| author | wenzelm | 
| Wed, 17 Oct 2018 21:36:57 +0200 | |
| changeset 69149 | 8c501c406d24 | 
| parent 69064 | 5840724b1d71 | 
| child 69182 | 2424301cc73d | 
| permissions | -rw-r--r-- | 
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 1 | (* Title: HOL/Set_Interval.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 2 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 3 | Author: Clemens Ballarin | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 4 | Author: Jeremy Avigad | 
| 8924 | 5 | |
| 13735 | 6 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 51334 | 7 | |
| 8 | Modern convention: Ixy stands for an interval where x and y | |
| 9 | describe the lower and upper bound and x,y : {c,o,i}
 | |
| 10 | where c = closed, o = open, i = infinite. | |
| 11 | Examples: Ico = {_ ..< _} and Ici = {_ ..}
 | |
| 8924 | 12 | *) | 
| 13 | ||
| 60758 | 14 | section \<open>Set intervals\<close> | 
| 14577 | 15 | |
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 16 | theory Set_Interval | 
| 66836 | 17 | imports Divides | 
| 15131 | 18 | begin | 
| 8924 | 19 | |
| 24691 | 20 | context ord | 
| 21 | begin | |
| 44008 | 22 | |
| 24691 | 23 | definition | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 24 |   lessThan    :: "'a => 'a set" ("(1{..<_})") where
 | 
| 25062 | 25 |   "{..<u} == {x. x < u}"
 | 
| 24691 | 26 | |
| 27 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 28 |   atMost      :: "'a => 'a set" ("(1{.._})") where
 | 
| 25062 | 29 |   "{..u} == {x. x \<le> u}"
 | 
| 24691 | 30 | |
| 31 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 32 |   greaterThan :: "'a => 'a set" ("(1{_<..})") where
 | 
| 25062 | 33 |   "{l<..} == {x. l<x}"
 | 
| 24691 | 34 | |
| 35 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 36 |   atLeast     :: "'a => 'a set" ("(1{_..})") where
 | 
| 25062 | 37 |   "{l..} == {x. l\<le>x}"
 | 
| 24691 | 38 | |
| 39 | definition | |
| 25062 | 40 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 41 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 42 | |
| 43 | definition | |
| 25062 | 44 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 45 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 46 | |
| 47 | definition | |
| 25062 | 48 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 49 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 50 | |
| 51 | definition | |
| 25062 | 52 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 53 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 54 | |
| 55 | end | |
| 8924 | 56 | |
| 13735 | 57 | |
| 60758 | 58 | text\<open>A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 15048 | 59 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | 
| 60758 | 60 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well.\<close>
 | 
| 15048 | 61 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 62 | syntax (ASCII) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 63 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 64 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 65 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 66 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 67 | |
| 30372 | 68 | syntax (latex output) | 
| 62789 | 69 |   "_UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 70 |   "_UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
 | |
| 71 |   "_INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
 | |
| 72 |   "_INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
 | |
| 14418 | 73 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 74 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 75 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 76 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_<_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 77 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 78 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_<_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 79 | |
| 14418 | 80 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 81 |   "\<Union>i\<le>n. A" \<rightleftharpoons> "\<Union>i\<in>{..n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 82 |   "\<Union>i<n. A" \<rightleftharpoons> "\<Union>i\<in>{..<n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 83 |   "\<Inter>i\<le>n. A" \<rightleftharpoons> "\<Inter>i\<in>{..n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 84 |   "\<Inter>i<n. A" \<rightleftharpoons> "\<Inter>i\<in>{..<n}. A"
 | 
| 14418 | 85 | |
| 86 | ||
| 60758 | 87 | subsection \<open>Various equivalences\<close> | 
| 13735 | 88 | |
| 67613 | 89 | lemma (in ord) lessThan_iff [iff]: "(i \<in> lessThan k) = (i<k)" | 
| 13850 | 90 | by (simp add: lessThan_def) | 
| 13735 | 91 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 92 | lemma Compl_lessThan [simp]: | 
| 13735 | 93 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 94 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 95 | |
| 13850 | 96 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 97 | by auto | 
| 13735 | 98 | |
| 67613 | 99 | lemma (in ord) greaterThan_iff [iff]: "(i \<in> greaterThan k) = (k<i)" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 100 | by (simp add: greaterThan_def) | 
| 13735 | 101 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 102 | lemma Compl_greaterThan [simp]: | 
| 13735 | 103 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 104 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 105 | |
| 13850 | 106 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 107 | apply (subst Compl_greaterThan [symmetric]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 108 | apply (rule double_complement) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 109 | done | 
| 13735 | 110 | |
| 67613 | 111 | lemma (in ord) atLeast_iff [iff]: "(i \<in> atLeast k) = (k<=i)" | 
| 13850 | 112 | by (simp add: atLeast_def) | 
| 13735 | 113 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 114 | lemma Compl_atLeast [simp]: "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 115 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 116 | |
| 67613 | 117 | lemma (in ord) atMost_iff [iff]: "(i \<in> atMost k) = (i<=k)" | 
| 13850 | 118 | by (simp add: atMost_def) | 
| 13735 | 119 | |
| 14485 | 120 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 121 | by (blast intro: order_antisym) | |
| 13850 | 122 | |
| 50999 | 123 | lemma (in linorder) lessThan_Int_lessThan: "{ a <..} \<inter> { b <..} = { max a b <..}"
 | 
| 124 | by auto | |
| 125 | ||
| 126 | lemma (in linorder) greaterThan_Int_greaterThan: "{..< a} \<inter> {..< b} = {..< min a b}"
 | |
| 127 | by auto | |
| 13850 | 128 | |
| 60758 | 129 | subsection \<open>Logical Equivalences for Set Inclusion and Equality\<close> | 
| 13850 | 130 | |
| 63879 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 131 | lemma atLeast_empty_triv [simp]: "{{}..} = UNIV"
 | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 132 | by auto | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 133 | |
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 134 | lemma atMost_UNIV_triv [simp]: "{..UNIV} = UNIV"
 | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 135 | by auto | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 136 | |
| 13850 | 137 | lemma atLeast_subset_iff [iff]: | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 139 | by (blast intro: order_trans) | 
| 13850 | 140 | |
| 141 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 142 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 143 | by (blast intro: order_antisym order_trans) | 
| 144 | ||
| 145 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 146 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 147 | unfolding greaterThan_def by (auto simp: linorder_not_less [symmetric]) | 
| 13850 | 148 | |
| 149 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 151 | by (auto simp: elim!: equalityE) | 
| 13850 | 152 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 153 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 154 | by (blast intro: order_trans) | 
| 13850 | 155 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 156 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 157 | by (blast intro: order_antisym order_trans) | 
| 13850 | 158 | |
| 159 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 160 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 161 | unfolding lessThan_def by (auto simp: linorder_not_less [symmetric]) | 
| 13850 | 162 | |
| 163 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 164 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 165 | by (auto simp: elim!: equalityE) | 
| 13735 | 166 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 167 | lemma lessThan_strict_subset_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 168 | fixes m n :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 169 |   shows "{..<m} < {..<n} \<longleftrightarrow> m < n"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 170 | by (metis leD lessThan_subset_iff linorder_linear not_less_iff_gr_or_eq psubset_eq) | 
| 13735 | 171 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 172 | lemma (in linorder) Ici_subset_Ioi_iff: "{a ..} \<subseteq> {b <..} \<longleftrightarrow> b < a"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 173 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 174 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 175 | lemma (in linorder) Iic_subset_Iio_iff: "{.. a} \<subseteq> {..< b} \<longleftrightarrow> a < b"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 176 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 177 | |
| 62369 | 178 | lemma (in preorder) Ioi_le_Ico: "{a <..} \<subseteq> {a ..}"
 | 
| 179 | by (auto intro: less_imp_le) | |
| 180 | ||
| 60758 | 181 | subsection \<open>Two-sided intervals\<close> | 
| 13735 | 182 | |
| 24691 | 183 | context ord | 
| 184 | begin | |
| 185 | ||
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 186 | lemma greaterThanLessThan_iff [simp]: "(i \<in> {l<..<u}) = (l < i \<and> i < u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 187 | by (simp add: greaterThanLessThan_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 188 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 189 | lemma atLeastLessThan_iff [simp]: "(i \<in> {l..<u}) = (l \<le> i \<and> i < u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 190 | by (simp add: atLeastLessThan_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 191 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 192 | lemma greaterThanAtMost_iff [simp]: "(i \<in> {l<..u}) = (l < i \<and> i \<le> u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 193 | by (simp add: greaterThanAtMost_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 194 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 195 | lemma atLeastAtMost_iff [simp]: "(i \<in> {l..u}) = (l \<le> i \<and> i \<le> u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 196 | by (simp add: atLeastAtMost_def) | 
| 13735 | 197 | |
| 60758 | 198 | text \<open>The above four lemmas could be declared as iffs. Unfortunately this | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 199 | breaks many proofs. Since it only helps blast, it is better to leave them | 
| 60758 | 200 | alone.\<close> | 
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 201 | |
| 50999 | 202 | lemma greaterThanLessThan_eq: "{ a <..< b} = { a <..} \<inter> {..< b }"
 | 
| 203 | by auto | |
| 204 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 205 | lemma (in order) atLeastLessThan_eq_atLeastAtMost_diff: | 
| 66936 | 206 |   "{a..<b} = {a..b} - {b}"
 | 
| 207 | by (auto simp add: atLeastLessThan_def atLeastAtMost_def) | |
| 208 | ||
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 209 | lemma (in order) greaterThanAtMost_eq_atLeastAtMost_diff: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 210 |   "{a<..b} = {a..b} - {a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 211 | by (auto simp add: greaterThanAtMost_def atLeastAtMost_def) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 212 | |
| 24691 | 213 | end | 
| 13735 | 214 | |
| 60758 | 215 | subsubsection\<open>Emptyness, singletons, subset\<close> | 
| 15554 | 216 | |
| 24691 | 217 | context order | 
| 218 | begin | |
| 15554 | 219 | |
| 32400 | 220 | lemma atLeastatMost_empty[simp]: | 
| 221 |   "b < a \<Longrightarrow> {a..b} = {}"
 | |
| 222 | by(auto simp: atLeastAtMost_def atLeast_def atMost_def) | |
| 223 | ||
| 224 | lemma atLeastatMost_empty_iff[simp]: | |
| 67091 | 225 |   "{a..b} = {} \<longleftrightarrow> (\<not> a \<le> b)"
 | 
| 32400 | 226 | by auto (blast intro: order_trans) | 
| 227 | ||
| 228 | lemma atLeastatMost_empty_iff2[simp]: | |
| 67091 | 229 |   "{} = {a..b} \<longleftrightarrow> (\<not> a \<le> b)"
 | 
| 32400 | 230 | by auto (blast intro: order_trans) | 
| 231 | ||
| 232 | lemma atLeastLessThan_empty[simp]: | |
| 233 |   "b <= a \<Longrightarrow> {a..<b} = {}"
 | |
| 234 | by(auto simp: atLeastLessThan_def) | |
| 24691 | 235 | |
| 32400 | 236 | lemma atLeastLessThan_empty_iff[simp]: | 
| 67091 | 237 |   "{a..<b} = {} \<longleftrightarrow> (\<not> a < b)"
 | 
| 32400 | 238 | by auto (blast intro: le_less_trans) | 
| 239 | ||
| 240 | lemma atLeastLessThan_empty_iff2[simp]: | |
| 67091 | 241 |   "{} = {a..<b} \<longleftrightarrow> (\<not> a < b)"
 | 
| 32400 | 242 | by auto (blast intro: le_less_trans) | 
| 15554 | 243 | |
| 32400 | 244 | lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 245 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 246 | ||
| 67091 | 247 | lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> \<not> k < l"
 | 
| 32400 | 248 | by auto (blast intro: less_le_trans) | 
| 249 | ||
| 67091 | 250 | lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> \<not> k < l"
 | 
| 32400 | 251 | by auto (blast intro: less_le_trans) | 
| 252 | ||
| 29709 | 253 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 17719 | 254 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 255 | ||
| 25062 | 256 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 257 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 258 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 259 | lemma atLeastAtMost_singleton': "a = b \<Longrightarrow> {a .. b} = {a}" by simp
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 260 | |
| 32400 | 261 | lemma atLeastatMost_subset_iff[simp]: | 
| 67091 | 262 |   "{a..b} \<le> {c..d} \<longleftrightarrow> (\<not> a \<le> b) \<or> c \<le> a \<and> b \<le> d"
 | 
| 32400 | 263 | unfolding atLeastAtMost_def atLeast_def atMost_def | 
| 264 | by (blast intro: order_trans) | |
| 265 | ||
| 266 | lemma atLeastatMost_psubset_iff: | |
| 267 |   "{a..b} < {c..d} \<longleftrightarrow>
 | |
| 67091 | 268 | ((\<not> a \<le> b) \<or> c \<le> a \<and> b \<le> d \<and> (c < a \<or> b < d)) \<and> c \<le> d" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 269 | by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans) | 
| 32400 | 270 | |
| 51334 | 271 | lemma Icc_eq_Icc[simp]: | 
| 272 |   "{l..h} = {l'..h'} = (l=l' \<and> h=h' \<or> \<not> l\<le>h \<and> \<not> l'\<le>h')"
 | |
| 273 | by(simp add: order_class.eq_iff)(auto intro: order_trans) | |
| 274 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 275 | lemma atLeastAtMost_singleton_iff[simp]: | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 276 |   "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 277 | proof | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 278 |   assume "{a..b} = {c}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 279 | hence *: "\<not> (\<not> a \<le> b)" unfolding atLeastatMost_empty_iff[symmetric] by simp | 
| 60758 | 280 |   with \<open>{a..b} = {c}\<close> have "c \<le> a \<and> b \<le> c" by auto
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 281 | with * show "a = b \<and> b = c" by auto | 
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 282 | qed simp | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 283 | |
| 51334 | 284 | lemma Icc_subset_Ici_iff[simp]: | 
| 67091 | 285 |   "{l..h} \<subseteq> {l'..} = (\<not> l\<le>h \<or> l\<ge>l')"
 | 
| 51334 | 286 | by(auto simp: subset_eq intro: order_trans) | 
| 287 | ||
| 288 | lemma Icc_subset_Iic_iff[simp]: | |
| 67091 | 289 |   "{l..h} \<subseteq> {..h'} = (\<not> l\<le>h \<or> h\<le>h')"
 | 
| 51334 | 290 | by(auto simp: subset_eq intro: order_trans) | 
| 291 | ||
| 292 | lemma not_Ici_eq_empty[simp]: "{l..} \<noteq> {}"
 | |
| 293 | by(auto simp: set_eq_iff) | |
| 294 | ||
| 295 | lemma not_Iic_eq_empty[simp]: "{..h} \<noteq> {}"
 | |
| 296 | by(auto simp: set_eq_iff) | |
| 297 | ||
| 298 | lemmas not_empty_eq_Ici_eq_empty[simp] = not_Ici_eq_empty[symmetric] | |
| 299 | lemmas not_empty_eq_Iic_eq_empty[simp] = not_Iic_eq_empty[symmetric] | |
| 300 | ||
| 24691 | 301 | end | 
| 14485 | 302 | |
| 51334 | 303 | context no_top | 
| 304 | begin | |
| 305 | ||
| 306 | (* also holds for no_bot but no_top should suffice *) | |
| 307 | lemma not_UNIV_le_Icc[simp]: "\<not> UNIV \<subseteq> {l..h}"
 | |
| 308 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 309 | ||
| 310 | lemma not_UNIV_le_Iic[simp]: "\<not> UNIV \<subseteq> {..h}"
 | |
| 311 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 312 | ||
| 313 | lemma not_Ici_le_Icc[simp]: "\<not> {l..} \<subseteq> {l'..h'}"
 | |
| 314 | using gt_ex[of h'] | |
| 315 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 316 | ||
| 317 | lemma not_Ici_le_Iic[simp]: "\<not> {l..} \<subseteq> {..h'}"
 | |
| 318 | using gt_ex[of h'] | |
| 319 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 320 | ||
| 321 | end | |
| 322 | ||
| 323 | context no_bot | |
| 324 | begin | |
| 325 | ||
| 326 | lemma not_UNIV_le_Ici[simp]: "\<not> UNIV \<subseteq> {l..}"
 | |
| 327 | using lt_ex[of l] by(auto simp: subset_eq less_le_not_le) | |
| 328 | ||
| 329 | lemma not_Iic_le_Icc[simp]: "\<not> {..h} \<subseteq> {l'..h'}"
 | |
| 330 | using lt_ex[of l'] | |
| 331 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 332 | ||
| 333 | lemma not_Iic_le_Ici[simp]: "\<not> {..h} \<subseteq> {l'..}"
 | |
| 334 | using lt_ex[of l'] | |
| 335 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 336 | ||
| 337 | end | |
| 338 | ||
| 339 | ||
| 340 | context no_top | |
| 341 | begin | |
| 342 | ||
| 343 | (* also holds for no_bot but no_top should suffice *) | |
| 344 | lemma not_UNIV_eq_Icc[simp]: "\<not> UNIV = {l'..h'}"
 | |
| 345 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 346 | ||
| 347 | lemmas not_Icc_eq_UNIV[simp] = not_UNIV_eq_Icc[symmetric] | |
| 348 | ||
| 349 | lemma not_UNIV_eq_Iic[simp]: "\<not> UNIV = {..h'}"
 | |
| 350 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 351 | ||
| 352 | lemmas not_Iic_eq_UNIV[simp] = not_UNIV_eq_Iic[symmetric] | |
| 353 | ||
| 354 | lemma not_Icc_eq_Ici[simp]: "\<not> {l..h} = {l'..}"
 | |
| 355 | unfolding atLeastAtMost_def using not_Ici_le_Iic[of l'] by blast | |
| 356 | ||
| 357 | lemmas not_Ici_eq_Icc[simp] = not_Icc_eq_Ici[symmetric] | |
| 358 | ||
| 359 | (* also holds for no_bot but no_top should suffice *) | |
| 360 | lemma not_Iic_eq_Ici[simp]: "\<not> {..h} = {l'..}"
 | |
| 361 | using not_Ici_le_Iic[of l' h] by blast | |
| 362 | ||
| 363 | lemmas not_Ici_eq_Iic[simp] = not_Iic_eq_Ici[symmetric] | |
| 364 | ||
| 365 | end | |
| 366 | ||
| 367 | context no_bot | |
| 368 | begin | |
| 369 | ||
| 370 | lemma not_UNIV_eq_Ici[simp]: "\<not> UNIV = {l'..}"
