code]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
956 |
"count (Bag xs) = count_of xs" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
957 |
by (simp add: Bag_def count_of_multiset Abs_multiset_inverse) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
958 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
959 |
lemma Mempty_Bag [code]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
960 |
"{#} = Bag []" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
961 |
by (simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
962 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
963 |
lemma single_Bag [code]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
964 |
"{#x#} = Bag [(x, 1)]" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
965 |
by (simp add: multiset_eq_conv_count_eq) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
966 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
967 |
lemma MCollect_Bag [code]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
968 |
"MCollect (Bag xs) P = Bag (filter (P \<circ> fst) xs)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
969 |
by (simp add: multiset_eq_conv_count_eq count_of_filter) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
970 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
971 |
lemma mset_less_eq_Bag [code]: |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
972 |
"Bag xs \<subseteq># A \<longleftrightarrow> (\<forall>(x, n) \<in> set xs. count_of xs x \<le> count A x)" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
973 |
(is "?lhs \<longleftrightarrow> ?rhs") |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
974 |
proof |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
975 |
assume ?lhs then show ?rhs |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
976 |
by (auto simp add: mset_le_def count_Bag) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
977 |
next |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
978 |
assume ?rhs |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
979 |
show ?lhs |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
980 |
proof (rule mset_less_eqI) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
981 |
fix x |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
982 |
from `?rhs` have "count_of xs x \<le> count A x" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
983 |
by (cases "x \<in> fst ` set xs") (auto simp add: count_of_empty) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
984 |
then show "count (Bag xs) x \<le> count A x" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
985 |
by (simp add: mset_le_def count_Bag) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
986 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
987 |
qed |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
988 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
989 |
instantiation multiset :: (eq) eq |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
990 |
begin |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
991 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
992 |
definition |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
993 |
"HOL.eq A B \<longleftrightarrow> A \<subseteq># B \<and> B \<subseteq># A" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
994 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
995 |
instance proof |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
996 |
qed (simp add: eq_multiset_def mset_order.eq_iff) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
997 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
998 |
end |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
999 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1000 |
definition (in term_syntax) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1001 |
bagify :: "('a\<Colon>typerep \<times> nat) list \<times> (unit \<Rightarrow> Code_Evaluation.term) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1002 |
\<Rightarrow> 'a multiset \<times> (unit \<Rightarrow> Code_Evaluation.term)" where |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1003 |
[code_unfold]: "bagify xs = Code_Evaluation.valtermify Bag {\<cdot>} xs" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1004 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1005 |
notation fcomp (infixl "o>" 60) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1006 |
notation scomp (infixl "o\<rightarrow>" 60) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1007 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1008 |
instantiation multiset :: (random) random |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1009 |
begin |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1010 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1011 |
definition |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1012 |
"Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>xs. Pair (bagify xs))" |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1013 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1014 |
instance .. |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1015 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1016 |
end |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1017 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1018 |
no_notation fcomp (infixl "o>" 60) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1019 |
no_notation scomp (infixl "o\<rightarrow>" 60) |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1020 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1021 |
hide (open) const bagify |
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1022 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1023 |
