src/HOLCF/UpperPD.thy
author wenzelm
Fri, 06 Nov 2009 10:26:13 +0100
changeset 33466 8f2e102f6628
parent 31076 99fe356cbbc2
child 33585 8d39394fe5cf
permissions -rw-r--r--
merged
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     1
(*  Title:      HOLCF/UpperPD.thy
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     2
    Author:     Brian Huffman
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     3
*)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     4
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     5
header {* Upper powerdomain *}
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     6
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     7
theory UpperPD
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     8
imports CompactBasis
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
     9
begin
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    10
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    11
subsection {* Basis preorder *}
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    12
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    13
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    14
  upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
    15
  "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    16
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    17
lemma upper_le_refl [simp]: "t \<le>\<sharp> t"
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
    18
unfolding upper_le_def by fast
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    19
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    20
lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    21
unfolding upper_le_def
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    22
apply (rule ballI)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    23
apply (drule (1) bspec, erule bexE)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    24
apply (drule (1) bspec, erule bexE)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    25
apply (erule rev_bexI)
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
    26
apply (erule (1) below_trans)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    27
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    28
30729
461ee3e49ad3 interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents: 29990
diff changeset
    29
interpretation upper_le: preorder upper_le
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    30
by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    31
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    32
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    33
unfolding upper_le_def Rep_PDUnit by simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    34
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
    35
lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    36
unfolding upper_le_def Rep_PDUnit by simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    37
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    38
lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    39
unfolding upper_le_def Rep_PDPlus by fast
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    40
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
    41
lemma PDPlus_upper_le: "PDPlus t u \<le>\<sharp> t"
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
    42
unfolding upper_le_def Rep_PDPlus by fast
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    43
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    44
lemma upper_le_PDUnit_PDUnit_iff [simp]:
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
    45
  "(PDUnit a \<le>\<sharp> PDUnit b) = a \<sqsubseteq> b"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    46
unfolding upper_le_def Rep_PDUnit by fast
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    47
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    48
lemma upper_le_PDPlus_PDUnit_iff:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    49
  "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    50
unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    51
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    52
lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    53
unfolding upper_le_def Rep_PDPlus by fast
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    54
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    55
lemma upper_le_induct [induct set: upper_le]:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    56
  assumes le: "t \<le>\<sharp> u"
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
    57
  assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    58
  assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    59
  assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    60
  shows "P t u"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    61
using le apply (induct u arbitrary: t rule: pd_basis_induct)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    62
apply (erule rev_mp)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    63
apply (induct_tac t rule: pd_basis_induct)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    64
apply (simp add: 1)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    65
apply (simp add: upper_le_PDPlus_PDUnit_iff)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    66
apply (simp add: 2)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    67
apply (subst PDPlus_commute)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    68
apply (simp add: 2)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    69
apply (simp add: upper_le_PDPlus_iff 3)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    70
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    71
27405
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
    72
lemma pd_take_upper_chain:
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
    73
  "pd_take n t \<le>\<sharp> pd_take (Suc n) t"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    74
apply (induct t rule: pd_basis_induct)
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
    75
apply (simp add: compact_basis.take_chain)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    76
apply (simp add: PDPlus_upper_mono)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    77
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    78
27405
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
    79
lemma pd_take_upper_le: "pd_take i t \<le>\<sharp> t"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    80
apply (induct t rule: pd_basis_induct)
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
    81
apply (simp add: compact_basis.take_less)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    82
apply (simp add: PDPlus_upper_mono)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    83
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    84
27405
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
    85
lemma pd_take_upper_mono:
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
    86
  "t \<le>\<sharp> u \<Longrightarrow> pd_take n t \<le>\<sharp> pd_take n u"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    87
apply (erule upper_le_induct)
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
    88
apply (simp add: compact_basis.take_mono)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    89
apply (simp add: upper_le_PDPlus_PDUnit_iff)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    90
apply (simp add: upper_le_PDPlus_iff)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    91
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    92
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    93
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    94
subsection {* Type definition *}
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
    95
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
    96
typedef (open) 'a upper_pd =
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
    97
  "{S::'a pd_basis set. upper_le.ideal S}"
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
    98
by (fast intro: upper_le.ideal_principal)
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
    99
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   100
instantiation upper_pd :: (profinite) below
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   101
begin
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   102
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   103
definition
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   104
  "x \<sqsubseteq> y \<longleftrightarrow> Rep_upper_pd x \<subseteq> Rep_upper_pd y"
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   105
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   106
instance ..