 | |
| 371 | using lt_ex[of l'] by(auto simp: set_eq_iff less_le_not_le) | |
| 372 | ||
| 373 | lemmas not_Ici_eq_UNIV[simp] = not_UNIV_eq_Ici[symmetric] | |
| 374 | ||
| 375 | lemma not_Icc_eq_Iic[simp]: "\<not> {l..h} = {..h'}"
 | |
| 376 | unfolding atLeastAtMost_def using not_Iic_le_Ici[of h'] by blast | |
| 377 | ||
| 378 | lemmas not_Iic_eq_Icc[simp] = not_Icc_eq_Iic[symmetric] | |
| 379 | ||
| 380 | end | |
| 381 | ||
| 382 | ||
| 53216 | 383 | context dense_linorder | 
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 384 | begin | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 385 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 386 | lemma greaterThanLessThan_empty_iff[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 387 |   "{ a <..< b } = {} \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 388 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 389 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 390 | lemma greaterThanLessThan_empty_iff2[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 391 |   "{} = { a <..< b } \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 392 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 393 | |
| 42901 | 394 | lemma atLeastLessThan_subseteq_atLeastAtMost_iff: | 
| 395 |   "{a ..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 396 | using dense[of "max a d" "b"] | |
| 397 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 398 | ||
| 399 | lemma greaterThanAtMost_subseteq_atLeastAtMost_iff: | |
| 400 |   "{a <.. b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 401 | using dense[of "a" "min c b"] | |
| 402 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 403 | ||
| 404 | lemma greaterThanLessThan_subseteq_atLeastAtMost_iff: | |
| 405 |   "{a <..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 406 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 407 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 408 | ||
| 43657 | 409 | lemma atLeastAtMost_subseteq_atLeastLessThan_iff: | 
| 410 |   "{a .. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a \<le> b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 411 | using dense[of "max a d" "b"] | |
| 412 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 62369 | 413 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 414 | lemma greaterThanLessThan_subseteq_greaterThanLessThan: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 415 |   "{a <..< b} \<subseteq> {c <..< d} \<longleftrightarrow> (a < b \<longrightarrow> a \<ge> c \<and> b \<le> d)"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 416 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 417 | by (force simp: subset_eq Ball_def not_less[symmetric]) | 
| 43657 | 418 | |
| 419 | lemma greaterThanAtMost_subseteq_atLeastLessThan_iff: | |
| 420 |   "{a <.. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 421 | using dense[of "a" "min c b"] | |
| 422 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 423 | ||
| 424 | lemma greaterThanLessThan_subseteq_atLeastLessThan_iff: | |
| 425 |   "{a <..< b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 426 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 427 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 428 | ||
| 56328 | 429 | lemma greaterThanLessThan_subseteq_greaterThanAtMost_iff: | 
| 430 |   "{a <..< b} \<subseteq> { c <.. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 431 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 432 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 433 | ||
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 434 | end | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 435 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 436 | context no_top | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 437 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 438 | |
| 51334 | 439 | lemma greaterThan_non_empty[simp]: "{x <..} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 440 | using gt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 441 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 442 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 443 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 444 | context no_bot | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 445 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 446 | |
| 51334 | 447 | lemma lessThan_non_empty[simp]: "{..< x} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 448 | using lt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 449 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 450 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 451 | |
| 32408 | 452 | lemma (in linorder) atLeastLessThan_subset_iff: | 
| 67091 | 453 |   "{a..<b} \<subseteq> {c..<d} \<Longrightarrow> b \<le> a \<or> c\<le>a \<and> b\<le>d"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 454 | apply (auto simp:subset_eq Ball_def not_le) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 455 | apply(frule_tac x=a in spec) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 456 | apply(erule_tac x=d in allE) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 457 | apply (auto simp: ) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 458 | done | 
| 32408 | 459 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 460 | lemma atLeastLessThan_inj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 461 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 462 |   assumes eq: "{a ..< b} = {c ..< d}" and "a < b" "c < d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 463 | shows "a = c" "b = d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 464 | using assms by (metis atLeastLessThan_subset_iff eq less_le_not_le linorder_antisym_conv2 subset_refl)+ | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 465 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 466 | lemma atLeastLessThan_eq_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 467 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 468 | assumes "a < b" "c < d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 469 |   shows "{a ..< b} = {c ..< d} \<longleftrightarrow> a = c \<and> b = d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 470 | using atLeastLessThan_inj assms by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 471 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 472 | lemma (in linorder) Ioc_inj: "{a <.. b} = {c <.. d} \<longleftrightarrow> (b \<le> a \<and> d \<le> c) \<or> a = c \<and> b = d"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 473 | by (metis eq_iff greaterThanAtMost_empty_iff2 greaterThanAtMost_iff le_cases not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 474 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 475 | lemma (in order) Iio_Int_singleton: "{..<k} \<inter> {x} = (if x < k then {x} else {})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 476 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 477 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 478 | lemma (in linorder) Ioc_subset_iff: "{a<..b} \<subseteq> {c<..d} \<longleftrightarrow> (b \<le> a \<or> c \<le> a \<and> b \<le> d)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 479 | by (auto simp: subset_eq Ball_def) (metis less_le not_less) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 480 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 481 | lemma (in order_bot) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 51334 | 482 | by (auto simp: set_eq_iff intro: le_bot) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 483 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 484 | lemma (in order_top) atMost_eq_UNIV_iff: "{..x} = UNIV \<longleftrightarrow> x = top"
 | 
| 51334 | 485 | by (auto simp: set_eq_iff intro: top_le) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 486 | |
| 51334 | 487 | lemma (in bounded_lattice) atLeastAtMost_eq_UNIV_iff: | 
| 488 |   "{x..y} = UNIV \<longleftrightarrow> (x = bot \<and> y = top)"
 | |
| 489 | by (auto simp: set_eq_iff intro: top_le le_bot) | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 490 | |
| 56949 | 491 | lemma Iio_eq_empty_iff: "{..< n::'a::{linorder, order_bot}} = {} \<longleftrightarrow> n = bot"
 | 
| 492 | by (auto simp: set_eq_iff not_less le_bot) | |
| 493 | ||
| 68361 | 494 | lemma lessThan_empty_iff: "{..< n::nat} = {} \<longleftrightarrow> n = 0"
 | 
| 56949 | 495 | by (simp add: Iio_eq_empty_iff bot_nat_def) | 
| 496 | ||
| 58970 | 497 | lemma mono_image_least: | 
| 498 |   assumes f_mono: "mono f" and f_img: "f ` {m ..< n} = {m' ..< n'}" "m < n"
 | |
| 499 | shows "f m = m'" | |
| 500 | proof - | |
| 501 |   from f_img have "{m' ..< n'} \<noteq> {}"
 | |
| 502 | by (metis atLeastLessThan_empty_iff image_is_empty) | |
| 503 |   with f_img have "m' \<in> f ` {m ..< n}" by auto
 | |
| 504 | then obtain k where "f k = m'" "m \<le> k" by auto | |
| 505 | moreover have "m' \<le> f m" using f_img by auto | |
| 506 | ultimately show "f m = m'" | |
| 507 | using f_mono by (auto elim: monoE[where x=m and y=k]) | |
| 508 | qed | |
| 509 | ||
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 510 | |
| 60758 | 511 | subsection \<open>Infinite intervals\<close> | 
| 56328 | 512 | |
| 513 | context dense_linorder | |
| 514 | begin | |
| 515 | ||
| 516 | lemma infinite_Ioo: | |
| 517 | assumes "a < b" | |
| 518 |   shows "\<not> finite {a<..<b}"
 | |
| 519 | proof | |
| 520 |   assume fin: "finite {a<..<b}"
 | |
| 521 |   moreover have ne: "{a<..<b} \<noteq> {}"
 | |
| 60758 | 522 | using \<open>a < b\<close> by auto | 
| 56328 | 523 |   ultimately have "a < Max {a <..< b}" "Max {a <..< b} < b"
 | 
| 524 |     using Max_in[of "{a <..< b}"] by auto
 | |
| 525 |   then obtain x where "Max {a <..< b} < x" "x < b"
 | |
| 526 |     using dense[of "Max {a<..<b}" b] by auto
 | |
| 527 |   then have "x \<in> {a <..< b}"
 | |
| 60758 | 528 |     using \<open>a < Max {a <..< b}\<close> by auto
 | 
| 56328 | 529 |   then have "x \<le> Max {a <..< b}"
 | 
| 530 | using fin by auto | |
| 60758 | 531 |   with \<open>Max {a <..< b} < x\<close> show False by auto
 | 
| 56328 | 532 | qed | 
| 533 | ||
| 534 | lemma infinite_Icc: "a < b \<Longrightarrow> \<not> finite {a .. b}"
 | |
| 535 | using greaterThanLessThan_subseteq_atLeastAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 536 | by (auto dest: finite_subset) | |
| 537 | ||
| 538 | lemma infinite_Ico: "a < b \<Longrightarrow> \<not> finite {a ..< b}"
 | |
| 539 | using greaterThanLessThan_subseteq_atLeastLessThan_iff[of a b a b] infinite_Ioo[of a b] | |
| 540 | by (auto dest: finite_subset) | |
| 541 | ||
| 542 | lemma infinite_Ioc: "a < b \<Longrightarrow> \<not> finite {a <.. b}"
 | |
| 543 | using greaterThanLessThan_subseteq_greaterThanAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 544 | by (auto dest: finite_subset) | |
| 545 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 546 | lemma infinite_Ioo_iff [simp]: "infinite {a<..<b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 547 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ioo) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 548 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 549 | lemma infinite_Icc_iff [simp]: "infinite {a .. b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 550 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Icc) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 551 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 552 | lemma infinite_Ico_iff [simp]: "infinite {a..<b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 553 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ico) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 554 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 555 | lemma infinite_Ioc_iff [simp]: "infinite {a<..b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 556 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ioc) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 557 | |
| 56328 | 558 | end | 
| 559 | ||
| 560 | lemma infinite_Iio: "\<not> finite {..< a :: 'a :: {no_bot, linorder}}"
 | |
| 561 | proof | |
| 562 |   assume "finite {..< a}"
 | |
| 563 |   then have *: "\<And>x. x < a \<Longrightarrow> Min {..< a} \<le> x"
 | |
| 564 | by auto | |
| 565 | obtain x where "x < a" | |
| 566 | using lt_ex by auto | |
| 567 | ||
| 568 |   obtain y where "y < Min {..< a}"
 | |
| 569 | using lt_ex by auto | |
| 570 |   also have "Min {..< a} \<le> x"
 | |
| 60758 | 571 | using \<open>x < a\<close> by fact | 
| 572 | also note \<open>x < a\<close> | |
| 56328 | 573 |   finally have "Min {..< a} \<le> y"
 | 
| 574 | by fact | |
| 60758 | 575 |   with \<open>y < Min {..< a}\<close> show False by auto
 | 
| 56328 | 576 | qed | 
| 577 | ||
| 578 | lemma infinite_Iic: "\<not> finite {.. a :: 'a :: {no_bot, linorder}}"
 | |
| 579 |   using infinite_Iio[of a] finite_subset[of "{..< a}" "{.. a}"]
 | |
| 580 | by (auto simp: subset_eq less_imp_le) | |
| 581 | ||
| 582 | lemma infinite_Ioi: "\<not> finite {a :: 'a :: {no_top, linorder} <..}"
 | |
| 583 | proof | |
| 584 |   assume "finite {a <..}"
 | |
| 585 |   then have *: "\<And>x. a < x \<Longrightarrow> x \<le> Max {a <..}"
 | |
| 586 | by auto | |
| 587 | ||
| 588 |   obtain y where "Max {a <..} < y"
 | |
| 589 | using gt_ex by auto | |
| 590 | ||
| 63540 | 591 | obtain x where x: "a < x" | 
| 56328 | 592 | using gt_ex by auto | 
| 63540 | 593 |   also from x have "x \<le> Max {a <..}"
 | 
| 56328 | 594 | by fact | 
| 60758 | 595 |   also note \<open>Max {a <..} < y\<close>
 | 
| 56328 | 596 |   finally have "y \<le> Max { a <..}"
 | 
| 597 | by fact | |
| 60758 | 598 |   with \<open>Max {a <..} < y\<close> show False by auto
 | 
| 56328 | 599 | qed | 
| 600 | ||
| 601 | lemma infinite_Ici: "\<not> finite {a :: 'a :: {no_top, linorder} ..}"
 | |
| 602 |   using infinite_Ioi[of a] finite_subset[of "{a <..}" "{a ..}"]
 | |
| 603 | by (auto simp: subset_eq less_imp_le) | |
| 604 | ||
| 60758 | 605 | subsubsection \<open>Intersection\<close> | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 606 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 607 | context linorder | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 608 | begin | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 609 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 610 | lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 611 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 612 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 613 | lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 614 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 615 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 616 | lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 617 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 618 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 619 | lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 620 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 621 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 622 | lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 623 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 624 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 625 | lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 626 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 627 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 628 | lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 629 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 630 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 631 | lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 632 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 633 | |
| 50417 | 634 | lemma Int_atMost[simp]: "{..a} \<inter> {..b} = {.. min a b}"
 | 
| 635 | by (auto simp: min_def) | |
| 636 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 637 | lemma Ioc_disjoint: "{a<..b} \<inter> {c<..d} = {} \<longleftrightarrow> b \<le> a \<or> d \<le> c \<or> b \<le> c \<or> d \<le> a"
 | 
| 63092 | 638 | by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 639 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 640 | end | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 641 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 642 | context complete_lattice | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 643 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 644 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 645 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 646 |   shows Sup_atLeast[simp]: "Sup {x ..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 647 |     and Sup_greaterThanAtLeast[simp]: "x < top \<Longrightarrow> Sup {x <..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 648 |     and Sup_atMost[simp]: "Sup {.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 649 |     and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 650 |     and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 651 | by (auto intro!: Sup_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 652 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 653 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 654 |   shows Inf_atMost[simp]: "Inf {.. x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 655 |     and Inf_atMostLessThan[simp]: "top < x \<Longrightarrow> Inf {..< x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 656 |     and Inf_atLeast[simp]: "Inf {x ..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 657 |     and Inf_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Inf { x .. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 658 |     and Inf_atLeastLessThan[simp]: "x < y \<Longrightarrow> Inf { x ..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 659 | by (auto intro!: Inf_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 660 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 661 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 662 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 663 | lemma | 
| 53216 | 664 |   fixes x y :: "'a :: {complete_lattice, dense_linorder}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 665 |   shows Sup_lessThan[simp]: "Sup {..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 666 |     and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 667 |     and Sup_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Sup { x <..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 668 |     and Inf_greaterThan[simp]: "Inf {x <..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 669 |     and Inf_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Inf { x <.. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 670 |     and Inf_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Inf { x <..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 671 | by (auto intro!: Inf_eqI Sup_eqI intro: dense_le dense_le_bounded dense_ge dense_ge_bounded) | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 672 | |
| 60758 | 673 | subsection \<open>Intervals of natural numbers\<close> | 
| 14485 | 674 | |
| 60758 | 675 | subsubsection \<open>The Constant @{term lessThan}\<close>
 | 
| 15047 | 676 | |
| 14485 | 677 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 678 | by (simp add: lessThan_def) | |
| 679 | ||
| 680 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 681 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 682 | ||