|
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1024 |
subsection {* The multiset order *} |
10249 | 1025 |
|
1026 |
subsubsection {* Well-foundedness *} |
|
1027 |
||
28708
a1a436f09ec6
explicit check for pattern discipline before code translation
haftmann
parents:
28562
diff
changeset
|
1028 |
definition mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where |
a1a436f09ec6
explicit check for pattern discipline before code translation
haftmann
parents:
28562
diff
changeset
|
1029 |
[code del]: "mult1 r = {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> |
23751 | 1030 |
(\<forall>b. b :# K --> (b, a) \<in> r)}" |
10249 | 1031 |
|
28708
a1a436f09ec6
explicit check for pattern discipline before code translation
haftmann
parents:
28562
diff
changeset
|
1032 |
definition mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where |
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1033 |
[code del]: "mult r = (mult1 r)\<^sup>+" |
10249 | 1034 |
|
23751 | 1035 |
lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r" |
26178 | 1036 |
by (simp add: mult1_def) |
10249 | 1037 |
|
23751 | 1038 |
lemma less_add: "(N, M0 + {#a#}) \<in> mult1 r ==> |
1039 |
(\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or> |
|
1040 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K)" |
|
19582 | 1041 |
(is "_ \<Longrightarrow> ?case1 (mult1 r) \<or> ?case2") |
10249 | 1042 |
proof (unfold mult1_def) |
23751 | 1043 |
let ?r = "\<lambda>K a. \<forall>b. b :# K --> (b, a) \<in> r" |
11464 | 1044 |
let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a" |
23751 | 1045 |
let ?case1 = "?case1 {(N, M). ?R N M}" |
10249 | 1046 |
|
23751 | 1047 |
assume "(N, M0 + {#a#}) \<in> {(N, M). ?R N M}" |
18258 | 1048 |
then have "\<exists>a' M0' K. |
11464 | 1049 |
M0 + {#a#} = M0' + {#a'#} \<and> N = M0' + K \<and> ?r K a'" by simp |
18258 | 1050 |
then show "?case1 \<or> ?case2" |
10249 | 1051 |
proof (elim exE conjE) |
1052 |
fix a' M0' K |
|
1053 |
assume N: "N = M0' + K" and r: "?r K a'" |
|
1054 |
assume "M0 + {#a#} = M0' + {#a'#}" |
|
18258 | 1055 |
then have "M0 = M0' \<and> a = a' \<or> |
11464 | 1056 |
(\<exists>K'. M0 = K' + {#a'#} \<and> M0' = K' + {#a#})" |
10249 | 1057 |
by (simp only: add_eq_conv_ex) |
18258 | 1058 |
then show ?thesis |
10249 | 1059 |
proof (elim disjE conjE exE) |
1060 |
assume "M0 = M0'" "a = a'" |
|
11464 | 1061 |
with N r have "?r K a \<and> N = M0 + K" by simp |
18258 | 1062 |
then have ?case2 .. then show ?thesis .. |
10249 | 1063 |
next |
1064 |
fix K' |
|
1065 |
assume "M0' = K' + {#a#}" |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1066 |
with N have n: "N = K' + K + {#a#}" by (simp add: add_ac) |
10249 | 1067 |
|
1068 |
assume "M0 = K' + {#a'#}" |
|
1069 |
with r have "?R (K' + K) M0" by blast |
|
18258 | 1070 |
with n have ?case1 by simp then show ?thesis .. |
10249 | 1071 |
qed |
1072 |
qed |
|
1073 |
qed |
|
1074 |
||
23751 | 1075 |
lemma all_accessible: "wf r ==> \<forall>M. M \<in> acc (mult1 r)" |
10249 | 1076 |
proof |
1077 |
let ?R = "mult1 r" |
|
1078 |
let ?W = "acc ?R" |
|
1079 |
{ |
|
1080 |
fix M M0 a |
|
23751 | 1081 |
assume M0: "M0 \<in> ?W" |
1082 |
and wf_hyp: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)" |
|
1083 |
and acc_hyp: "\<forall>M. (M, M0) \<in> ?R --> M + {#a#} \<in> ?W" |
|
1084 |
have "M0 + {#a#} \<in> ?W" |
|
1085 |
proof (rule accI [of "M0 + {#a#}"]) |
|
10249 | 1086 |
fix N |
23751 | 1087 |
assume "(N, M0 + {#a#}) \<in> ?R" |
1088 |
then have "((\<exists>M. (M, M0) \<in> ?R \<and> N = M + {#a#}) \<or> |
|
1089 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K))" |
|
10249 | 1090 |
by (rule less_add) |
23751 | 1091 |
then show "N \<in> ?W" |
10249 | 1092 |
proof (elim exE disjE conjE) |
23751 | 1093 |
fix M assume "(M, M0) \<in> ?R" and N: "N = M + {#a#}" |
1094 |
from acc_hyp have "(M, M0) \<in> ?R --> M + {#a#} \<in> ?W" .. |
|
1095 |
from this and `(M, M0) \<in> ?R` have "M + {#a#} \<in> ?W" .. |
|
1096 |
then show "N \<in> ?W" by (simp only: N) |
|
10249 | 1097 |
next |
1098 |
fix K |
|
1099 |
assume N: "N = M0 + K" |
|
23751 | 1100 |
assume "\<forall>b. b :# K --> (b, a) \<in> r" |
1101 |
then have "M0 + K \<in> ?W" |
|
10249 | 1102 |
proof (induct K) |
18730 | 1103 |
case empty |
23751 | 1104 |
from M0 show "M0 + {#} \<in> ?W" by simp |
18730 | 1105 |
next |
1106 |
case (add K x) |
|
23751 | 1107 |
from add.prems have "(x, a) \<in> r" by simp |
1108 |
with wf_hyp have "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast |
|
1109 |
moreover from add have "M0 + K \<in> ?W" by simp |
|
1110 |
ultimately have "(M0 + K) + {#x#} \<in> ?W" .. |
|
34943
e97b22500a5c
cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents:
33102
diff
changeset
|
1111 |
then show "M0 + (K + {#x#}) \<in> ?W" by (simp only: add_assoc) |
10249 | 1112 |
qed |
23751 | 1113 |
then show "N \<in> ?W" by (simp only: N) |
10249 | 1114 |
qed |
1115 |
qed |
|
1116 |
} note tedious_reasoning = this |
|
1117 |
||
23751 | 1118 |
assume wf: "wf r" |
10249 | 1119 |
fix M |
23751 | 1120 |
show "M \<in> ?W" |
10249 | 1121 |
proof (induct M) |
23751 | 1122 |
show "{#} \<in> ?W" |
10249 | 1123 |
proof (rule accI) |
23751 | 1124 |
fix b assume "(b, {#}) \<in> ?R" |
1125 |
with not_less_empty show "b \<in> ?W" by contradiction |
|
10249 | 1126 |
qed |
1127 |
||
23751 | 1128 |
fix M a assume "M \<in> ?W" |
1129 |
from wf have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W" |
|
10249 | 1130 |
proof induct |
1131 |
fix a |
|
23751 | 1132 |
assume r: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)" |
1133 |
show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W" |
|
10249 | 1134 |
proof |
23751 | 1135 |
fix M assume "M \<in> ?W" |
1136 |
then show "M + {#a#} \<in> ?W" |
|