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   107
end
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   108
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   109
instance upper_pd :: (profinite) po
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   110
by (rule upper_le.typedef_ideal_po
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   111
    [OF type_definition_upper_pd below_upper_pd_def])
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   112
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   113
instance upper_pd :: (profinite) cpo
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   114
by (rule upper_le.typedef_ideal_cpo
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   115
    [OF type_definition_upper_pd below_upper_pd_def])
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   116
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   117
lemma Rep_upper_pd_lub:
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   118
  "chain Y \<Longrightarrow> Rep_upper_pd (\<Squnion>i. Y i) = (\<Union>i. Rep_upper_pd (Y i))"
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   119
by (rule upper_le.typedef_ideal_rep_contlub
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   120
    [OF type_definition_upper_pd below_upper_pd_def])
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   121
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   122
lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd xs)"
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   123
by (rule Rep_upper_pd [unfolded mem_Collect_eq])
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   124
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   125
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   126
  upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   127
  "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   128
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   129
lemma Rep_upper_principal:
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   130
  "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   131
unfolding upper_principal_def
27297
2c42b1505f25 removed SetPcpo.thy and cpo instance for type bool;
huffman
parents: 27289
diff changeset
   132
by (simp add: Abs_upper_pd_inverse upper_le.ideal_principal)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   133
30729
461ee3e49ad3 interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents: 29990
diff changeset
   134
interpretation upper_pd:
29237
e90d9d51106b More porting to new locales.
ballarin
parents: 27405
diff changeset
   135
  ideal_completion upper_le pd_take upper_principal Rep_upper_pd
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   136
apply unfold_locales
27405
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   137
apply (rule pd_take_upper_le)
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   138
apply (rule pd_take_idem)
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   139
apply (erule pd_take_upper_mono)
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   140
apply (rule pd_take_upper_chain)
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   141
apply (rule finite_range_pd_take)
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   142
apply (rule pd_take_covers)
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
   143
apply (rule ideal_Rep_upper_pd)
27373
5794a0e3e26c remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents: 27310
diff changeset
   144
apply (erule Rep_upper_pd_lub)
26420
57a626f64875 make preorder locale into a superclass of class po
huffman
parents: 26407
diff changeset
   145
apply (rule Rep_upper_principal)
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   146
apply (simp only: below_upper_pd_def)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   147
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   148
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   149
text {* Upper powerdomain is pointed *}
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   150
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   151
lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   152
by (induct ys rule: upper_pd.principal_induct, simp, simp)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   153
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   154
instance upper_pd :: (bifinite) pcpo
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   155
by intro_classes (fast intro: upper_pd_minimal)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   156
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   157
lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   158
by (rule upper_pd_minimal [THEN UU_I, symmetric])
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   159
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   160
text {* Upper powerdomain is profinite *}
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   161
26962
c8b20f615d6c use new class package for classes profinite, bifinite; remove approx class
huffman
parents: 26927
diff changeset
   162
instantiation upper_pd :: (profinite) profinite
c8b20f615d6c use new class package for classes profinite, bifinite; remove approx class
huffman
parents: 26927
diff changeset
   163
begin
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   164
26962
c8b20f615d6c use new class package for classes profinite, bifinite; remove approx class
huffman
parents: 26927
diff changeset
   165
definition
c8b20f615d6c use new class package for classes profinite, bifinite; remove approx class
huffman
parents: 26927
diff changeset
   166
  approx_upper_pd_def: "approx = upper_pd.completion_approx"
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   167
26962
c8b20f615d6c use new class package for classes profinite, bifinite; remove approx class
huffman
parents: 26927
diff changeset
   168
instance
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   169
apply (intro_classes, unfold approx_upper_pd_def)
27310
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27309
diff changeset
   170
apply (rule upper_pd.chain_completion_approx)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   171
apply (rule upper_pd.lub_completion_approx)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   172
apply (rule upper_pd.completion_approx_idem)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   173
apply (rule upper_pd.finite_fixes_completion_approx)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   174
done
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   175
26962
c8b20f615d6c use new class package for classes profinite, bifinite; remove approx class
huffman
parents: 26927
diff changeset
   176
end
c8b20f615d6c use new class package for classes profinite, bifinite; remove approx class
huffman
parents: 26927
diff changeset
   177
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   178
instance upper_pd :: (bifinite) bifinite ..