| 60758 | 683 | text \<open>The following proof is convenient in induction proofs where | 
| 39072 | 684 | new elements get indices at the beginning. So it is used to transform | 
| 60758 | 685 | @{term "{..<Suc n}"} to @{term "0::nat"} and @{term "{..< n}"}.\<close>
 | 
| 39072 | 686 | |
| 59000 | 687 | lemma zero_notin_Suc_image: "0 \<notin> Suc ` A" | 
| 688 | by auto | |
| 689 | ||
| 39072 | 690 | lemma lessThan_Suc_eq_insert_0: "{..<Suc n} = insert 0 (Suc ` {..<n})"
 | 
| 59000 | 691 | by (auto simp: image_iff less_Suc_eq_0_disj) | 
| 39072 | 692 | |
| 14485 | 693 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | 
| 694 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 695 | ||
| 68361 | 696 | lemma atMost_Suc_eq_insert_0: "{.. Suc n} = insert 0 (Suc ` {.. n})"
 | 
| 59000 | 697 | unfolding lessThan_Suc_atMost[symmetric] lessThan_Suc_eq_insert_0[of "Suc n"] .. | 
| 698 | ||
| 14485 | 699 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | 
| 700 | by blast | |
| 701 | ||
| 60758 | 702 | subsubsection \<open>The Constant @{term greaterThan}\<close>
 | 
| 15047 | 703 | |
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 704 | lemma greaterThan_0: "greaterThan 0 = range Suc" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 705 | unfolding greaterThan_def | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 706 | by (blast dest: gr0_conv_Suc [THEN iffD1]) | 
| 14485 | 707 | |
| 708 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 709 | unfolding greaterThan_def | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 710 | by (auto elim: linorder_neqE) | 
| 14485 | 711 | |
| 712 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 713 | by blast | 
| 14485 | 714 | |
| 60758 | 715 | subsubsection \<open>The Constant @{term atLeast}\<close>
 | 
| 15047 | 716 | |
| 14485 | 717 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 718 | by (unfold atLeast_def UNIV_def, simp) | |
| 719 | ||
| 720 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 721 | unfolding atLeast_def by (auto simp: order_le_less Suc_le_eq) | 
| 14485 | 722 | |
| 723 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 724 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 725 | ||
| 726 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 727 | by blast | 
| 14485 | 728 | |
| 60758 | 729 | subsubsection \<open>The Constant @{term atMost}\<close>
 | 
| 15047 | 730 | |
| 14485 | 731 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 732 | by (simp add: atMost_def) | 
| 14485 | 733 | |
| 734 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 735 | unfolding atMost_def by (auto simp add: less_Suc_eq order_le_less) | 
| 14485 | 736 | |
| 737 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 738 | by blast | 
| 14485 | 739 | |
| 60758 | 740 | subsubsection \<open>The Constant @{term atLeastLessThan}\<close>
 | 
| 15047 | 741 | |
| 60758 | 742 | text\<open>The orientation of the following 2 rules is tricky. The lhs is | 
| 24449 | 743 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 744 | in this theory --- the reverse orientation complicates proofs (eg | |
| 745 | nontermination). But outside, when the definition of the lhs is rarely | |
| 746 | used, the opposite orientation seems preferable because it reduces a | |
| 60758 | 747 | specific concept to a more general one.\<close> | 
| 28068 | 748 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 749 | lemma atLeast0LessThan [code_abbrev]: "{0::nat..<n} = {..<n}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 750 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 751 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 752 | lemma atLeast0AtMost [code_abbrev]: "{0..n::nat} = {..n}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 753 | by(simp add:atMost_def atLeastAtMost_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 754 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 755 | lemma lessThan_atLeast0: "{..<n} = {0::nat..<n}"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 756 | by (simp add: atLeast0LessThan) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 757 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 758 | lemma atMost_atLeast0: "{..n} = {0::nat..n}"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 759 | by (simp add: atLeast0AtMost) | 
| 24449 | 760 | |
| 761 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 762 | by (simp add: atLeastLessThan_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 763 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 764 | lemma atLeast0_lessThan_Suc: "{0..<Suc n} = insert n {0..<n}"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 765 | by (simp add: atLeast0LessThan lessThan_Suc) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 766 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 767 | lemma atLeast0_lessThan_Suc_eq_insert_0: "{0..<Suc n} = insert 0 (Suc ` {0..<n})"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 768 | by (simp add: atLeast0LessThan lessThan_Suc_eq_insert_0) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 769 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 770 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 771 | subsubsection \<open>The Constant @{term atLeastAtMost}\<close>
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 772 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 773 | lemma atLeast0_atMost_Suc: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 774 |   "{0..Suc n} = insert (Suc n) {0..n}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 775 | by (simp add: atLeast0AtMost atMost_Suc) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 776 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 777 | lemma atLeast0_atMost_Suc_eq_insert_0: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 778 |   "{0..Suc n} = insert 0 (Suc ` {0..n})"
 | 
| 68361 | 779 | by (simp add: atLeast0AtMost atMost_Suc_eq_insert_0) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 780 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 781 | |
| 60758 | 782 | subsubsection \<open>Intervals of nats with @{term Suc}\<close>
 | 
| 15047 | 783 | |
| 60758 | 784 | text\<open>Not a simprule because the RHS is too messy.\<close> | 
| 15047 | 785 | lemma atLeastLessThanSuc: | 
| 786 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 787 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 788 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 789 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 790 | by (auto simp add: atLeastLessThan_def) | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 791 | |
| 15045 | 792 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 793 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 794 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 795 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 796 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 797 | greaterThanAtMost_def) | 
| 14485 | 798 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 799 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 800 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 801 | greaterThanLessThan_def) | 
| 802 | ||
| 15554 | 803 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 804 | by (auto simp add: atLeastAtMost_def) | |
| 805 | ||
| 45932 | 806 | lemma atLeastAtMost_insertL: "m \<le> n \<Longrightarrow> insert m {Suc m..n} = {m ..n}"
 | 
| 807 | by auto | |
| 808 | ||
| 60758 | 809 | text \<open>The analogous result is useful on @{typ int}:\<close>
 | 
| 43157 | 810 | (* here, because we don't have an own int section *) | 
| 811 | lemma atLeastAtMostPlus1_int_conv: | |
| 812 |   "m <= 1+n \<Longrightarrow> {m..1+n} = insert (1+n) {m..n::int}"
 | |
| 813 | by (auto intro: set_eqI) | |
| 814 | ||
| 33044 | 815 | lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 816 | by (induct k) (simp_all add: atLeastLessThanSuc) | 
| 33044 | 817 | |
| 66936 | 818 | |
| 60758 | 819 | subsubsection \<open>Intervals and numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 820 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 821 | lemma lessThan_nat_numeral: \<comment> \<open>Evaluation for specific numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 822 | "lessThan (numeral k :: nat) = insert (pred_numeral k) (lessThan (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 823 | by (simp add: numeral_eq_Suc lessThan_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 824 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 825 | lemma atMost_nat_numeral: \<comment> \<open>Evaluation for specific numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 826 | "atMost (numeral k :: nat) = insert (numeral k) (atMost (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 827 | by (simp add: numeral_eq_Suc atMost_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 828 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 829 | lemma atLeastLessThan_nat_numeral: \<comment> \<open>Evaluation for specific numerals\<close> | 
| 62369 | 830 | "atLeastLessThan m (numeral k :: nat) = | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 831 | (if m \<le> (pred_numeral k) then insert (pred_numeral k) (atLeastLessThan m (pred_numeral k)) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 832 |                  else {})"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 833 | by (simp add: numeral_eq_Suc atLeastLessThanSuc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 834 | |
| 66936 | 835 | |
| 60758 | 836 | subsubsection \<open>Image\<close> | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 837 | |
| 66936 | 838 | context linordered_semidom | 
| 839 | begin | |
| 840 | ||
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 841 | lemma image_add_atLeast[simp]: "plus k ` {i..} = {k + i..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 842 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 843 | have "n = k + (n - k)" if "i + k \<le> n" for n | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 844 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 845 | have "n = (n - (k + i)) + (k + i)" using that | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 846 | by (metis add_commute le_add_diff_inverse) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 847 | then show "n = k + (n - k)" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 848 | by (metis local.add_diff_cancel_left' add_assoc add_commute) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 849 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 850 | then show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 851 | by (fastforce simp: add_le_imp_le_diff add.commute) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 852 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 853 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 854 | lemma image_add_atLeastAtMost [simp]: | 
| 66936 | 855 |   "plus k ` {i..j} = {i + k..j + k}" (is "?A = ?B")
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 856 | proof | 
| 66936 | 857 | show "?A \<subseteq> ?B" | 
| 858 | by (auto simp add: ac_simps) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 859 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 860 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 861 | proof | 
| 66936 | 862 | fix n | 
| 863 | assume "n \<in> ?B" | |
| 864 | then have "i \<le> n - k" | |
| 865 | by (simp add: add_le_imp_le_diff) | |
| 866 | have "n = n - k + k" | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 867 | proof - | 
| 66936 | 868 | from \<open>n \<in> ?B\<close> have "n = n - (i + k) + (i + k)" | 
| 869 | by simp | |
| 870 | also have "\<dots> = n - k - i + i + k" | |
| 871 | by (simp add: algebra_simps) | |
| 872 | also have "\<dots> = n - k + k" | |
| 873 | using \<open>i \<le> n - k\<close> by simp | |
| 874 | finally show ?thesis . | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 875 | qed | 
| 66936 | 876 |     moreover have "n - k \<in> {i..j}"
 | 
| 877 | using \<open>n \<in> ?B\<close> | |
| 878 | by (auto simp: add_le_imp_le_diff add_le_add_imp_diff_le) | |
| 879 | ultimately show "n \<in> ?A" | |
| 880 | by (simp add: ac_simps) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 881 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 882 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 883 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 884 | lemma image_add_atLeastAtMost' [simp]: | 
| 66936 | 885 |   "(\<lambda>n. n + k) ` {i..j} = {i + k..j + k}"
 | 
| 886 | by (simp add: add.commute [of _ k]) | |
| 887 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 888 | lemma image_add_atLeastLessThan [simp]: | 
| 66936 | 889 |   "plus k ` {i..<j} = {i + k..<j + k}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 890 | by (simp add: image_set_diff atLeastLessThan_eq_atLeastAtMost_diff ac_simps) | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 891 | |
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 892 | lemma image_add_atLeastLessThan' [simp]: | 
| 66936 | 893 |   "(\<lambda>n. n + k) ` {i..<j} = {i + k..<j + k}"
 | 
| 894 | by (simp add: add.commute [of _ k]) | |
| 895 | ||
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 896 | lemma image_add_greaterThanAtMost[simp]: "(+) c ` {a<..b} = {c + a<..c + b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 897 | by (simp add: image_set_diff greaterThanAtMost_eq_atLeastAtMost_diff ac_simps) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 898 | |
| 66936 | 899 | end | 
| 900 | ||
| 35580 | 901 | context ordered_ab_group_add | 
| 902 | begin | |
| 903 | ||
| 904 | lemma | |
| 905 | fixes x :: 'a | |
| 906 |   shows image_uminus_greaterThan[simp]: "uminus ` {x<..} = {..<-x}"
 | |
| 907 |   and image_uminus_atLeast[simp]: "uminus ` {x..} = {..-x}"
 | |
| 908 | proof safe | |
| 909 | fix y assume "y < -x" | |
| 910 | hence *: "x < -y" using neg_less_iff_less[of "-y" x] by simp | |
| 911 |   have "- (-y) \<in> uminus ` {x<..}"
 | |
| 912 | by (rule imageI) (simp add: *) | |
| 913 |   thus "y \<in> uminus ` {x<..}" by simp
 | |
| 914 | next | |
| 915 | fix y assume "y \<le> -x" | |
| 916 |   have "- (-y) \<in> uminus ` {x..}"
 | |
| 60758 | 917 | by (rule imageI) (insert \<open>y \<le> -x\<close>[THEN le_imp_neg_le], simp) | 
| 35580 | 918 |   thus "y \<in> uminus ` {x..}" by simp
 | 
| 919 | qed simp_all | |
| 920 | ||
| 921 | lemma | |
| 922 | fixes x :: 'a | |
| 923 |   shows image_uminus_lessThan[simp]: "uminus ` {..<x} = {-x<..}"
 | |
| 924 |   and image_uminus_atMost[simp]: "uminus ` {..x} = {-x..}"
 | |
| 925 | proof - | |
| 926 |   have "uminus ` {..<x} = uminus ` uminus ` {-x<..}"
 | |
| 927 |     and "uminus ` {..x} = uminus ` uminus ` {-x..}" by simp_all
 | |
| 928 |   thus "uminus ` {..<x} = {-x<..}" and "uminus ` {..x} = {-x..}"
 | |
| 929 | by (simp_all add: image_image | |
| 930 | del: image_uminus_greaterThan image_uminus_atLeast) | |
| 931 | qed | |
| 932 | ||
| 933 | lemma | |
| 934 | fixes x :: 'a | |
| 935 |   shows image_uminus_atLeastAtMost[simp]: "uminus ` {x..y} = {-y..-x}"
 | |
| 936 |   and image_uminus_greaterThanAtMost[simp]: "uminus ` {x<..y} = {-y..<-x}"
 | |
| 937 |   and image_uminus_atLeastLessThan[simp]: "uminus ` {x..<y} = {-y<..-x}"
 | |
| 938 |   and image_uminus_greaterThanLessThan[simp]: "uminus ` {x<..<y} = {-y<..<-x}"
 | |
| 939 | by (simp_all add: atLeastAtMost_def greaterThanAtMost_def atLeastLessThan_def | |
| 940 | greaterThanLessThan_def image_Int[OF inj_uminus] Int_commute) | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 941 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 942 | lemma image_add_atMost[simp]: "(+) c ` {..a} = {..c + a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 943 | by (auto intro!: image_eqI[where x="x - c" for x] simp: algebra_simps) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 944 | |
| 35580 | 945 | end | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 946 | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 947 | lemma image_Suc_atLeastAtMost [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 948 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 949 | using image_add_atLeastAtMost [of 1 i j] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 950 | by (simp only: plus_1_eq_Suc) simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 951 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 952 | lemma image_Suc_atLeastLessThan [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 953 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 954 | using image_add_atLeastLessThan [of 1 i j] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 955 | by (simp only: plus_1_eq_Suc) simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 956 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 957 | corollary image_Suc_atMost: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 958 |   "Suc ` {..n} = {1..Suc n}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 959 | by (simp add: atMost_atLeast0 atLeastLessThanSuc_atLeastAtMost) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 960 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 961 | corollary image_Suc_lessThan: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 962 |   "Suc ` {..<n} = {1..n}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 963 | by (simp add: lessThan_atLeast0 atLeastLessThanSuc_atLeastAtMost) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 964 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 965 | lemma image_diff_atLeastAtMost [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 966 |   fixes d::"'a::linordered_idom" shows "((-) d ` {a..b}) = {d-b..d-a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 967 | apply auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 968 | apply (rule_tac x="d-x" in rev_image_eqI, auto) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 969 | done | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 970 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 971 | lemma image_diff_atLeastLessThan [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 972 | fixes a b c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 973 |   shows "(-) c ` {a..<b} = {c - b<..c - a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 974 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 975 |   have "(-) c ` {a..<b} = (+) c ` uminus ` {a ..<b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 976 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 977 |   also have "\<dots> = {c - b<..c - a}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 978 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 979 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 980 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 981 | lemma image_minus_const_greaterThanAtMost[simp]: | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 982 | fixes a b c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 983 |   shows "(-) c ` {a<..b} = {c - b..<c - a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 984 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 985 |   have "(-) c ` {a<..b} = (+) c ` uminus ` {a<..b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 986 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 987 |   also have "\<dots> = {c - b..<c - a}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 988 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 989 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 990 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 991 | lemma image_minus_const_atLeast[simp]: | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 992 | fixes a c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 993 |   shows "(-) c ` {a..} = {..c - a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 994 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 995 |   have "(-) c ` {a..} = (+) c ` uminus ` {a ..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 996 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 997 |   also have "\<dots> = {..c - a}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 998 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 999 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1000 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1001 | lemma image_minus_const_AtMost[simp]: | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1002 | fixes b c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1003 |   shows "(-) c ` {..b} = {c - b..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1004 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1005 |   have "(-) c ` {..b} = (+) c ` uminus ` {..b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1006 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1007 |   also have "\<dots> = {c - b..}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1008 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1009 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1010 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1011 | lemma image_minus_const_atLeastAtMost' [simp]: | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1012 |   "(\<lambda>t. t-d)`{a..b} = {a-d..b-d}" for d::"'a::linordered_idom"
 | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1013 | by (metis (no_types, lifting) diff_conv_add_uminus image_add_atLeastAtMost' image_cong) | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1014 | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1015 | context linordered_field begin | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1016 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1017 | lemma image_mult_atLeastAtMost [simp]: | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 1018 |   "((*) d ` {a..b}) = {d*a..d*b}" if "d>0"
 | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1019 | using that | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1020 | by (auto simp: field_simps mult_le_cancel_right intro: rev_image_eqI [where x="x/d" for x]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1021 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1022 | lemma image_mult_atLeastAtMost_if: | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 1023 |   "(*) c ` {x .. y} =
 | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1024 |     (if c > 0 then {c * x .. c * y} else if x \<le> y then {c * y .. c * x} else {})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1025 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1026 | consider "c < 0" "x \<le> y" | "c = 0" "x \<le> y" | "c > 0" "x \<le> y" | "x > y" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1027 | using local.antisym_conv3 local.leI by blast | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1028 | then show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1029 | proof cases | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1030 | case 1 | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 1031 |     have "(*) c ` {x .. y} = uminus ` (*) (- c) ` {x .. y}"
 | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1032 | by (simp add: image_image) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1033 |     also have "\<dots> = {c * y .. c * x}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1034 | using \<open>c < 0\<close> | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1035 | by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1036 | finally show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1037 | using \<open>c < 0\<close> by auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1038 | qed (auto simp: not_le local.mult_less_cancel_left_pos) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1039 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1040 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1041 | lemma image_mult_atLeastAtMost_if': | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1042 |   "(\<lambda>x. x * c) ` {x..y} =
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1043 |     (if x \<le> y then if c > 0 then {x * c .. y * c} else {y * c .. x * c} else {})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1044 | by (subst mult.commute) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1045 | (simp add: image_mult_atLeastAtMost_if mult.commute mult_le_cancel_left_pos) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1046 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1047 | lemma image_affinity_atLeastAtMost: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1048 |   "((\<lambda>x. m*x + c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1049 |             else if 0 \<le> m then {m*a + c .. m *b + c}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1050 |             else {m*b + c .. m*a + c})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1051 | proof - | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 1052 | have "(\<lambda>x. m*x + c) = ((\<lambda>x. x + c) o (*) m)" | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1053 | unfolding image_comp[symmetric] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1054 | by (simp add: o_def) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1055 | then show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1056 | by (auto simp add: image_comp[symmetric] image_mult_atLeastAtMost_if mult_le_cancel_left) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1057 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1058 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1059 | lemma image_affinity_atLeastAtMost_diff: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1060 |   "((\<lambda>x. m*x - c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1061 |             else if 0 \<le> m then {m*a - c .. m*b - c}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1062 |             else {m*b - c .. m*a - c})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1063 | using image_affinity_atLeastAtMost [of m "-c" a b] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1064 | by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1065 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1066 | lemma image_affinity_atLeastAtMost_div: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1067 |   "((\<lambda>x. x/m + c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1068 |             else if 0 \<le> m then {a/m + c .. b/m + c}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1069 |             else {b/m + c .. a/m + c})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1070 | using image_affinity_atLeastAtMost [of "inverse m" c a b] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1071 | by (simp add: field_class.field_divide_inverse algebra_simps inverse_eq_divide) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1072 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1073 | lemma image_affinity_atLeastAtMost_div_diff: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1074 |   "((\<lambda>x. x/m - c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1075 |             else if 0 \<le> m then {a/m - c .. b/m - c}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1076 |             else {b/m - c .. a/m - c})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1077 | using image_affinity_atLeastAtMost_diff [of "inverse m" c a b] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1078 | by (simp add: field_class.field_divide_inverse algebra_simps inverse_eq_divide) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1079 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1080 | end | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1081 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1082 | lemma atLeast1_lessThan_eq_remove0: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1083 |   "{Suc 0..<n} = {..<n} - {0}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1084 | by auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1085 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1086 | lemma atLeast1_atMost_eq_remove0: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1087 |   "{Suc 0..n} = {..n} - {0}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1088 | by auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1089 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1090 | lemma image_add_int_atLeastLessThan: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1091 |     "(\<lambda>x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1092 | apply (auto simp add: image_def) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1093 | apply (rule_tac x = "x - l" in bexI) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1094 | apply auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1095 | done | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1096 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1097 | lemma image_minus_const_atLeastLessThan_nat: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1098 | fixes c :: nat | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1099 |   shows "(\<lambda>i. i - c) ` {x ..< y} =
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1100 |       (if c < y then {x - c ..< y - c} else if x < y then {0} else {})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1101 | (is "_ = ?right") | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1102 | proof safe | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1103 | fix a assume a: "a \<in> ?right" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1104 |   show "a \<in> (\<lambda>i. i - c) ` {x ..< y}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1105 | proof cases | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1106 | assume "c < y" with a show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1107 | by (auto intro!: image_eqI[of _ _ "a + c"]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1108 | next | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1109 | assume "\<not> c < y" with a show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1110 | by (auto intro!: image_eqI[of _ _ x] split: if_split_asm) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1111 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1112 | qed auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1113 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1114 | lemma image_int_atLeastLessThan: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1115 |   "int ` {a..<b} = {int a..<int b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1116 | by (auto intro!: image_eqI [where x = "nat x" for x]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1117 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1118 | lemma image_int_atLeastAtMost: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1119 |   "int ` {a..b} = {int a..int b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1120 | by (auto intro!: image_eqI [where x = "nat x" for x]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1121 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1122 | |
| 60758 | 1123 | subsubsection \<open>Finiteness\<close> | 
| 14485 | 1124 | |
| 15045 | 1125 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 1126 | by (induct k) (simp_all add: lessThan_Suc) | 
| 1127 | ||
| 1128 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 1129 | by (induct k) (simp_all add: atMost_Suc) | |
| 1130 | ||
| 1131 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 1132 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1133 | by (simp add: greaterThanLessThan_def) | 
| 14485 | 1134 | |
| 1135 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 1136 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1137 | by (simp add: atLeastLessThan_def) | 
| 14485 | 1138 | |
| 1139 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 1140 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1141 | by (simp add: greaterThanAtMost_def) | 
| 14485 | 1142 | |
| 1143 | lemma finite_atLeastAtMost [iff]: | |
| 1144 |   fixes l :: nat shows "finite {l..u}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1145 | by (simp add: atLeastAtMost_def) | 
| 14485 | 1146 | |
| 60758 | 1147 | text \<open>A bounded set of natural numbers is finite.\<close> | 
| 67613 | 1148 | lemma bounded_nat_set_is_finite: "(\<forall>i\<in>N. i < (n::nat)) \<Longrightarrow> finite N" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1149 | by (rule finite_subset [OF _ finite_lessThan]) auto | 
| 28068 | 1150 | |
| 60758 | 1151 | text \<open>A set of natural numbers is finite iff it is bounded.\<close> | 
| 31044 | 1152 | lemma finite_nat_set_iff_bounded: | 
| 67091 | 1153 | "finite(N::nat set) = (\<exists>m. \<forall>n\<in>N. n<m)" (is "?F = ?B") | 
| 31044 | 1154 | proof | 
| 1155 | assume f:?F show ?B | |
| 60758 | 1156 | using Max_ge[OF \<open>?F\<close>, simplified less_Suc_eq_le[symmetric]] by blast | 
| 31044 | 1157 | next | 
| 60758 | 1158 | assume ?B show ?F using \<open>?B\<close> by(blast intro:bounded_nat_set_is_finite) | 
| 31044 | 1159 | qed | 
| 1160 | ||
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1161 | lemma finite_nat_set_iff_bounded_le: "finite(N::nat set) = (\<exists>m. \<forall>n\<in>N. n\<le>m)" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1162 | unfolding finite_nat_set_iff_bounded | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1163 | by (blast dest:less_imp_le_nat le_imp_less_Suc) | 
| 31044 | 1164 | |
| 28068 | 1165 | lemma finite_less_ub: | 
| 1166 |      "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
 | |
| 1167 | by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
 | |
| 14485 | 1168 | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1169 | lemma bounded_Max_nat: | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1170 | fixes P :: "nat \<Rightarrow> bool" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1171 | assumes x: "P x" and M: "\<And>x. P x \<Longrightarrow> x \<le> M" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1172 | obtains m where "P m" "\<And>x. P x \<Longrightarrow> x \<le> m" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1173 | proof - | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1174 |   have "finite {x. P x}"
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1175 | using M finite_nat_set_iff_bounded_le by auto | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1176 |   then have "Max {x. P x} \<in> {x. P x}"
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1177 | using Max_in x by auto | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1178 | then show ?thesis | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1179 |     by (simp add: \<open>finite {x. P x}\<close> that)
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1180 | qed | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1181 | |
| 56328 | 1182 | |
| 60758 | 1183 | text\<open>Any subset of an interval of natural numbers the size of the | 
| 1184 | subset is exactly that interval.\<close> | |
| 24853 | 1185 | |
| 1186 | lemma subset_card_intvl_is_intvl: | |
| 55085 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1187 |   assumes "A \<subseteq> {k..<k + card A}"
 | 
| 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1188 |   shows "A = {k..<k + card A}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1189 | proof (cases "finite A") | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1190 | case True | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1191 | from this and assms show ?thesis | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1192 | proof (induct A rule: finite_linorder_max_induct) | 
| 24853 | 1193 | case empty thus ?case by auto | 
| 1194 | next | |
| 33434 | 1195 | case (insert b A) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1196 | hence *: "b \<notin> A" by auto | 
| 55085 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1197 |     with insert have "A <= {k..<k + card A}" and "b = k + card A"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1198 | by fastforce+ | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1199 | with insert * show ?case by auto | 
| 24853 | 1200 | qed | 
| 1201 | next | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1202 | case False | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1203 | with assms show ?thesis by simp | 
| 24853 | 1204 | qed | 
| 1205 | ||
| 1206 | ||
| 60758 | 1207 | subsubsection \<open>Proving Inclusions and Equalities between Unions\<close> | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1208 | |
| 36755 | 1209 | lemma UN_le_eq_Un0: | 
| 1210 |   "(\<Union>i\<le>n::nat. M i) = (\<Union>i\<in>{1..n}. M i) \<union> M 0" (is "?A = ?B")
 | |
| 1211 | proof | |
| 67613 | 1212 | show "?A \<subseteq> ?B" | 
| 36755 | 1213 | proof | 
| 67613 | 1214 | fix x assume "x \<in> ?A" | 
| 1215 | then obtain i where i: "i\<le>n" "x \<in> M i" by auto | |
| 1216 | show "x \<in> ?B" | |
| 36755 | 1217 | proof(cases i) | 
| 1218 | case 0 with i show ?thesis by simp | |
| 1219 | next | |
| 1220 | case (Suc j) with i show ?thesis by auto | |
| 1221 | qed | |
| 1222 | qed | |
| 1223 | next | |
| 67613 | 1224 | show "?B \<subseteq> ?A" by fastforce | 
| 36755 | 1225 | qed | 
| 1226 | ||
| 1227 | lemma UN_le_add_shift: | |
| 1228 |   "(\<Union>i\<le>n::nat. M(i+k)) = (\<Union>i\<in>{k..n+k}. M i)" (is "?A = ?B")
 | |
| 1229 | proof | |
| 67613 | 1230 | show "?A \<subseteq> ?B" by fastforce | 
| 36755 | 1231 | next | 
| 67613 | 1232 | show "?B \<subseteq> ?A" | 
| 36755 | 1233 | proof | 
| 67613 | 1234 | fix x assume "x \<in> ?B" | 
| 1235 |     then obtain i where i: "i \<in> {k..n+k}" "x \<in> M(i)" by auto
 | |
| 67091 | 1236 | hence "i-k\<le>n \<and> x \<in> M((i-k)+k)" by auto | 
| 1237 | thus "x \<in> ?A" by blast | |
| 36755 | 1238 | qed | 
| 1239 | qed | |
| 1240 | ||
| 62369 | 1241 | lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
 | 
| 1242 | by (auto simp add: atLeast0LessThan) | |
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1243 | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1244 | lemma UN_finite_subset: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1245 |   "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
 | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1246 | by (subst UN_UN_finite_eq [symmetric]) blast | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1247 | |
| 62369 | 1248 | lemma UN_finite2_subset: | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1249 |   assumes "\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1250 | shows "(\<Union>n. A n) \<subseteq> (\<Union>n. B n)" | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1251 | proof (rule UN_finite_subset, rule) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1252 | fix n and a | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1253 |   from assms have "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)" .
