author | paulson <lp15@cam.ac.uk> |
Wed, 26 Apr 2017 15:53:35 +0100 | |
changeset 65583 | 8d53b3bebab4 |
parent 64604 | 2bf8cfc98c4d |
child 68644 | 242d298526a3 |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/HSeries.thy |
2 |
Author: Jacques D. Fleuriot |
|
3 |
Copyright: 1998 University of Cambridge |
|
27468 | 4 |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
58878
diff
changeset
|
5 |
Converted to Isar and polished by lcp |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
58878
diff
changeset
|
6 |
*) |
27468 | 7 |
|
64604 | 8 |
section \<open>Finite Summation and Infinite Series for Hyperreals\<close> |
27468 | 9 |
|
10 |
theory HSeries |
|
64604 | 11 |
imports HSEQ |
27468 | 12 |
begin |
13 |
||
64604 | 14 |
definition sumhr :: "hypnat \<times> hypnat \<times> (nat \<Rightarrow> real) \<Rightarrow> hypreal" |
15 |
where "sumhr = (\<lambda>(M,N,f). starfun2 (\<lambda>m n. sum f {m..<n}) M N)" |
|
16 |
||
17 |
definition NSsums :: "(nat \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> bool" (infixr "NSsums" 80) |
|
18 |
where "f NSsums s = (\<lambda>n. sum f {..<n}) \<longlonglongrightarrow>\<^sub>N\<^sub>S s" |
|
27468 | 19 |
|
64604 | 20 |
definition NSsummable :: "(nat \<Rightarrow> real) \<Rightarrow> bool" |
21 |
where "NSsummable f \<longleftrightarrow> (\<exists>s. f NSsums s)" |
|
27468 | 22 |
|
64604 | 23 |
definition NSsuminf :: "(nat \<Rightarrow> real) \<Rightarrow> real" |
24 |
where "NSsuminf f = (THE s. f NSsums s)" |
|
27468 | 25 |
|
64604 | 26 |
lemma sumhr_app: "sumhr (M, N, f) = ( *f2* (\<lambda>m n. sum f {m..<n})) M N" |
27 |
by (simp add: sumhr_def) |
|
27468 | 28 |
|
64604 | 29 |
text \<open>Base case in definition of @{term sumr}.\<close> |
30 |
lemma sumhr_zero [simp]: "\<And>m. sumhr (m, 0, f) = 0" |
|
31 |
unfolding sumhr_app by transfer simp |
|
27468 | 32 |
|
64604 | 33 |
text \<open>Recursive case in definition of @{term sumr}.\<close> |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
58878
diff
changeset
|
34 |
lemma sumhr_if: |
64604 | 35 |
"\<And>m n. sumhr (m, n + 1, f) = (if n + 1 \<le> m then 0 else sumhr (m, n, f) + ( *f* f) n)" |
36 |
unfolding sumhr_app by transfer simp |
|
37 |
||
38 |
lemma sumhr_Suc_zero [simp]: "\<And>n. sumhr (n + 1, n, f) = 0" |
|
39 |
unfolding sumhr_app by transfer simp |
|
27468 | 40 |
|
64604 | 41 |
lemma sumhr_eq_bounds [simp]: "\<And>n. sumhr (n, n, f) = 0" |
42 |
unfolding sumhr_app by transfer simp |
|
27468 | 43 |
|
64604 | 44 |
lemma sumhr_Suc [simp]: "\<And>m. sumhr (m, m + 1, f) = ( *f* f) m" |
45 |
unfolding sumhr_app by transfer simp |
|
27468 | 46 |
|
64604 | 47 |
lemma sumhr_add_lbound_zero [simp]: "\<And>k m. sumhr (m + k, k, f) = 0" |
48 |
unfolding sumhr_app by transfer simp |
|
27468 | 49 |
|
64604 | 50 |
lemma sumhr_add: "\<And>m n. sumhr (m, n, f) + sumhr (m, n, g) = sumhr (m, n, \<lambda>i. f i + g i)" |
51 |
unfolding sumhr_app by transfer (rule sum.distrib [symmetric]) |
|
27468 | 52 |
|
64604 | 53 |
lemma sumhr_mult: "\<And>m n. hypreal_of_real r * sumhr (m, n, f) = sumhr (m, n, \<lambda>n. r * f n)" |
54 |
unfolding sumhr_app by transfer (rule sum_distrib_left) |
|
27468 | 55 |
|
64604 | 56 |
lemma sumhr_split_add: "\<And>n p. n < p \<Longrightarrow> sumhr (0, n, f) + sumhr (n, p, f) = sumhr (0, p, f)" |
57 |
unfolding sumhr_app by transfer (simp add: sum_add_nat_ivl) |
|
27468 | 58 |
|
64604 | 59 |