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   179
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   180
lemma approx_upper_principal [simp]:
27405
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   181
  "approx n\<cdot>(upper_principal t) = upper_principal (pd_take n t)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   182
unfolding approx_upper_pd_def
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   183
by (rule upper_pd.completion_approx_principal)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   184
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   185
lemma approx_eq_upper_principal:
27405
785f5dbec8f4 rename approx_pd to pd_take
huffman
parents: 27373
diff changeset
   186
  "\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (pd_take n t)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   187
unfolding approx_upper_pd_def
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   188
by (rule upper_pd.completion_approx_eq_principal)
26407
562a1d615336 rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents: 26041
diff changeset
   189
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   190
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   191
subsection {* Monadic unit and plus *}
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   192
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   193
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   194
  upper_unit :: "'a \<rightarrow> 'a upper_pd" where
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   195
  "upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   196
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   197
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   198
  upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   199
  "upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u.
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   200
      upper_principal (PDPlus t u)))"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   201
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   202
abbreviation
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   203
  upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   204
    (infixl "+\<sharp>" 65) where
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   205
  "xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   206
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   207
syntax
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   208
  "_upper_pd" :: "args \<Rightarrow> 'a upper_pd" ("{_}\<sharp>")
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   209
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   210
translations
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   211
  "{x,xs}\<sharp>" == "{x}\<sharp> +\<sharp> {xs}\<sharp>"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   212
  "{x}\<sharp>" == "CONST upper_unit\<cdot>x"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   213
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   214
lemma upper_unit_Rep_compact_basis [simp]:
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   215
  "{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   216
unfolding upper_unit_def
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   217
by (simp add: compact_basis.basis_fun_principal PDUnit_upper_mono)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   218
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   219
lemma upper_plus_principal [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   220
  "upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   221
unfolding upper_plus_def
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   222
by (simp add: upper_pd.basis_fun_principal
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   223
    upper_pd.basis_fun_mono PDPlus_upper_mono)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   224
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   225
lemma approx_upper_unit [simp]:
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   226
  "approx n\<cdot>{x}\<sharp> = {approx n\<cdot>x}\<sharp>"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   227
apply (induct x rule: compact_basis.principal_induct, simp)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   228
apply (simp add: approx_Rep_compact_basis)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   229
done
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   230
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   231
lemma approx_upper_plus [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   232
  "approx n\<cdot>(xs +\<sharp> ys) = (approx n\<cdot>xs) +\<sharp> (approx n\<cdot>ys)"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   233
by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   234
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   235
lemma upper_plus_assoc: "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   236
apply (induct xs ys arbitrary: zs rule: upper_pd.principal_induct2, simp, simp)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   237
apply (rule_tac x=zs in upper_pd.principal_induct, simp)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   238
apply (simp add: PDPlus_assoc)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   239
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   240
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   241
lemma upper_plus_commute: "xs +\<sharp> ys = ys +\<sharp> xs"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   242
apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   243
apply (simp add: PDPlus_commute)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   244
done
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   245
29990
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   246
lemma upper_plus_absorb [simp]: "xs +\<sharp> xs = xs"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   247
apply (induct xs rule: upper_pd.principal_induct, simp)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   248
apply (simp add: PDPlus_absorb)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   249
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   250
29990
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   251
lemma upper_plus_left_commute: "xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)"
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   252
by (rule mk_left_commute [of "op +\<sharp>", OF upper_plus_assoc upper_plus_commute])
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   253
29990
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   254
lemma upper_plus_left_absorb [simp]: "xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys"
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   255
by (simp only: upper_plus_assoc [symmetric] upper_plus_absorb)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   256
29990
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   257
text {* Useful for @{text "simp add: upper_plus_ac"} *}
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   258
lemmas upper_plus_ac =
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   259
  upper_plus_assoc upper_plus_commute upper_plus_left_commute
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   260
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   261
text {* Useful for @{text "simp only: upper_plus_aci"} *}
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   262
lemmas upper_plus_aci =
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   263
  upper_plus_ac upper_plus_absorb upper_plus_left_absorb
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   264
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   265
lemma upper_plus_below1: "xs +\<sharp> ys \<sqsubseteq> xs"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   266
apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp)
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   267
apply (simp add: PDPlus_upper_le)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   268
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   269
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   270
lemma upper_plus_below2: "xs +\<sharp> ys \<sqsubseteq> ys"
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   271
by (subst upper_plus_commute, rule upper_plus_below1)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   272
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   273
lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys +\<sharp> zs"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   274
apply (subst upper_plus_absorb [of xs, symmetric])
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   275
apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   276
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   277
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   278