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1254 |   moreover assume "a \<in> (\<Union>i\<in>{0..<n}. A i)"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1255 |   ultimately have "a \<in> (\<Union>i\<in>{0..<n + k}. B i)" by blast
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1256 | then show "a \<in> (\<Union>i. B i)" by (auto simp add: UN_UN_finite_eq) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1257 | qed | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1258 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1259 | lemma UN_finite2_eq: | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1260 |   "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n + k}. B i)) \<Longrightarrow>
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1261 | (\<Union>n. A n) = (\<Union>n. B n)" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1262 | apply (rule subset_antisym [OF UN_finite_subset UN_finite2_subset]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1263 | apply auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1264 | apply (force simp add: atLeastLessThan_add_Un [of 0])+ | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1265 | done | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1266 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1267 | |
| 60758 | 1268 | subsubsection \<open>Cardinality\<close> | 
| 14485 | 1269 | |
| 15045 | 1270 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 1271 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 1272 | |
| 1273 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 1274 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 1275 | ||
| 15045 | 1276 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1277 | proof - | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1278 |   have "{l..<u} = (\<lambda>x. x + l) ` {..<u-l}"
 | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1279 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1280 | apply (rule_tac x = "x - l" in exI) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1281 | apply arith | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1282 | done | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1283 |   then have "card {l..<u} = card {..<u-l}"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1284 | by (simp add: card_image inj_on_def) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1285 | then show ?thesis | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1286 | by simp | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1287 | qed | 
| 14485 | 1288 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1289 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 1290 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 1291 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1292 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 1293 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 1294 | ||
| 15045 | 1295 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 1296 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 1297 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1298 | lemma subset_eq_atLeast0_lessThan_finite: | 
| 63365 | 1299 | fixes n :: nat | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1300 |   assumes "N \<subseteq> {0..<n}"
 | 
| 63915 | 1301 | shows "finite N" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1302 | using assms finite_atLeastLessThan by (rule finite_subset) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1303 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1304 | lemma subset_eq_atLeast0_atMost_finite: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1305 | fixes n :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1306 |   assumes "N \<subseteq> {0..n}"
 | 
| 63915 | 1307 | shows "finite N" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1308 | using assms finite_atLeastAtMost by (rule finite_subset) | 
| 63365 | 1309 | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1310 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1311 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1312 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1313 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1314 | done | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1315 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1316 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1317 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1318 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1319 | |
| 31438 | 1320 | lemma finite_same_card_bij: | 
| 67091 | 1321 | "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> \<exists>h. bij_betw h A B" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1322 | apply(drule ex_bij_betw_finite_nat) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1323 | apply(drule ex_bij_betw_nat_finite) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1324 | apply(auto intro!:bij_betw_trans) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1325 | done | 
| 31438 | 1326 | |
| 1327 | lemma ex_bij_betw_nat_finite_1: | |
| 1328 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1329 | by (rule finite_same_card_bij) auto | 
| 31438 | 1330 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1331 | lemma bij_betw_iff_card: | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1332 | assumes "finite A" "finite B" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1333 | shows "(\<exists>f. bij_betw f A B) \<longleftrightarrow> (card A = card B)" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1334 | proof | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1335 | assume "card A = card B" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1336 |   moreover obtain f where "bij_betw f A {0 ..< card A}"
 | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1337 | using assms ex_bij_betw_finite_nat by blast | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1338 |   moreover obtain g where "bij_betw g {0 ..< card B} B"
 | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1339 | using assms ex_bij_betw_nat_finite by blast | 
| 67091 | 1340 | ultimately have "bij_betw (g \<circ> f) A B" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1341 | by (auto simp: bij_betw_trans) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1342 | thus "(\<exists>f. bij_betw f A B)" by blast | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1343 | qed (auto simp: bij_betw_same_card) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1344 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1345 | lemma inj_on_iff_card_le: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1346 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1347 | shows "(\<exists>f. inj_on f A \<and> f ` A \<le> B) = (card A \<le> card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1348 | proof (safe intro!: card_inj_on_le) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1349 | assume *: "card A \<le> card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1350 |   obtain f where 1: "inj_on f A" and 2: "f ` A = {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1351 | using FIN ex_bij_betw_finite_nat unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1352 |   moreover obtain g where "inj_on g {0 ..< card B}" and 3: "g ` {0 ..< card B} = B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1353 | using FIN' ex_bij_betw_nat_finite unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1354 | ultimately have "inj_on g (f ` A)" using subset_inj_on[of g _ "f ` A"] * by force | 
| 67091 | 1355 | hence "inj_on (g \<circ> f) A" using 1 comp_inj_on by blast | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1356 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1357 |   {have "{0 ..< card A} \<le> {0 ..< card B}" using * by force
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1358 |    with 2 have "f ` A  \<le> {0 ..< card B}" by blast
 | 
| 67091 | 1359 | hence "(g \<circ> f) ` A \<le> B" unfolding comp_def using 3 by force | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1360 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1361 | ultimately show "(\<exists>f. inj_on f A \<and> f ` A \<le> B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1362 | qed (insert assms, auto) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1363 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1364 | lemma subset_eq_atLeast0_lessThan_card: | 
| 63365 | 1365 | fixes n :: nat | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1366 |   assumes "N \<subseteq> {0..<n}"
 | 
| 63365 | 1367 | shows "card N \<le> n" | 
| 1368 | proof - | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1369 |   from assms finite_lessThan have "card N \<le> card {0..<n}"
 | 
| 63365 | 1370 | using card_mono by blast | 
| 1371 | then show ?thesis by simp | |
| 1372 | qed | |
| 1373 | ||
| 1374 | ||
| 60758 | 1375 | subsection \<open>Intervals of integers\<close> | 
| 14485 | 1376 | |
| 15045 | 1377 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 1378 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 1379 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1380 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 1381 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 1382 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1383 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1384 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 1385 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 1386 | ||
| 60758 | 1387 | subsubsection \<open>Finiteness\<close> | 
| 14485 | 1388 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1389 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 1390 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1391 | unfolding image_def lessThan_def | 
| 14485 | 1392 | apply auto | 
| 1393 | apply (rule_tac x = "nat x" in exI) | |
| 35216 | 1394 | apply (auto simp add: zless_nat_eq_int_zless [THEN sym]) | 
| 14485 | 1395 | done | 
| 1396 | ||
| 15045 | 1397 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1398 | proof (cases "0 \<le> u") | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1399 | case True | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1400 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1401 | by (auto simp: image_atLeastZeroLessThan_int) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1402 | qed auto | 
| 14485 | 1403 | |
| 15045 | 1404 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1405 | by (simp only: image_add_int_atLeastLessThan [symmetric, of l] finite_imageI finite_atLeastZeroLessThan_int) | 
| 14485 | 1406 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1407 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 1408 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 1409 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1410 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 1411 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 1412 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1413 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 1414 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 1415 | ||
| 24853 | 1416 | |
| 60758 | 1417 | subsubsection \<open>Cardinality\<close> | 
| 14485 | 1418 | |
| 15045 | 1419 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1420 | proof (cases "0 \<le> u") | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1421 | case True | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1422 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1423 | by (auto simp: image_atLeastZeroLessThan_int card_image inj_on_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1424 | qed auto | 
| 14485 | 1425 | |
| 15045 | 1426 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1427 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1428 |   have "card {l..<u} = card {0..<u-l}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1429 | apply (subst image_add_int_atLeastLessThan [symmetric]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1430 | apply (rule card_image) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1431 | apply (simp add: inj_on_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1432 | done | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1433 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1434 | by (simp add: card_atLeastZeroLessThan_int) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1435 | qed | 
| 14485 | 1436 | |
| 1437 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1438 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1439 | apply (auto simp add: algebra_simps) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1440 | done | 
| 14485 | 1441 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1442 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1443 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 1444 | |
| 15045 | 1445 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1446 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 1447 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1448 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1449 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1450 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1451 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1452 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1453 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1454 | lemma card_less: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1455 | assumes zero_in_M: "0 \<in> M" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1456 |   shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1457 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1458 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1459 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1460 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1461 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1462 | lemma card_less_Suc2: | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1463 |   assumes "0 \<notin> M" shows "card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1464 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1465 | have *: "\<lbrakk>j \<in> M; j < Suc i\<rbrakk> \<Longrightarrow> j - Suc 0 < i \<and> Suc (j - Suc 0) \<in> M \<and> Suc 0 \<le> j" for j | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1466 | by (cases j) (use assms in auto) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1467 | show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1468 | proof (rule card_bij_eq) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1469 |     show "inj_on Suc {k. Suc k \<in> M \<and> k < i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1470 | by force | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1471 |     show "inj_on (\<lambda>x. x - Suc 0) {k \<in> M. k < Suc i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1472 | by (rule inj_on_diff_nat) (use * in blast) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1473 | qed (use * in auto) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1474 | qed | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1475 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1476 | lemma card_less_Suc: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1477 | assumes "0 \<in> M" | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1478 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1479 | proof - | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1480 |   have "Suc (card {k. Suc k \<in> M \<and> k < i}) = Suc (card {k. Suc k \<in> M - {0} \<and> k < i})"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1481 | by simp | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1482 |   also have "\<dots> = Suc (card {k \<in> M - {0}. k < Suc i})"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1483 | apply (subst card_less_Suc2) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1484 | using assms by auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1485 |   also have "\<dots> = Suc (card ({k \<in> M. k < Suc i} - {0}))"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1486 | by (force intro: arg_cong [where f=card]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1487 |   also have "\<dots> = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1488 | by (simp add: card_insert) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1489 |   also have "... = card {k \<in> M. k < Suc i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1490 | using assms | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1491 | by (force simp add: intro: arg_cong [where f=card]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1492 | finally show ?thesis. | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1493 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1494 | |
| 14485 | 1495 | |
| 64267 | 1496 | subsection \<open>Lemmas useful with the summation operator sum\<close> | 
| 13850 | 1497 | |
| 60758 | 1498 | text \<open>For examples, see Algebra/poly/UnivPoly2.thy\<close> | 
| 13735 | 1499 | |
| 60758 | 1500 | subsubsection \<open>Disjoint Unions\<close> | 
| 13735 | 1501 | |
| 60758 | 1502 | text \<open>Singletons and open intervals\<close> | 
| 13735 | 1503 | |
| 1504 | lemma ivl_disj_un_singleton: | |
| 15045 | 1505 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 1506 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 1507 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 1508 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1509 |   "(l::'a::linorder) \<le> u ==> {l} Un {l<..u} = {l..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1510 |   "(l::'a::linorder) \<le> u ==> {l..<u} Un {u} = {l..u}"
 | 
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1511 | by auto | 
| 13735 | 1512 | |
| 60758 | 1513 | text \<open>One- and two-sided intervals\<close> | 
| 13735 | 1514 | |
| 1515 | lemma ivl_disj_un_one: | |
| 15045 | 1516 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1517 |   "(l::'a::linorder) \<le> u ==> {..<l} Un {l..<u} = {..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1518 |   "(l::'a::linorder) \<le> u ==> {..l} Un {l<..u} = {..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1519 |   "(l::'a::linorder) \<le> u ==> {..<l} Un {l..u} = {..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1520 |   "(l::'a::linorder) \<le> u ==> {l<..u} Un {u<..} = {l<..}"
 | 
| 15045 | 1521 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1522 |   "(l::'a::linorder) \<le> u ==> {l..u} Un {u<..} = {l..}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1523 |   "(l::'a::linorder) \<le> u ==> {l..<u} Un {u..} = {l..}"
 | 
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1524 | by auto | 
| 13735 | 1525 | |
| 60758 | 1526 | text \<open>Two- and two-sided intervals\<close> | 
| 13735 | 1527 | |
| 1528 | lemma ivl_disj_un_two: | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1529 |   "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1530 |   "[| (l::'a::linorder) \<le> m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1531 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1532 |   "[| (l::'a::linorder) \<le> m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1533 |   "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1534 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1535 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..<m} Un {m..u} = {l..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1536 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..m} Un {m<..u} = {l..u}"
 | 
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1537 | by auto | 
| 13735 | 1538 | |
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1539 | lemma ivl_disj_un_two_touch: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1540 |   "[| (l::'a::linorder) < m; m < u |] ==> {l<..m} Un {m..<u} = {l<..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1541 |   "[| (l::'a::linorder) \<le> m; m < u |] ==> {l..m} Un {m..<u} = {l..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1542 |   "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..m} Un {m..u} = {l<..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1543 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..m} Un {m..u} = {l..u}"