lemma sumhr_split_diff: "n < p \<Longrightarrow> sumhr (0, p, f) - sumhr (0, n, f) = sumhr (n, p, f)" |
60 |
by (drule sumhr_split_add [symmetric, where f = f]) simp |
|
27468 | 61 |
|
64604 | 62 |
lemma sumhr_hrabs: "\<And>m n. \<bar>sumhr (m, n, f)\<bar> \<le> sumhr (m, n, \<lambda>i. \<bar>f i\<bar>)" |
63 |
unfolding sumhr_app by transfer (rule sum_abs) |
|
27468 | 64 |
|
64604 | 65 |
text \<open>Other general version also needed.\<close> |
27468 | 66 |
lemma sumhr_fun_hypnat_eq: |
64604 | 67 |
"(\<forall>r. m \<le> r \<and> r < n \<longrightarrow> f r = g r) \<longrightarrow> |
68 |
sumhr (hypnat_of_nat m, hypnat_of_nat n, f) = |
|
69 |
sumhr (hypnat_of_nat m, hypnat_of_nat n, g)" |
|
70 |
unfolding sumhr_app by transfer simp |
|
27468 | 71 |
|
64604 | 72 |
lemma sumhr_const: "\<And>n. sumhr (0, n, \<lambda>i. r) = hypreal_of_hypnat n * hypreal_of_real r" |
73 |
unfolding sumhr_app by transfer simp |
|
27468 | 74 |
|
64604 | 75 |
lemma sumhr_less_bounds_zero [simp]: "\<And>m n. n < m \<Longrightarrow> sumhr (m, n, f) = 0" |
76 |
unfolding sumhr_app by transfer simp |
|
27468 | 77 |
|
64604 | 78 |
lemma sumhr_minus: "\<And>m n. sumhr (m, n, \<lambda>i. - f i) = - sumhr (m, n, f)" |
79 |
unfolding sumhr_app by transfer (rule sum_negf) |
|
27468 | 80 |
|
81 |
lemma sumhr_shift_bounds: |
|
64604 | 82 |
"\<And>m n. sumhr (m + hypnat_of_nat k, n + hypnat_of_nat k, f) = |
83 |
sumhr (m, n, \<lambda>i. f (i + k))" |
|
84 |
unfolding sumhr_app by transfer (rule sum_shift_bounds_nat_ivl) |
|
27468 | 85 |
|
86 |
||
64604 | 87 |
subsection \<open>Nonstandard Sums\<close> |
27468 | 88 |
|
64604 | 89 |
text \<open>Infinite sums are obtained by summing to some infinite hypernatural |
90 |
(such as @{term whn}).\<close> |
|
91 |
lemma sumhr_hypreal_of_hypnat_omega: "sumhr (0, whn, \<lambda>i. 1) = hypreal_of_hypnat whn" |
|
92 |
by (simp add: sumhr_const) |
|
27468 | 93 |
|
64604 | 94 |
lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, \<lambda>i. 1) = \<omega> - 1" |
95 |
apply (simp add: sumhr_const) |
|
96 |
(* FIXME: need lemma: hypreal_of_hypnat whn = \<omega> - 1 *) |
|
97 |
(* maybe define \<omega> = hypreal_of_hypnat whn + 1 *) |
|
98 |
apply (unfold star_class_defs omega_def hypnat_omega_def of_hypnat_def star_of_def) |
|
99 |
apply (simp add: starfun_star_n starfun2_star_n) |
|
100 |
done |
|
27468 | 101 |
|
64604 | 102 |
lemma sumhr_minus_one_realpow_zero [simp]: "\<And>N. sumhr (0, N + N, \<lambda>i. (-1) ^ (i + 1)) = 0" |
103 |
unfolding sumhr_app |
|
104 |
apply transfer |
|
105 |
apply (simp del: power_Suc add: mult_2 [symmetric]) |
|
106 |
apply (induct_tac N) |
|
107 |
apply simp_all |
|
108 |
done |
|
27468 | 109 |
|
110 |
lemma sumhr_interval_const: |
|
64604 | 111 |
"(\<forall>n. m \<le> Suc n \<longrightarrow> f n = r) \<and> m \<le> na \<Longrightarrow> |
112 |
sumhr (hypnat_of_nat m, hypnat_of_nat na, f) = hypreal_of_nat (na - m) * hypreal_of_real r" |
|
113 |
unfolding sumhr_app by transfer simp |
|
27468 | 114 |
|
64604 | 115 |
lemma starfunNat_sumr: "\<And>N. ( *f* (\<lambda>n. sum f {0..<n})) N = sumhr (0, N, f)" |
116 |
unfolding sumhr_app by transfer (rule refl) |
|
27468 | 117 |
|
64604 | 118 |
lemma sumhr_hrabs_approx [simp]: "sumhr (0, M, f) \<approx> sumhr (0, N, f) \<Longrightarrow> \<bar>sumhr (M, N, f)\<bar> \<approx> 0" |
119 |
using linorder_less_linear [where x = M and y = N] |
|
120 |
apply auto |
|
121 |
apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]]) |