lemma upper_below_plus_iff:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   279
  "xs \<sqsubseteq> ys +\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   280
apply safe
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   281
apply (erule below_trans [OF _ upper_plus_below1])
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   282
apply (erule below_trans [OF _ upper_plus_below2])
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   283
apply (erule (1) upper_plus_greatest)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   284
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   285
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   286
lemma upper_plus_below_unit_iff:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   287
  "xs +\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   288
 apply (rule iffI)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   289
  apply (subgoal_tac
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   290
    "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<sharp> \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<sharp>)")
25925
3dc4acca4388 change lemma admD to rule_format
huffman
parents: 25904
diff changeset
   291
   apply (drule admD, rule chain_approx)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   292
    apply (drule_tac f="approx i" in monofun_cfun_arg)
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   293
    apply (cut_tac x="approx i\<cdot>xs" in upper_pd.compact_imp_principal, simp)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   294
    apply (cut_tac x="approx i\<cdot>ys" in upper_pd.compact_imp_principal, simp)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   295
    apply (cut_tac x="approx i\<cdot>z" in compact_basis.compact_imp_principal, simp)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   296
    apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   297
   apply simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   298
  apply simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   299
 apply (erule disjE)
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   300
  apply (erule below_trans [OF upper_plus_below1])
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   301
 apply (erule below_trans [OF upper_plus_below2])
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   302
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   303
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   304
lemma upper_unit_below_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y"
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   305
 apply (rule iffI)
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   306
  apply (rule profinite_below_ext)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   307
  apply (drule_tac f="approx i" in monofun_cfun_arg, simp)
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   308
  apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   309
  apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   310
  apply clarsimp
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   311
 apply (erule monofun_cfun_arg)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   312
done
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   313
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   314
lemmas upper_pd_below_simps =
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   315
  upper_unit_below_iff
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   316
  upper_below_plus_iff
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   317
  upper_plus_below_unit_iff
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   318
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   319
lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   320
unfolding po_eq_conv by simp
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   321
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   322
lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   323
unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   324
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   325
lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   326
by (rule UU_I, rule upper_plus_below1)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   327
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   328
lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   329
by (rule UU_I, rule upper_plus_below2)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   330
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   331
lemma upper_unit_strict_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   332
unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   333
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   334
lemma upper_plus_strict_iff [simp]:
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   335
  "xs +\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   336
apply (rule iffI)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   337
apply (erule rev_mp)
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   338
apply (rule upper_pd.principal_induct2 [where x=xs and y=ys], simp, simp)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   339
apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   340
                 upper_le_PDPlus_PDUnit_iff)
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   341
apply auto
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   342
done
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   343
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   344
lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
27309
c74270fd72a8 clean up and rename some profinite lemmas
huffman
parents: 27297
diff changeset
   345
unfolding profinite_compact_iff by simp
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   346
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   347
lemma compact_upper_plus [simp]:
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   348
  "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   349
by (auto dest!: upper_pd.compact_imp_principal)
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   350
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   351
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   352
subsection {* Induction rules *}
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   353
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   354
lemma upper_pd_induct1:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   355
  assumes P: "adm P"
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   356
  assumes unit: "\<And>x. P {x}\<sharp>"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   357
  assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> +\<sharp> ys)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   358
  shows "P (xs::'a upper_pd)"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   359
apply (induct xs rule: upper_pd.principal_induct, rule P)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   360
apply (induct_tac a rule: pd_basis_induct1)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   361
apply (simp only: upper_unit_Rep_compact_basis [symmetric])
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   362
apply (rule unit)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   363
apply (simp only: upper_unit_Rep_compact_basis [symmetric]
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   364
                  upper_plus_principal [symmetric])
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   365
apply (erule insert [OF unit])
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   366
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   367
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   368
lemma upper_pd_induct:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   369
  assumes P: "adm P"
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   370
  assumes unit: "\<And>x. P {x}\<sharp>"
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   371
  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<sharp> ys)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   372
  shows "P (xs::'a upper_pd)"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   373
apply (induct xs rule: upper_pd.principal_induct, rule P)
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   374
apply (induct_tac a rule: pd_basis_induct)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   375
apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   376
apply (simp only: upper_plus_principal [symmetric] plus)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   377
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   378
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   379
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   380
subsection {* Monadic bind *}