 | 
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1544 | by auto | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1545 | |
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1546 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two ivl_disj_un_two_touch | 
| 13735 | 1547 | |
| 60758 | 1548 | subsubsection \<open>Disjoint Intersections\<close> | 
| 13735 | 1549 | |
| 60758 | 1550 | text \<open>One- and two-sided intervals\<close> | 
| 13735 | 1551 | |
| 1552 | lemma ivl_disj_int_one: | |
| 15045 | 1553 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 1554 |   "{..<l} Int {l..<u} = {}"
 | |
| 1555 |   "{..l} Int {l<..u} = {}"
 | |
| 1556 |   "{..<l} Int {l..u} = {}"
 | |
| 1557 |   "{l<..u} Int {u<..} = {}"
 | |
| 1558 |   "{l<..<u} Int {u..} = {}"
 | |
| 1559 |   "{l..u} Int {u<..} = {}"
 | |
| 1560 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1561 | by auto | 
| 13735 | 1562 | |
| 60758 | 1563 | text \<open>Two- and two-sided intervals\<close> | 
| 13735 | 1564 | |
| 1565 | lemma ivl_disj_int_two: | |
| 15045 | 1566 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 1567 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 1568 |   "{l..<m} Int {m..<u} = {}"
 | |
| 1569 |   "{l..m} Int {m<..<u} = {}"
 | |
| 1570 |   "{l<..<m} Int {m..u} = {}"
 | |
| 1571 |   "{l<..m} Int {m<..u} = {}"
 | |
| 1572 |   "{l..<m} Int {m..u} = {}"
 | |
| 1573 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1574 | by auto | 
| 13735 | 1575 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 1576 | lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two | 
| 13735 | 1577 | |
| 60758 | 1578 | subsubsection \<open>Some Differences\<close> | 
| 15542 | 1579 | |
| 1580 | lemma ivl_diff[simp]: | |
| 1581 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 1582 | by(auto) | |
| 1583 | ||
| 56194 | 1584 | lemma (in linorder) lessThan_minus_lessThan [simp]: | 
| 1585 |   "{..< n} - {..< m} = {m ..< n}"
 | |
| 1586 | by auto | |
| 1587 | ||
| 60762 | 1588 | lemma (in linorder) atLeastAtMost_diff_ends: | 
| 1589 |   "{a..b} - {a, b} = {a<..<b}"
 | |
| 1590 | by auto | |
| 1591 | ||
| 15542 | 1592 | |
| 60758 | 1593 | subsubsection \<open>Some Subset Conditions\<close> | 
| 15542 | 1594 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1595 | lemma ivl_subset [simp]: "({i..<j} \<subseteq> {m..<n}) = (j \<le> i \<or> m \<le> i \<and> j \<le> (n::'a::linorder))"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1596 | using linorder_class.le_less_linear[of i n] | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1597 | apply (auto simp: linorder_not_le) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1598 | apply (force intro: leI)+ | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1599 | done | 
| 15542 | 1600 | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1601 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1602 | subsection \<open>Generic big monoid operation over intervals\<close> | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1603 | |
| 66936 | 1604 | context semiring_char_0 | 
| 1605 | begin | |
| 1606 | ||
| 1607 | lemma inj_on_of_nat [simp]: | |
| 1608 | "inj_on of_nat N" | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1609 | by rule simp | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1610 | |
| 66936 | 1611 | lemma bij_betw_of_nat [simp]: | 
| 1612 | "bij_betw of_nat N A \<longleftrightarrow> of_nat ` N = A" | |
| 1613 | by (simp add: bij_betw_def) | |
| 1614 | ||
| 1615 | end | |
| 1616 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1617 | context comm_monoid_set | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1618 | begin | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1619 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1620 | lemma atLeastLessThan_reindex: | 
| 66936 | 1621 |   "F g {h m..<h n} = F (g \<circ> h) {m..<n}"
 | 
| 1622 |   if "bij_betw h {m..<n} {h m..<h n}" for m n ::nat
 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1623 | proof - | 
| 66936 | 1624 |   from that have "inj_on h {m..<n}" and "h ` {m..<n} = {h m..<h n}"
 | 
| 1625 | by (simp_all add: bij_betw_def) | |
| 1626 | then show ?thesis | |
| 1627 |     using reindex [of h "{m..<n}" g] by simp
 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1628 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1629 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1630 | lemma atLeastAtMost_reindex: | 
| 66936 | 1631 |   "F g {h m..h n} = F (g \<circ> h) {m..n}"
 | 
| 1632 |   if "bij_betw h {m..n} {h m..h n}" for m n ::nat
 | |
| 1633 | proof - | |
| 1634 |   from that have "inj_on h {m..n}" and "h ` {m..n} = {h m..h n}"
 | |
| 1635 | by (simp_all add: bij_betw_def) | |
| 1636 | then show ?thesis | |
| 1637 |     using reindex [of h "{m..n}" g] by simp
 | |
| 1638 | qed | |
| 1639 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1640 | lemma atLeastLessThan_shift_bounds: | 
| 66936 | 1641 |   "F g {m + k..<n + k} = F (g \<circ> plus k) {m..<n}"
 | 
| 1642 | for m n k :: nat | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1643 | using atLeastLessThan_reindex [of "plus k" m n g] | 
| 66936 | 1644 | by (simp add: ac_simps) | 
| 1645 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1646 | lemma atLeastAtMost_shift_bounds: | 
| 66936 | 1647 |   "F g {m + k..n + k} = F (g \<circ> plus k) {m..n}"
 | 
| 1648 | for m n k :: nat | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1649 | using atLeastAtMost_reindex [of "plus k" m n g] | 
| 66936 | 1650 | by (simp add: ac_simps) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1651 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1652 | lemma atLeast_Suc_lessThan_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1653 |   "F g {Suc m..<Suc n} = F (g \<circ> Suc) {m..<n}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1654 | using atLeastLessThan_shift_bounds [of _ _ 1] | 
| 66936 | 1655 | by (simp add: plus_1_eq_Suc) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1656 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1657 | lemma atLeast_Suc_atMost_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1658 |   "F g {Suc m..Suc n} = F (g \<circ> Suc) {m..n}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1659 | using atLeastAtMost_shift_bounds [of _ _ 1] | 
| 66936 | 1660 | by (simp add: plus_1_eq_Suc) | 
| 1661 | ||
| 1662 | lemma atLeast_int_lessThan_int_shift: | |
| 1663 |   "F g {int m..<int n} = F (g \<circ> int) {m..<n}"
 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1664 | by (rule atLeastLessThan_reindex) | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1665 | (simp add: image_int_atLeastLessThan) | 
| 66936 | 1666 | |
| 1667 | lemma atLeast_int_atMost_int_shift: | |
| 1668 |   "F g {int m..int n} = F (g \<circ> int) {m..n}"
 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1669 | by (rule atLeastAtMost_reindex) | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1670 | (simp add: image_int_atLeastAtMost) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1671 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1672 | lemma atLeast0_lessThan_Suc: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1673 |   "F g {0..<Suc n} = F g {0..<n} \<^bold>* g n"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1674 | by (simp add: atLeast0_lessThan_Suc ac_simps) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1675 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1676 | lemma atLeast0_atMost_Suc: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1677 |   "F g {0..Suc n} = F g {0..n} \<^bold>* g (Suc n)"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1678 | by (simp add: atLeast0_atMost_Suc ac_simps) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1679 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1680 | lemma atLeast0_lessThan_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1681 |   "F g {0..<Suc n} = g 0 \<^bold>* F (g \<circ> Suc) {0..<n}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1682 | by (simp add: atLeast0_lessThan_Suc_eq_insert_0 atLeast_Suc_lessThan_Suc_shift) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1683 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1684 | lemma atLeast0_atMost_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1685 |   "F g {0..Suc n} = g 0 \<^bold>* F (g \<circ> Suc) {0..n}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1686 | by (simp add: atLeast0_atMost_Suc_eq_insert_0 atLeast_Suc_atMost_Suc_shift) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1687 | |
| 67987 | 1688 | lemma atLeast_Suc_lessThan: | 
| 1689 |   "F g {m..<n} = g m \<^bold>* F g {Suc m..<n}" if "m < n"
 | |
| 1690 | proof - | |
| 1691 |   from that have "{m..<n} = insert m {Suc m..<n}"
 | |
| 1692 | by auto | |
| 1693 | then show ?thesis by simp | |
| 1694 | qed | |
| 1695 | ||
| 1696 | lemma atLeast_Suc_atMost: | |
| 1697 |   "F g {m..n} = g m \<^bold>* F g {Suc m..n}" if "m \<le> n"
 | |
| 1698 | proof - | |
| 1699 |   from that have "{m..n} = insert m {Suc m..n}"
 | |
| 1700 | by auto | |
| 1701 | then show ?thesis by simp | |
| 1702 | qed | |
| 1703 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1704 | lemma ivl_cong: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1705 | "a = c \<Longrightarrow> b = d \<Longrightarrow> (\<And>x. c \<le> x \<Longrightarrow> x < d \<Longrightarrow> g x = h x) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1706 |     \<Longrightarrow> F g {a..<b} = F h {c..<d}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1707 | by (rule cong) simp_all | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1708 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1709 | lemma atLeastLessThan_shift_0: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1710 | fixes m n p :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1711 |   shows "F g {m..<n} = F (g \<circ> plus m) {0..<n - m}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1712 | using atLeastLessThan_shift_bounds [of g 0 m "n - m"] | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1713 | by (cases "m \<le> n") simp_all | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1714 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1715 | lemma atLeastAtMost_shift_0: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1716 | fixes m n p :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1717 | assumes "m \<le> n" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1718 |   shows "F g {m..n} = F (g \<circ> plus m) {0..n - m}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1719 | using assms atLeastAtMost_shift_bounds [of g 0 m "n - m"] by simp | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1720 | |
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1721 | lemma atLeastLessThan_concat: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1722 | fixes m n p :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1723 |   shows "m \<le> n \<Longrightarrow> n \<le> p \<Longrightarrow> F g {m..<n} \<^bold>* F g {n..<p} = F g {m..<p}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1724 | by (simp add: union_disjoint [symmetric] ivl_disj_un) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1725 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1726 | lemma atLeastLessThan_rev: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1727 |   "F g {n..<m} = F (\<lambda>i. g (m + n - Suc i)) {n..<m}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1728 | by (rule reindex_bij_witness [where i="\<lambda>i. m + n - Suc i" and j="\<lambda>i. m + n - Suc i"], auto) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1729 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1730 | lemma atLeastAtMost_rev: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1731 | fixes n m :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1732 |   shows "F g {n..m} = F (\<lambda>i. g (m + n - i)) {n..m}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1733 | by (rule reindex_bij_witness [where i="\<lambda>i. m + n - i" and j="\<lambda>i. m + n - i"]) auto | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1734 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1735 | lemma atLeastLessThan_rev_at_least_Suc_atMost: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1736 |   "F g {n..<m} = F (\<lambda>i. g (m + n - i)) {Suc n..m}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1737 | unfolding atLeastLessThan_rev [of g n m] | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1738 | by (cases m) (simp_all add: atLeast_Suc_atMost_Suc_shift atLeastLessThanSuc_atLeastAtMost) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1739 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1740 | end | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1741 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1742 | |
| 60758 | 1743 | subsection \<open>Summation indexed over intervals\<close> | 
| 15042 | 1744 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1745 | syntax (ASCII) | 
| 64267 | 1746 |   "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 1747 |   "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 1748 |   "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<_./ _)" [0,0,10] 10)
 | |
| 1749 |   "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1750 | |
| 15056 | 1751 | syntax (latex_sum output) | 
| 64267 | 1752 | "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1753 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ = _\<^latex>\<open>}^{\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64267 | 1754 | "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1755 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ = _\<^latex>\<open>}^{<\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64267 | 1756 | "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1757 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ < _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 64267 | 1758 | "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1759 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ \<le> _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1760 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1761 | syntax | 
| 64267 | 1762 |   "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 1763 |   "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 1764 |   "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | |
| 1765 |   "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1766 | |
| 15048 | 1767 | translations | 
| 64267 | 1768 |   "\<Sum>x=a..b. t" == "CONST sum (\<lambda>x. t) {a..b}"
 | 
| 1769 |   "\<Sum>x=a..<b. t" == "CONST sum (\<lambda>x. t) {a..<b}"
 | |
| 1770 |   "\<Sum>i\<le>n. t" == "CONST sum (\<lambda>i. t) {..n}"
 | |
| 1771 |   "\<Sum>i<n. t" == "CONST sum (\<lambda>i. t) {..<n}"
 | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1772 | |
| 60758 | 1773 | text\<open>The above introduces some pretty alternative syntaxes for | 
| 15056 | 1774 | summation over intervals: | 
| 15052 | 1775 | \begin{center}
 | 
| 1776 | \begin{tabular}{lll}
 | |
| 15056 | 1777 | Old & New & \LaTeX\\ | 
| 1778 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 1779 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 1780 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 1781 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 1782 | \end{tabular}
 | 
| 1783 | \end{center}
 | |
| 15056 | 1784 | The left column shows the term before introduction of the new syntax, | 
| 1785 | the middle column shows the new (default) syntax, and the right column | |
| 1786 | shows a special syntax. The latter is only meaningful for latex output | |
| 1787 | and has to be activated explicitly by setting the print mode to | |
| 61799 | 1788 | \<open>latex_sum\<close> (e.g.\ via \<open>mode = latex_sum\<close> in | 
| 15056 | 1789 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 1790 | works well with italic-style formulae, not tt-style. | |
| 15052 | 1791 | |
| 1792 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 64267 | 1793 | @{term"\<Sum>x::nat=0..<n. e"} rather than \<open>\<Sum>x<n. e\<close>: \<open>sum\<close> may
 | 
| 15052 | 1794 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | 
| 60758 | 1795 | special form for @{term"{..<n}"}.\<close>
 | 
| 15052 | 1796 | |
| 60758 | 1797 | text\<open>This congruence rule should be used for sums over intervals as | 
| 64267 | 1798 | the standard theorem @{text[source]sum.cong} does not work well
 | 
| 67613 | 1799 | with the simplifier who adds the unsimplified premise @{term"x\<in>B"} to
 | 
| 60758 | 1800 | the context.\<close> | 
| 15542 | 1801 | |
| 64267 | 1802 | lemmas sum_ivl_cong = sum.ivl_cong | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1803 | |
| 16041 | 1804 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 1805 | on intervals are not? *) | |
| 1806 | ||
| 64267 | 1807 | lemma sum_atMost_Suc [simp]: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1808 | "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f (Suc n)" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1809 | by (simp add: atMost_Suc ac_simps) | 
| 16052 | 1810 | |
| 64267 | 1811 | lemma sum_lessThan_Suc [simp]: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1812 | "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1813 | by (simp add: lessThan_Suc ac_simps) | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1814 | |
| 64267 | 1815 | lemma sum_cl_ivl_Suc [simp]: | 
| 1816 |   "sum f {m..Suc n} = (if Suc n < m then 0 else sum f {m..n} + f(Suc n))"
 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1817 | by (auto simp: ac_simps atLeastAtMostSuc_conv) | 
| 15561 | 1818 | |
| 64267 | 1819 | lemma sum_op_ivl_Suc [simp]: | 
| 1820 |   "sum f {m..<Suc n} = (if n < m then 0 else sum f {m..<n} + f(n))"
 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1821 | by (auto simp: ac_simps atLeastLessThanSuc) | 
| 16041 | 1822 | (* | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1823 | lemma sum_cl_ivl_add_one_nat: "(n::nat) \<le> m + 1 ==> | 
| 15561 | 1824 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1825 | by (auto simp:ac_simps atLeastAtMostSuc_conv) | 
| 16041 | 1826 | *) | 
| 28068 | 1827 | |
| 64267 | 1828 | lemma sum_head: | 
| 28068 | 1829 | fixes n :: nat | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1830 | assumes mn: "m \<le> n" | 
| 28068 | 1831 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | 
| 1832 | proof - | |
| 1833 | from mn | |
| 1834 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 1835 | by (auto intro: ivl_disj_un_singleton) | |
| 1836 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | |
| 1837 | by (simp add: atLeast0LessThan) | |
| 1838 | also have "\<dots> = ?rhs" by simp | |
| 1839 | finally show ?thesis . | |
| 1840 | qed | |
| 1841 | ||
| 64267 | 1842 | lemma sum_head_Suc: | 
| 1843 |   "m \<le> n \<Longrightarrow> sum f {m..n} = f m + sum f {Suc m..n}"
 | |
| 67987 | 1844 | by (fact sum.atLeast_Suc_atMost) | 
| 64267 | 1845 | |
| 1846 | lemma sum_head_upt_Suc: | |
| 1847 |   "m < n \<Longrightarrow> sum f {m..<n} = f m + sum f {Suc m..<n}"
 | |
| 67987 | 1848 | by (fact sum.atLeast_Suc_lessThan) | 
| 28068 | 1849 | |
| 64267 | 1850 | lemma sum_ub_add_nat: assumes "(m::nat) \<le> n + 1" | 
| 1851 |   shows "sum f {m..n + p} = sum f {m..n} + sum f {n + 1..n + p}"
 | |
| 31501 | 1852 | proof- | 
| 60758 | 1853 |   have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using \<open>m \<le> n+1\<close> by auto
 | 
| 64267 | 1854 | thus ?thesis by (auto simp: ivl_disj_int sum.union_disjoint | 
| 31501 | 1855 | atLeastSucAtMost_greaterThanAtMost) | 
| 1856 | qed | |
| 28068 | 1857 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1858 | lemmas sum_add_nat_ivl = sum.atLeastLessThan_concat | 
| 64267 | 1859 | |
| 1860 | lemma sum_diff_nat_ivl: | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1861 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1862 |   shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> sum f {m..<p} - sum f {m..<n} = sum f {n..<p}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1863 | using sum_add_nat_ivl [of m n p f,symmetric] | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1864 | by (simp add: ac_simps) | 
