author | nipkow |
Fri, 24 Oct 1997 11:56:12 +0200 | |
changeset 3984 | 8fc76a487616 |
parent 3919 | c036caebfc75 |
child 4032 | 4b1c69d8b767 |
permissions | -rw-r--r-- |
1465 | 1 |
(* Title: HOL/List |
923 | 2 |
ID: $Id$ |
1465 | 3 |
Author: Tobias Nipkow |
923 | 4 |
Copyright 1994 TU Muenchen |
5 |
||
6 |
List lemmas |
|
7 |
*) |
|
8 |
||
3708 | 9 |
open List; |
10 |
||
3011 | 11 |
goal thy "!x. xs ~= x#xs"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
12 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
13 |
by (ALLGOALS Asm_simp_tac); |
2608 | 14 |
qed_spec_mp "not_Cons_self"; |
3574 | 15 |
bind_thm("not_Cons_self2",not_Cons_self RS not_sym); |
16 |
Addsimps [not_Cons_self,not_Cons_self2]; |
|
923 | 17 |
|
3011 | 18 |
goal thy "(xs ~= []) = (? y ys. xs = y#ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
19 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
20 |
by (Simp_tac 1); |
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
21 |
by (Asm_simp_tac 1); |
923 | 22 |
qed "neq_Nil_conv"; |
23 |
||
24 |
||
3468 | 25 |
(** "lists": the list-forming operator over sets **) |
3342
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
26 |
|
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
27 |
goalw thy lists.defs "!!A B. A<=B ==> lists A <= lists B"; |
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
28 |
by (rtac lfp_mono 1); |
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
29 |
by (REPEAT (ares_tac basic_monos 1)); |
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
30 |
qed "lists_mono"; |
3196 | 31 |
|
3468 | 32 |
val listsE = lists.mk_cases list.simps "x#l : lists A"; |
33 |
AddSEs [listsE]; |
|
34 |
AddSIs lists.intrs; |
|
35 |
||
36 |
goal thy "!!l. l: lists A ==> l: lists B --> l: lists (A Int B)"; |
|
37 |
by (etac lists.induct 1); |
|
38 |
by (ALLGOALS Blast_tac); |
|
39 |
qed_spec_mp "lists_IntI"; |
|
40 |
||
41 |
goal thy "lists (A Int B) = lists A Int lists B"; |
|
42 |
br (mono_Int RS equalityI) 1; |
|
43 |
by (simp_tac (!simpset addsimps [mono_def, lists_mono]) 1); |
|
44 |
by (blast_tac (!claset addSIs [lists_IntI]) 1); |
|
45 |
qed "lists_Int_eq"; |
|
46 |
Addsimps [lists_Int_eq]; |
|
47 |
||
3196 | 48 |
|
2608 | 49 |
(** list_case **) |
50 |
||
3011 | 51 |
goal thy |
2608 | 52 |
"P(list_case a f xs) = ((xs=[] --> P(a)) & \ |
2891 | 53 |
\ (!y ys. xs=y#ys --> P(f y ys)))"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
54 |
by (induct_tac "xs" 1); |
2608 | 55 |
by (ALLGOALS Asm_simp_tac); |
2891 | 56 |
by (Blast_tac 1); |
2608 | 57 |
qed "expand_list_case"; |
58 |
||
3011 | 59 |
val prems = goal thy "[| P([]); !!x xs. P(x#xs) |] ==> P(xs)"; |
3457 | 60 |
by (induct_tac "xs" 1); |
61 |
by (REPEAT(resolve_tac prems 1)); |
|
2608 | 62 |
qed "list_cases"; |
63 |
||
3011 | 64 |
goal thy "(xs=[] --> P([])) & (!y ys. xs=y#ys --> P(y#ys)) --> P(xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
65 |
by (induct_tac "xs" 1); |
2891 | 66 |
by (Blast_tac 1); |
67 |
by (Blast_tac 1); |
|
2608 | 68 |
bind_thm("list_eq_cases", |
69 |
impI RSN (2,allI RSN (2,allI RSN (2,impI RS (conjI RS (result() RS mp)))))); |
|
70 |
||
71 |
||
3860 | 72 |
(** length **) |
73 |
(* needs to come before "@" because of thm append_eq_append_conv *) |
|
74 |
||
75 |
section "length"; |