|
122 |
apply (auto dest: approx_hrabs simp add: sumhr_split_diff) |
|
123 |
done |
|
124 |
||
125 |
||
126 |
subsection \<open>Infinite sums: Standard and NS theorems\<close> |
|
27468 | 127 |
|
64604 | 128 |
lemma sums_NSsums_iff: "f sums l \<longleftrightarrow> f NSsums l" |
129 |
by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff) |
|
27468 | 130 |
|
64604 | 131 |
lemma summable_NSsummable_iff: "summable f \<longleftrightarrow> NSsummable f" |
132 |
by (simp add: summable_def NSsummable_def sums_NSsums_iff) |
|
27468 | 133 |
|
64604 | 134 |
lemma suminf_NSsuminf_iff: "suminf f = NSsuminf f" |
135 |
by (simp add: suminf_def NSsuminf_def sums_NSsums_iff) |
|
27468 | 136 |
|
64604 | 137 |
lemma NSsums_NSsummable: "f NSsums l \<Longrightarrow> NSsummable f" |
138 |
unfolding NSsums_def NSsummable_def by blast |
|
27468 | 139 |
|
64604 | 140 |
lemma NSsummable_NSsums: "NSsummable f \<Longrightarrow> f NSsums (NSsuminf f)" |
141 |
unfolding NSsummable_def NSsuminf_def NSsums_def |
|
142 |
by (blast intro: theI NSLIMSEQ_unique) |
|
27468 | 143 |
|
64604 | 144 |
lemma NSsums_unique: "f NSsums s \<Longrightarrow> s = NSsuminf f" |
145 |
by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique) |
|
27468 | 146 |
|
64604 | 147 |
lemma NSseries_zero: "\<forall>m. n \<le> Suc m \<longrightarrow> f m = 0 \<Longrightarrow> f NSsums (sum f {..<n})" |
148 |
by (auto simp add: sums_NSsums_iff [symmetric] not_le[symmetric] intro!: sums_finite) |
|
27468 | 149 |
|
150 |
lemma NSsummable_NSCauchy: |
|
64604 | 151 |
"NSsummable f \<longleftrightarrow> (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. \<bar>sumhr (M, N, f)\<bar> \<approx> 0)" |
152 |
apply (auto simp add: summable_NSsummable_iff [symmetric] |
|
153 |
summable_iff_convergent convergent_NSconvergent_iff atLeast0LessThan[symmetric] |
|
154 |
NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr) |
|
155 |
apply (cut_tac x = M and y = N in linorder_less_linear) |
|
156 |
apply auto |
|
157 |
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) |
|
158 |
apply (rule_tac [2] approx_minus_iff [THEN iffD2]) |
|
159 |
apply (auto dest: approx_hrabs_zero_cancel simp: sumhr_split_diff atLeast0LessThan[symmetric]) |
|
160 |
done |
|
27468 | 161 |
|
64604 | 162 |
text \<open>Terms of a convergent series tend to zero.\<close> |
163 |
lemma NSsummable_NSLIMSEQ_zero: "NSsummable f \<Longrightarrow> f \<longlonglongrightarrow>\<^sub>N\<^sub>S 0" |
|
164 |
apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy) |
|
165 |
apply (drule bspec) |
|
166 |
apply auto |
|
167 |
apply (drule_tac x = "N + 1 " in bspec) |
|
168 |
apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel) |
|
169 |
done |
|
27468 | 170 |
|
64604 | 171 |
text \<open>Nonstandard comparison test.\<close> |
172 |
lemma NSsummable_comparison_test: "\<exists>N. \<forall>n. N \<le> n \<longrightarrow> \<bar>f n\<bar> \<le> g n \<Longrightarrow> NSsummable g \<Longrightarrow> NSsummable f" |
|
173 |
apply (fold summable_NSsummable_iff) |
|
174 |
apply (rule summable_comparison_test, simp, assumption) |
|
175 |
done |
|
27468 | 176 |
|
177 |
lemma NSsummable_rabs_comparison_test: |
|
64604 | 178 |
"\<exists>N. \<forall>n. N \<le> n \<longrightarrow> \<bar>f n\<bar> \<le> g n \<Longrightarrow> NSsummable g \<Longrightarrow> NSsummable (\<lambda>k. \<bar>f k\<bar>)" |
179 |
by (rule NSsummable_comparison_test) auto |
|
27468 | 180 |
|
181 |
end |