| 15539 | 1865 | |
| 64267 | 1866 | lemma sum_natinterval_difff: | 
| 31505 | 1867 |   fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
 | 
| 64267 | 1868 |   shows  "sum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1869 | (if m \<le> n then f m - f(n + 1) else 0)" | 
| 31505 | 1870 | by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) | 
| 1871 | ||
| 64267 | 1872 | lemma sum_nat_group: "(\<Sum>m<n::nat. sum f {m * k ..< m*k + k}) = sum f {..< n * k}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1873 | proof (cases k) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1874 | case (Suc l) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1875 | then have "k > 0" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1876 | by auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1877 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1878 | by (induct n) (simp_all add: sum_add_nat_ivl add.commute atLeast0LessThan[symmetric]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1879 | qed auto | 
| 28068 | 1880 | |
| 64267 | 1881 | lemma sum_triangle_reindex: | 
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1882 | fixes n :: nat | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1883 |   shows "(\<Sum>(i,j)\<in>{(i,j). i+j < n}. f i j) = (\<Sum>k<n. \<Sum>i\<le>k. f i (k - i))"
 | 
| 64267 | 1884 | apply (simp add: sum.Sigma) | 
| 1885 | apply (rule sum.reindex_bij_witness[where j="\<lambda>(i, j). (i+j, i)" and i="\<lambda>(k, i). (i, k - i)"]) | |
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1886 | apply auto | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1887 | done | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1888 | |
| 64267 | 1889 | lemma sum_triangle_reindex_eq: | 
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1890 | fixes n :: nat | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1891 |   shows "(\<Sum>(i,j)\<in>{(i,j). i+j \<le> n}. f i j) = (\<Sum>k\<le>n. \<Sum>i\<le>k. f i (k - i))"
 | 
| 64267 | 1892 | using sum_triangle_reindex [of f "Suc n"] | 
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1893 | by (simp only: Nat.less_Suc_eq_le lessThan_Suc_atMost) | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1894 | |
| 64267 | 1895 | lemma nat_diff_sum_reindex: "(\<Sum>i<n. f (n - Suc i)) = (\<Sum>i<n. f i)" | 
| 1896 | by (rule sum.reindex_bij_witness[where i="\<lambda>i. n - Suc i" and j="\<lambda>i. n - Suc i"]) auto | |
| 60162 | 1897 | |
| 66936 | 1898 | lemma sum_diff_distrib: "\<forall>x. Q x \<le> P x \<Longrightarrow> (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x :: nat)" | 
| 1899 | by (subst sum_subtractf_nat) auto | |
| 1900 | ||
| 67987 | 1901 | context semiring_parity | 
| 1902 | begin | |
| 1903 | ||
| 1904 | lemma take_bit_sum: | |
| 1905 | "take_bit n a = (\<Sum>k = 0..<n. push_bit k (of_bool (odd (drop_bit k a))))" | |
| 1906 | for n :: nat | |
| 1907 | proof (induction n arbitrary: a) | |
| 67816 | 1908 | case 0 | 
| 1909 | then show ?case | |
| 1910 | by simp | |
| 1911 | next | |
| 1912 | case (Suc n) | |
| 67987 | 1913 | have "(\<Sum>k = 0..<Suc n. push_bit k (of_bool (odd (drop_bit k a)))) = | 
| 1914 | of_bool (odd a) + (\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (odd (drop_bit k a))))" | |
| 1915 | by (simp add: sum.atLeast_Suc_lessThan ac_simps) | |
| 1916 | also have "(\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (odd (drop_bit k a)))) | |
| 1917 | = (\<Sum>k = 0..<n. push_bit k (of_bool (odd (drop_bit k (a div 2))))) * 2" | |
| 67907 
02a14c1cb917
prefer convention to place operation name before type name
 haftmann parents: 
67816diff
changeset | 1918 | by (simp only: sum.atLeast_Suc_lessThan_Suc_shift) (simp add: sum_distrib_right push_bit_double) | 
| 67816 | 1919 | finally show ?case | 
| 67987 | 1920 | using Suc [of "a div 2"] by (simp add: ac_simps) | 
| 1921 | qed | |
| 1922 | ||
| 1923 | end | |
| 1924 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1925 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1926 | subsubsection \<open>Shifting bounds\<close> | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1927 | |
| 64267 | 1928 | lemma sum_shift_bounds_nat_ivl: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1929 |   "sum f {m+k..<n+k} = sum (\<lambda>i. f(i + k)){m..<n::nat}"
 | 
| 15539 | 1930 | by (induct "n", auto simp:atLeastLessThanSuc) | 
| 1931 | ||
| 64267 | 1932 | lemma sum_shift_bounds_cl_nat_ivl: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1933 |   "sum f {m+k..n+k} = sum (\<lambda>i. f(i + k)){m..n::nat}"
 | 
| 64267 | 1934 | by (rule sum.reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto | 
| 1935 | ||
| 1936 | corollary sum_shift_bounds_cl_Suc_ivl: | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1937 |   "sum f {Suc m..Suc n} = sum (\<lambda>i. f(Suc i)){m..n}"
 | 
| 64267 | 1938 | by (simp add:sum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 1939 | ||
| 1940 | corollary sum_shift_bounds_Suc_ivl: | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1941 |   "sum f {Suc m..<Suc n} = sum (\<lambda>i. f(Suc i)){m..<n}"
 | 
| 64267 | 1942 | by (simp add:sum_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 1943 | ||
| 66936 | 1944 | context comm_monoid_add | 
| 1945 | begin | |
| 1946 | ||
| 1947 | context | |
| 1948 | fixes f :: "nat \<Rightarrow> 'a" | |
| 1949 | assumes "f 0 = 0" | |
| 1950 | begin | |
| 64267 | 1951 | |
| 1952 | lemma sum_shift_lb_Suc0_0_upt: | |
| 66936 | 1953 |   "sum f {Suc 0..<k} = sum f {0..<k}"
 | 
| 1954 | proof (cases k) | |
| 1955 | case 0 | |
| 1956 | then show ?thesis | |
| 1957 | by simp | |
| 1958 | next | |
| 1959 | case (Suc k) | |
| 1960 |   moreover have "{0..<Suc k} = insert 0 {Suc 0..<Suc k}"
 | |
| 1961 | by auto | |
| 1962 | ultimately show ?thesis | |
| 1963 | using \<open>f 0 = 0\<close> by simp | |
| 1964 | qed | |
| 1965 | ||
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1966 | lemma sum_shift_lb_Suc0_0: "sum f {Suc 0..k} = sum f {0..k}"
 | 
| 66936 | 1967 | proof (cases k) | 
| 1968 | case 0 | |
| 1969 | with \<open>f 0 = 0\<close> show ?thesis | |
| 1970 | by simp | |
| 1971 | next | |
| 1972 | case (Suc k) | |
| 1973 |   moreover have "{0..Suc k} = insert 0 {Suc 0..Suc k}"
 | |
| 1974 | by auto | |
| 1975 | ultimately show ?thesis | |
| 1976 | using \<open>f 0 = 0\<close> by simp | |
| 1977 | qed | |
| 1978 | ||
| 1979 | end | |
| 1980 | ||
| 1981 | end | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1982 | |
| 64267 | 1983 | lemma sum_atMost_Suc_shift: | 
| 52380 | 1984 | fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add" | 
| 1985 | shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | |
| 1986 | proof (induct n) | |
| 1987 | case 0 show ?case by simp | |
| 1988 | next | |
| 1989 | case (Suc n) note IH = this | |
| 1990 | have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))" | |
| 64267 | 1991 | by (rule sum_atMost_Suc) | 
| 52380 | 1992 | also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | 
| 1993 | by (rule IH) | |
| 1994 | also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = | |
| 1995 | f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1996 | by (rule add.assoc) | 
| 52380 | 1997 | also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))" | 
| 64267 | 1998 | by (rule sum_atMost_Suc [symmetric]) | 
| 52380 | 1999 | finally show ?case . | 
| 2000 | qed | |
| 2001 | ||
| 64267 | 2002 | lemma sum_lessThan_Suc_shift: | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63092diff
changeset | 2003 | "(\<Sum>i<Suc n. f i) = f 0 + (\<Sum>i<n. f (Suc i))" | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63092diff
changeset | 2004 | by (induction n) (simp_all add: add_ac) | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63092diff
changeset | 2005 | |
| 64267 | 2006 | lemma sum_atMost_shift: | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 2007 | fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 2008 | shows "(\<Sum>i\<le>n. f i) = f 0 + (\<Sum>i<n. f (Suc i))" | 
| 64267 | 2009 | by (metis atLeast0AtMost atLeast0LessThan atLeastLessThanSuc_atLeastAtMost atLeastSucAtMost_greaterThanAtMost le0 sum_head sum_shift_bounds_Suc_ivl) | 
| 2010 | ||
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2011 | lemma sum_last_plus: fixes n::nat shows "m \<le> n \<Longrightarrow> (\<Sum>i = m..n. f i) = f n + (\<Sum>i = m..<n. f i)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 2012 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost add.commute) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2013 | |
| 64267 | 2014 | lemma sum_Suc_diff: | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2015 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2016 | assumes "m \<le> Suc n" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2017 | shows "(\<Sum>i = m..n. f(Suc i) - f i) = f (Suc n) - f m" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2018 | using assms by (induct n) (auto simp: le_Suc_eq) | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 2019 | |
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2020 | lemma sum_Suc_diff': | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2021 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2022 | assumes "m \<le> n" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2023 | shows "(\<Sum>i = m..<n. f (Suc i) - f i) = f n - f m" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2024 | using assms by (induct n) (auto simp: le_Suc_eq) | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2025 | |
| 64267 | 2026 | lemma nested_sum_swap: | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 2027 | "(\<Sum>i = 0..n. (\<Sum>j = 0..<i. a i j)) = (\<Sum>j = 0..<n. \<Sum>i = Suc j..n. a i j)" | 
| 64267 | 2028 | by (induction n) (auto simp: sum.distrib) | 
| 2029 | ||
| 2030 | lemma nested_sum_swap': | |
| 56215 | 2031 | "(\<Sum>i\<le>n. (\<Sum>j<i. a i j)) = (\<Sum>j<n. \<Sum>i = Suc j..n. a i j)" | 
| 64267 | 2032 | by (induction n) (auto simp: sum.distrib) | 
| 2033 | ||
| 2034 | lemma sum_atLeast1_atMost_eq: | |
| 2035 |   "sum f {Suc 0..n} = (\<Sum>k<n. f (Suc k))"
 | |
| 63365 | 2036 | proof - | 
| 64267 | 2037 |   have "sum f {Suc 0..n} = sum f (Suc ` {..<n})"
 | 
| 63365 | 2038 | by (simp add: image_Suc_lessThan) | 
| 2039 | also have "\<dots> = (\<Sum>k<n. f (Suc k))" | |
| 64267 | 2040 | by (simp add: sum.reindex) | 
| 63365 | 2041 | finally show ?thesis . | 
| 2042 | qed | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2043 | |
| 52380 | 2044 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2045 | subsubsection \<open>Telescoping\<close> | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2046 | |
| 64267 | 2047 | lemma sum_telescope: | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2048 | fixes f::"nat \<Rightarrow> 'a::ab_group_add" | 
| 64267 | 2049 |   shows "sum (\<lambda>i. f i - f (Suc i)) {.. i} = f 0 - f (Suc i)"
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2050 | by (induct i) simp_all | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2051 | |
| 64267 | 2052 | lemma sum_telescope'': | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2053 | assumes "m \<le> n" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2054 |   shows   "(\<Sum>k\<in>{Suc m..n}. f k - f (k - 1)) = f n - (f m :: 'a :: ab_group_add)"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2055 | by (rule dec_induct[OF assms]) (simp_all add: algebra_simps) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2056 | |
| 64267 | 2057 | lemma sum_lessThan_telescope: | 
| 63721 | 2058 | "(\<Sum>n<m. f (Suc n) - f n :: 'a :: ab_group_add) = f m - f 0" | 
| 2059 | by (induction m) (simp_all add: algebra_simps) | |
| 2060 | ||
| 64267 | 2061 | lemma sum_lessThan_telescope': | 
| 63721 | 2062 | "(\<Sum>n<m. f n - f (Suc n) :: 'a :: ab_group_add) = f 0 - f m" | 
| 2063 | by (induction m) (simp_all add: algebra_simps) | |
| 2064 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2065 | |
| 66936 | 2066 | subsubsection \<open>The formula for geometric sums\<close> | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 2067 | |
| 66490 | 2068 | lemma sum_power2: "(\<Sum>i=0..<k. (2::nat)^i) = 2^k-1" | 
| 2069 | by (induction k) (auto simp: mult_2) | |
| 2070 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 2071 | lemma geometric_sum: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2072 | assumes "x \<noteq> 1" | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 2073 | shows "(\<Sum>i<n. x ^ i) = (x ^ n - 1) / (x - 1::'a::field)" | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2074 | proof - | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2075 | from assms obtain y where "y = x - 1" and "y \<noteq> 0" by simp_all | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 2076 | moreover have "(\<Sum>i<n. (y + 1) ^ i) = ((y + 1) ^ n - 1) / y" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2077 | by (induct n) (simp_all add: field_simps \<open>y \<noteq> 0\<close>) | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2078 | ultimately show ?thesis by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2079 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2080 | |
| 64267 | 2081 | lemma diff_power_eq_sum: | 
| 60162 | 2082 |   fixes y :: "'a::{comm_ring,monoid_mult}"
 | 
| 2083 | shows | |
| 2084 | "x ^ (Suc n) - y ^ (Suc n) = | |
| 2085 | (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))" | |
| 2086 | proof (induct n) | |
| 2087 | case (Suc n) | |
| 2088 | have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x^n) - y * (y * y ^ n)" | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2089 | by simp | 
| 60162 | 2090 | also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x^n)" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2091 | by (simp add: algebra_simps) | 
| 60162 | 2092 | also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | 
| 2093 | by (simp only: Suc) | |
| 2094 | also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | |
| 2095 | by (simp only: mult.left_commute) | |
| 2096 | also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))" | |
| 64267 | 2097 | by (simp add: field_simps Suc_diff_le sum_distrib_right sum_distrib_left) | 
| 60162 | 2098 | finally show ?case . | 
| 2099 | qed simp | |
| 2100 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 2101 | corollary power_diff_sumr2: \<comment> \<open>\<open>COMPLEX_POLYFUN\<close> in HOL Light\<close> | 
| 60162 | 2102 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 2103 | shows "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)" | |
| 64267 | 2104 | using diff_power_eq_sum[of x "n - 1" y] | 
| 60162 | 2105 | by (cases "n = 0") (simp_all add: field_simps) | 
| 2106 | ||
| 2107 | lemma power_diff_1_eq: | |
| 2108 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 2109 | shows "n \<noteq> 0 \<Longrightarrow> x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))" | |
| 64267 | 2110 | using diff_power_eq_sum [of x _ 1] | 
| 60162 | 2111 | by (cases n) auto | 
| 2112 | ||
| 2113 | lemma one_diff_power_eq': | |
| 2114 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 2115 | shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))" | |
| 64267 | 2116 | using diff_power_eq_sum [of 1 _ x] | 
| 60162 | 2117 | by (cases n) auto | 
| 2118 | ||
| 2119 | lemma one_diff_power_eq: | |
| 2120 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 2121 | shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^i)" | |
| 64267 | 2122 | by (metis one_diff_power_eq' [of n x] nat_diff_sum_reindex) | 
| 60162 | 2123 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2124 | lemma sum_gp_basic: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2125 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2126 | shows "(1 - x) * (\<Sum>i\<le>n. x^i) = 1 - x^Suc n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2127 | by (simp only: one_diff_power_eq [of "Suc n" x] lessThan_Suc_atMost) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2128 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2129 | lemma sum_power_shift: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2130 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2131 | assumes "m \<le> n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2132 | shows "(\<Sum>i=m..n. x^i) = x^m * (\<Sum>i\<le>n-m. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2133 | proof - | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2134 | have "(\<Sum>i=m..n. x^i) = x^m * (\<Sum>i=m..n. x^(i-m))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2135 | by (simp add: sum_distrib_left power_add [symmetric]) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2136 | also have "(\<Sum>i=m..n. x^(i-m)) = (\<Sum>i\<le>n-m. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2137 | using \<open>m \<le> n\<close> by (intro sum.reindex_bij_witness[where j="\<lambda>i. i - m" and i="\<lambda>i. i + m"]) auto | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2138 | finally show ?thesis . | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2139 | qed | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2140 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2141 | lemma sum_gp_multiplied: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2142 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2143 | assumes "m \<le> n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2144 | shows "(1 - x) * (\<Sum>i=m..n. x^i) = x^m - x^Suc n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2145 | proof - | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2146 | have "(1 - x) * (\<Sum>i=m..n. x^i) = x^m * (1 - x) * (\<Sum>i\<le>n-m. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2147 | by (metis mult.assoc mult.commute assms sum_power_shift) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2148 | also have "... =x^m * (1 - x^Suc(n-m))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2149 | by (metis mult.assoc sum_gp_basic) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2150 | also have "... = x^m - x^Suc n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2151 | using assms | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2152 | by (simp add: algebra_simps) (metis le_add_diff_inverse power_add) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2153 | finally show ?thesis . | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2154 | qed | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2155 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2156 | lemma sum_gp: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2157 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2158 | shows "(\<Sum>i=m..n. x^i) = | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2159 | (if n < m then 0 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2160 | else if x = 1 then of_nat((n + 1) - m) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2161 | else (x^m - x^Suc n) / (1 - x))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2162 | using sum_gp_multiplied [of m n x] apply auto | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2163 | by (metis eq_iff_diff_eq_0 mult.commute nonzero_divide_eq_eq) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2164 | |
| 66936 | 2165 | |