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   381
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   382
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   383
  upper_bind_basis ::
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   384
  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   385
  "upper_bind_basis = fold_pd
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   386
    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   387
    (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   388
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   389
lemma ACI_upper_bind:
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   390
  "ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   391
apply unfold_locales
26041
c2e15e65165f locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents: 25925
diff changeset
   392
apply (simp add: upper_plus_assoc)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   393
apply (simp add: upper_plus_commute)
29990
b11793ea15a3 avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents: 29672
diff changeset
   394
apply (simp add: eta_cfun)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   395
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   396
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   397
lemma upper_bind_basis_simps [simp]:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   398
  "upper_bind_basis (PDUnit a) =
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   399
    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   400
  "upper_bind_basis (PDPlus t u) =
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   401
    (\<Lambda> f. upper_bind_basis t\<cdot>f +\<sharp> upper_bind_basis u\<cdot>f)"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   402
unfolding upper_bind_basis_def
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   403
apply -
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   404
apply (rule fold_pd_PDUnit [OF ACI_upper_bind])
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   405
apply (rule fold_pd_PDPlus [OF ACI_upper_bind])
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   406
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   407
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   408
lemma upper_bind_basis_mono:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   409
  "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u"
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   410
unfolding expand_cfun_below
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   411
apply (erule upper_le_induct, safe)
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   412
apply (simp add: monofun_cfun)
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   413
apply (simp add: below_trans [OF upper_plus_below1])
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30729
diff changeset
   414
apply (simp add: upper_below_plus_iff)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   415
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   416
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   417
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   418
  upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   419
  "upper_bind = upper_pd.basis_fun upper_bind_basis"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   420
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   421
lemma upper_bind_principal [simp]:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   422
  "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   423
unfolding upper_bind_def
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   424
apply (rule upper_pd.basis_fun_principal)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   425
apply (erule upper_bind_basis_mono)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   426
done
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   427
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   428
lemma upper_bind_unit [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   429
  "upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   430
by (induct x rule: compact_basis.principal_induct, simp, simp)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   431
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   432
lemma upper_bind_plus [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   433
  "upper_bind\<cdot>(xs +\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f +\<sharp> upper_bind\<cdot>ys\<cdot>f"
27289
c49d427867aa move lemmas into locales;
huffman
parents: 27267
diff changeset
   434
by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp)
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   435
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   436
lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   437
unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   438
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   439
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   440
subsection {* Map and join *}
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   441
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   442
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   443
  upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   444
  "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   445
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   446
definition
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   447
  upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   448
  "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   449
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   450
lemma upper_map_unit [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   451
  "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   452
unfolding upper_map_def by simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   453
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   454
lemma upper_map_plus [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   455
  "upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   456
unfolding upper_map_def by simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   457
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   458
lemma upper_join_unit [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   459
  "upper_join\<cdot>{xs}\<sharp> = xs"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   460
unfolding upper_join_def by simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   461
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   462
lemma upper_join_plus [simp]:
26927
8684b5240f11 rename locales;
huffman
parents: 26806
diff changeset
   463
  "upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss"
25904
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   464
unfolding upper_join_def by simp
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   465
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   466
lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   467
by (induct xs rule: upper_pd_induct, simp_all)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   468
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   469
lemma upper_map_map:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   470
  "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   471
by (induct xs rule: upper_pd_induct, simp_all)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   472
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   473
lemma upper_join_map_unit:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   474
  "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   475
by (induct xs rule: upper_pd_induct, simp_all)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   476
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   477
lemma upper_join_map_join:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   478
  "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   479
by (induct xsss rule: upper_pd_induct, simp_all)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   480
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   481
lemma upper_join_map_map:
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   482
  "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) =
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   483
   upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   484
by (induct xss rule: upper_pd_induct, simp_all)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   485
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   486
lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs"
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   487
by (induct xs rule: upper_pd_induct, simp_all)
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   488
8161f137b0e9 new theory of powerdomains
huffman
parents:
diff changeset
   489
end