| 2166 | subsubsection\<open>Geometric progressions\<close> | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2167 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2168 | lemma sum_gp0: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2169 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2170 | shows "(\<Sum>i\<le>n. x^i) = (if x = 1 then of_nat(n + 1) else (1 - x^Suc n) / (1 - x))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2171 | using sum_gp_basic[of x n] | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2172 | by (simp add: mult.commute divide_simps) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2173 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2174 | lemma sum_power_add: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2175 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2176 | shows "(\<Sum>i\<in>I. x^(m+i)) = x^m * (\<Sum>i\<in>I. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2177 | by (simp add: sum_distrib_left power_add) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2178 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2179 | lemma sum_gp_offset: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2180 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2181 | shows "(\<Sum>i=m..m+n. x^i) = | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2182 | (if x = 1 then of_nat n + 1 else x^m * (1 - x^Suc n) / (1 - x))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2183 | using sum_gp [of x m "m+n"] | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2184 | by (auto simp: power_add algebra_simps) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2185 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2186 | lemma sum_gp_strict: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2187 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2188 | shows "(\<Sum>i<n. x^i) = (if x = 1 then of_nat n else (1 - x^n) / (1 - x))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2189 | by (induct n) (auto simp: algebra_simps divide_simps) | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 2190 | |
| 66936 | 2191 | |
| 2192 | subsubsection \<open>The formulae for arithmetic sums\<close> | |
| 2193 | ||
| 2194 | context comm_semiring_1 | |
| 2195 | begin | |
| 2196 | ||
| 2197 | lemma double_gauss_sum: | |
| 2198 | "2 * (\<Sum>i = 0..n. of_nat i) = of_nat n * (of_nat n + 1)" | |
| 2199 | by (induct n) (simp_all add: sum.atLeast0_atMost_Suc algebra_simps left_add_twice) | |
| 2200 | ||
| 2201 | lemma double_gauss_sum_from_Suc_0: | |
| 2202 | "2 * (\<Sum>i = Suc 0..n. of_nat i) = of_nat n * (of_nat n + 1)" | |
| 2203 | proof - | |
| 2204 |   have "sum of_nat {Suc 0..n} = sum of_nat (insert 0 {Suc 0..n})"
 | |
| 2205 | by simp | |
| 2206 |   also have "\<dots> = sum of_nat {0..n}"
 | |
| 2207 | by (cases n) (simp_all add: atLeast0_atMost_Suc_eq_insert_0) | |
| 2208 | finally show ?thesis | |
| 2209 | by (simp add: double_gauss_sum) | |
| 2210 | qed | |
| 2211 | ||
| 2212 | lemma double_arith_series: | |
| 2213 | "2 * (\<Sum>i = 0..n. a + of_nat i * d) = (of_nat n + 1) * (2 * a + of_nat n * d)" | |
| 2214 | proof - | |
| 2215 | have "(\<Sum>i = 0..n. a + of_nat i * d) = ((\<Sum>i = 0..n. a) + (\<Sum>i = 0..n. of_nat i * d))" | |
| 2216 | by (rule sum.distrib) | |
| 2217 | also have "\<dots> = (of_nat (Suc n) * a + d * (\<Sum>i = 0..n. of_nat i))" | |
| 2218 | by (simp add: sum_distrib_left algebra_simps) | |
| 2219 | finally show ?thesis | |
| 2220 | by (simp add: algebra_simps double_gauss_sum left_add_twice) | |
| 2221 | qed | |
| 2222 | ||
| 2223 | end | |
| 2224 | ||
| 2225 | context semiring_parity | |
| 2226 | begin | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2227 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 2228 | lemma gauss_sum: | 
| 66936 | 2229 | "(\<Sum>i = 0..n. of_nat i) = of_nat n * (of_nat n + 1) div 2" | 
| 2230 | using double_gauss_sum [of n, symmetric] by simp | |
| 2231 | ||
| 2232 | lemma gauss_sum_from_Suc_0: | |
| 2233 | "(\<Sum>i = Suc 0..n. of_nat i) = of_nat n * (of_nat n + 1) div 2" | |
| 2234 | using double_gauss_sum_from_Suc_0 [of n, symmetric] by simp | |
| 2235 | ||
| 2236 | lemma arith_series: | |
| 2237 | "(\<Sum>i = 0..n. a + of_nat i * d) = (of_nat n + 1) * (2 * a + of_nat n * d) div 2" | |
| 2238 | using double_arith_series [of a d n, symmetric] by simp | |
| 2239 | ||
| 2240 | end | |
| 2241 | ||
| 2242 | lemma gauss_sum_nat: | |
| 2243 |   "\<Sum>{0..n} = (n * Suc n) div 2"
 | |
| 2244 | using gauss_sum [of n, where ?'a = nat] by simp | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2245 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2246 | lemma arith_series_nat: | 
| 66936 | 2247 | "(\<Sum>i = 0..n. a + i * d) = Suc n * (2 * a + n * d) div 2" | 
| 2248 | using arith_series [of a d n] by simp | |
| 2249 | ||
| 2250 | lemma Sum_Icc_int: | |
| 2251 |   "\<Sum>{m..n} = (n * (n + 1) - m * (m - 1)) div 2"
 | |
| 2252 | if "m \<le> n" for m n :: int | |
| 2253 | using that proof (induct i \<equiv> "nat (n - m)" arbitrary: m n) | |
| 2254 | case 0 | |
| 2255 | then have "m = n" | |
| 2256 | by arith | |
| 2257 | then show ?case | |
| 2258 | by (simp add: algebra_simps mult_2 [symmetric]) | |
| 2259 | next | |
| 2260 | case (Suc i) | |
| 2261 | have 0: "i = nat((n-1) - m)" "m \<le> n-1" using Suc(2,3) by arith+ | |
| 2262 |   have "\<Sum> {m..n} = \<Sum> {m..1+(n-1)}" by simp
 | |
| 2263 |   also have "\<dots> = \<Sum> {m..n-1} + n" using \<open>m \<le> n\<close>
 | |
| 2264 | by(subst atLeastAtMostPlus1_int_conv) simp_all | |
| 2265 | also have "\<dots> = ((n-1)*(n-1+1) - m*(m-1)) div 2 + n" | |
| 2266 | by(simp add: Suc(1)[OF 0]) | |
| 2267 | also have "\<dots> = ((n-1)*(n-1+1) - m*(m-1) + 2*n) div 2" by simp | |
| 2268 | also have "\<dots> = (n*(n+1) - m*(m-1)) div 2" | |
| 2269 | by (simp add: algebra_simps mult_2_right) | |
| 2270 | finally show ?case . | |
| 2271 | qed | |
| 2272 | ||
| 2273 | lemma Sum_Icc_nat: | |
| 2274 |   "\<Sum>{m..n} = (n * (n + 1) - m * (m - 1)) div 2"
 | |
| 2275 | if "m \<le> n" for m n :: nat | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2276 | proof - | 
| 66936 | 2277 | have *: "m * (m - 1) \<le> n * (n + 1)" | 
| 2278 | using that by (meson diff_le_self order_trans le_add1 mult_le_mono) | |
| 2279 |   have "int (\<Sum>{m..n}) = (\<Sum>{int m..int n})"
 | |
| 2280 | by (simp add: sum.atLeast_int_atMost_int_shift) | |
| 2281 | also have "\<dots> = (int n * (int n + 1) - int m * (int m - 1)) div 2" | |
| 2282 | using that by (simp add: Sum_Icc_int) | |
| 2283 | also have "\<dots> = int ((n * (n + 1) - m * (m - 1)) div 2)" | |
| 2284 | using le_square * by (simp add: algebra_simps of_nat_div of_nat_diff) | |
| 2285 | finally show ?thesis | |
| 2286 | by (simp only: of_nat_eq_iff) | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2287 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2288 | |
| 66936 | 2289 | lemma Sum_Ico_nat: | 
| 2290 |   "\<Sum>{m..<n} = (n * (n - 1) - m * (m - 1)) div 2"
 | |
| 2291 | if "m \<le> n" for m n :: nat | |
| 2292 | proof - | |
| 2293 | from that consider "m < n" | "m = n" | |
| 2294 | by (auto simp add: less_le) | |
| 2295 | then show ?thesis proof cases | |
| 2296 | case 1 | |
| 2297 |     then have "{m..<n} = {m..n - 1}"
 | |
| 2298 | by auto | |
| 2299 |     then have "\<Sum>{m..<n} = \<Sum>{m..n - 1}"
 | |
| 2300 | by simp | |
| 2301 | also have "\<dots> = (n * (n - 1) - m * (m - 1)) div 2" | |
| 2302 | using \<open>m < n\<close> by (simp add: Sum_Icc_nat mult.commute) | |
| 2303 | finally show ?thesis . | |
| 2304 | next | |
| 2305 | case 2 | |
| 2306 | then show ?thesis | |
| 2307 | by simp | |
| 2308 | qed | |
| 2309 | qed | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 2310 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2311 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2312 | subsubsection \<open>Division remainder\<close> | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2313 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2314 | lemma range_mod: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2315 | fixes n :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2316 | assumes "n > 0" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2317 |   shows "range (\<lambda>m. m mod n) = {0..<n}" (is "?A = ?B")
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2318 | proof (rule set_eqI) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2319 | fix m | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2320 | show "m \<in> ?A \<longleftrightarrow> m \<in> ?B" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2321 | proof | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2322 | assume "m \<in> ?A" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2323 | with assms show "m \<in> ?B" | 
| 63915 | 2324 | by auto | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2325 | next | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2326 | assume "m \<in> ?B" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2327 | moreover have "m mod n \<in> ?A" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2328 | by (rule rangeI) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2329 | ultimately show "m \<in> ?A" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2330 | by simp | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2331 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2332 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2333 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2334 | |
| 60758 | 2335 | subsection \<open>Products indexed over intervals\<close> | 
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2336 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2337 | syntax (ASCII) | 
| 64272 | 2338 |   "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 2339 |   "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 2340 |   "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<_./ _)" [0,0,10] 10)
 | |
| 2341 |   "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<=_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2342 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2343 | syntax (latex_prod output) | 
| 64272 | 2344 | "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2345 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ = _\<^latex>\<open>}^{\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64272 | 2346 | "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2347 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ = _\<^latex>\<open>}^{<\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64272 | 2348 | "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2349 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ < _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 64272 | 2350 | "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2351 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ \<le> _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2352 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2353 | syntax | 
| 64272 | 2354 |   "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 2355 |   "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 2356 |   "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | |
| 2357 |   "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2358 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2359 | translations | 
| 64272 | 2360 |   "\<Prod>x=a..b. t" \<rightleftharpoons> "CONST prod (\<lambda>x. t) {a..b}"
 | 
| 2361 |   "\<Prod>x=a..<b. t" \<rightleftharpoons> "CONST prod (\<lambda>x. t) {a..<b}"
 | |
| 2362 |   "\<Prod>i\<le>n. t" \<rightleftharpoons> "CONST prod (\<lambda>i. t) {..n}"
 | |
| 2363 |   "\<Prod>i<n. t" \<rightleftharpoons> "CONST prod (\<lambda>i. t) {..<n}"
 | |
| 2364 | ||
| 68361 | 2365 | lemma prod_atLeast1_atMost_eq: | 
| 2366 |   "prod f {Suc 0..n} = (\<Prod>k<n. f (Suc k))"
 | |
| 2367 | proof - | |
| 2368 |   have "prod f {Suc 0..n} = prod f (Suc ` {..<n})"
 | |
| 2369 | by (simp add: image_Suc_lessThan) | |
| 2370 | also have "\<dots> = (\<Prod>k<n. f (Suc k))" | |
| 2371 | by (simp add: prod.reindex) | |
| 2372 | finally show ?thesis . | |
| 2373 | qed | |
| 2374 | ||
| 64272 | 2375 | lemma prod_int_plus_eq: "prod int {i..i+j} =  \<Prod>{int i..int (i+j)}"
 | 
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2376 | by (induct j) (auto simp add: atLeastAtMostSuc_conv atLeastAtMostPlus1_int_conv) | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2377 | |
| 64272 | 2378 | lemma prod_int_eq: "prod int {i..j} =  \<Prod>{int i..int j}"
 | 
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2379 | proof (cases "i \<le> j") | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2380 | case True | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2381 | then show ?thesis | 
| 64272 | 2382 | by (metis le_iff_add prod_int_plus_eq) | 
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2383 | next | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2384 | case False | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2385 | then show ?thesis | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2386 | by auto | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2387 | qed | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2388 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2389 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2390 | subsubsection \<open>Shifting bounds\<close> | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2391 | |
| 64272 | 2392 | lemma prod_shift_bounds_nat_ivl: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2393 |   "prod f {m+k..<n+k} = prod (\<lambda>i. f(i + k)){m..<n::nat}"
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2394 | by (induct "n", auto simp:atLeastLessThanSuc) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2395 | |
| 64272 | 2396 | lemma prod_shift_bounds_cl_nat_ivl: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2397 |   "prod f {m+k..n+k} = prod (\<lambda>i. f(i + k)){m..n::nat}"
 | 
| 64272 | 2398 | by (rule prod.reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto | 
| 2399 | ||
| 2400 | corollary prod_shift_bounds_cl_Suc_ivl: | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2401 |   "prod f {Suc m..Suc n} = prod (\<lambda>i. f(Suc i)){m..n}"
 | 
| 64272 | 2402 | by (simp add:prod_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 2403 | ||
| 2404 | corollary prod_shift_bounds_Suc_ivl: | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2405 |   "prod f {Suc m..<Suc n} = prod (\<lambda>i. f(Suc i)){m..<n}"
 | 
| 64272 | 2406 | by (simp add:prod_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 2407 | ||
| 68361 | 2408 | lemma prod_lessThan_Suc [simp]: "prod f {..<Suc n} = prod f {..<n} * f n"
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2409 | by (simp add: lessThan_Suc mult.commute) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2410 | |
| 64272 | 2411 | lemma prod_lessThan_Suc_shift:"(\<Prod>i<Suc n. f i) = f 0 * (\<Prod>i<n. f (Suc i))" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63171diff
changeset | 2412 | by (induction n) (simp_all add: lessThan_Suc mult_ac) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63171diff
changeset | 2413 | |
| 64272 | 2414 | lemma prod_atLeastLessThan_Suc: "a \<le> b \<Longrightarrow> prod f {a..<Suc b} = prod f {a..<b} * f b"
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2415 | by (simp add: atLeastLessThanSuc mult.commute) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2416 | |
| 64272 | 2417 | lemma prod_nat_ivl_Suc': | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2418 | assumes "m \<le> Suc n" | 
| 64272 | 2419 |   shows   "prod f {m..Suc n} = f (Suc n) * prod f {m..n}"
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2420 | proof - | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2421 |   from assms have "{m..Suc n} = insert (Suc n) {m..n}" by auto
 | 
| 64272 | 2422 |   also have "prod f \<dots> = f (Suc n) * prod f {m..n}" by simp
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2423 | finally show ?thesis . | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2424 | qed | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2425 | |
| 68064 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2426 | lemma prod_nat_group: "(\<Prod>m<n::nat. prod f {m * k ..< m*k + k}) = prod f {..< n * k}"
 | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2427 | proof (cases "k = 0") | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2428 | case True | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2429 | then show ?thesis | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2430 | by auto | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2431 | next | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2432 | case False | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2433 | then show ?thesis | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2434 | by (induct "n"; simp add: prod.atLeastLessThan_concat algebra_simps atLeast0_lessThan_Suc atLeast0LessThan[symmetric]) | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2435 | qed | 
| 
b249fab48c76
type class generalisations; some work on infinite products
 paulson <lp15@cam.ac.uk> parents: 
67987diff
changeset | 2436 | |
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2437 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2438 | subsection \<open>Efficient folding over intervals\<close> | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2439 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2440 | function fold_atLeastAtMost_nat where | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2441 | [simp del]: "fold_atLeastAtMost_nat f a (b::nat) acc = | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2442 | (if a > b then acc else fold_atLeastAtMost_nat f (a+1) b (f a acc))" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2443 | by pat_completeness auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2444 | termination by (relation "measure (\<lambda>(_,a,b,_). Suc b - a)") auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2445 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2446 | lemma fold_atLeastAtMost_nat: | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2447 | assumes "comp_fun_commute f" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2448 |   shows   "fold_atLeastAtMost_nat f a b acc = Finite_Set.fold f acc {a..b}"
 | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2449 | using assms | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2450 | proof (induction f a b acc rule: fold_atLeastAtMost_nat.induct, goal_cases) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2451 | case (1 f a b acc) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2452 | interpret comp_fun_commute f by fact | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2453 | show ?case | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2454 | proof (cases "a > b") | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2455 | case True | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2456 | thus ?thesis by (subst fold_atLeastAtMost_nat.simps) auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2457 | next | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2458 | case False | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2459 | with 1 show ?thesis | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2460 | by (subst fold_atLeastAtMost_nat.simps) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2461 | (auto simp: atLeastAtMost_insertL[symmetric] fold_fun_left_comm) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2462 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2463 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2464 | |
| 64267 | 2465 | lemma sum_atLeastAtMost_code: | 
| 2466 |   "sum f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a + acc) a b 0"
 | |
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2467 | proof - | 
| 67399 | 2468 | have "comp_fun_commute (\<lambda>a. (+) (f a))" | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2469 | by unfold_locales (auto simp: o_def add_ac) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2470 | thus ?thesis | 
| 64267 | 2471 | by (simp add: sum.eq_fold fold_atLeastAtMost_nat o_def) | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2472 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2473 | |
| 64272 | 2474 | lemma prod_atLeastAtMost_code: | 
| 2475 |   "prod f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a * acc) a b 1"
 | |
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2476 | proof - | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 2477 | have "comp_fun_commute (\<lambda>a. (*) (f a))" | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2478 | by unfold_locales (auto simp: o_def mult_ac) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2479 | thus ?thesis | 
| 64272 | 2480 | by (simp add: prod.eq_fold fold_atLeastAtMost_nat o_def) | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2481 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2482 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2483 | (* TODO: Add support for more kinds of intervals here *) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2484 | |
| 8924 | 2485 | end |