|
76 |
||
77 |
goal thy "length(xs@ys) = length(xs)+length(ys)"; |
|
78 |
by (induct_tac "xs" 1); |
|
79 |
by (ALLGOALS Asm_simp_tac); |
|
80 |
qed"length_append"; |
|
81 |
Addsimps [length_append]; |
|
82 |
||
83 |
goal thy "length (map f l) = length l"; |
|
84 |
by (induct_tac "l" 1); |
|
85 |
by (ALLGOALS Simp_tac); |
|
86 |
qed "length_map"; |
|
87 |
Addsimps [length_map]; |
|
88 |
||
89 |
goal thy "length(rev xs) = length(xs)"; |
|
90 |
by (induct_tac "xs" 1); |
|
91 |
by (ALLGOALS Asm_simp_tac); |
|
92 |
qed "length_rev"; |
|
93 |
Addsimps [length_rev]; |
|
94 |
||
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
95 |
goal List.thy "!!xs. xs ~= [] ==> length(tl xs) = pred(length xs)"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
96 |
by(exhaust_tac "xs" 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
97 |
by(ALLGOALS Asm_full_simp_tac); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
98 |
qed "length_tl"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
99 |
Addsimps [length_tl]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
100 |
|
3860 | 101 |
goal thy "(length xs = 0) = (xs = [])"; |
102 |
by (induct_tac "xs" 1); |
|
103 |
by (ALLGOALS Asm_simp_tac); |
|
104 |
qed "length_0_conv"; |
|
105 |
AddIffs [length_0_conv]; |
|
106 |
||
107 |
goal thy "(0 = length xs) = (xs = [])"; |
|
108 |
by (induct_tac "xs" 1); |
|
109 |
by (ALLGOALS Asm_simp_tac); |
|
110 |
qed "zero_length_conv"; |
|
111 |
AddIffs [zero_length_conv]; |
|
112 |
||
113 |
goal thy "(0 < length xs) = (xs ~= [])"; |
|
114 |
by (induct_tac "xs" 1); |
|
115 |
by (ALLGOALS Asm_simp_tac); |
|
116 |
qed "length_greater_0_conv"; |
|
117 |
AddIffs [length_greater_0_conv]; |
|
118 |
||
923 | 119 |
(** @ - append **) |
120 |
||
3467 | 121 |
section "@ - append"; |
122 |
||
3011 | 123 |
goal thy "(xs@ys)@zs = xs@(ys@zs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
124 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
125 |
by (ALLGOALS Asm_simp_tac); |
923 | 126 |
qed "append_assoc"; |
2512 | 127 |
Addsimps [append_assoc]; |
923 | 128 |
|
3011 | 129 |
goal thy "xs @ [] = xs"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
130 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
131 |
by (ALLGOALS Asm_simp_tac); |
923 | 132 |
qed "append_Nil2"; |
2512 | 133 |
Addsimps [append_Nil2]; |
923 | 134 |
|
3011 | 135 |
goal thy "(xs@ys = []) = (xs=[] & ys=[])"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
136 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
137 |
by (ALLGOALS Asm_simp_tac); |
2608 | 138 |
qed "append_is_Nil_conv"; |
139 |
AddIffs [append_is_Nil_conv]; |
|
140 |
||
3011 | 141 |
goal thy "([] = xs@ys) = (xs=[] & ys=[])"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
142 |
by (induct_tac "xs" 1); |
2608 | 143 |
by (ALLGOALS Asm_simp_tac); |
3457 | 144 |
by (Blast_tac 1); |
2608 | 145 |
qed "Nil_is_append_conv"; |
146 |
AddIffs [Nil_is_append_conv]; |
|
923 | 147 |
|
3574 | 148 |
goal thy "(xs @ ys = xs) = (ys=[])"; |
149 |
by (induct_tac "xs" 1); |
|
150 |
by (ALLGOALS Asm_simp_tac); |
|
151 |
qed "append_self_conv"; |
|
152 |
||
153 |
goal thy "(xs = xs @ ys) = (ys=[])"; |
|
154 |
by (induct_tac "xs" 1); |
|
155 |
by (ALLGOALS Asm_simp_tac); |
|
156 |
by (Blast_tac 1); |
|
157 |
qed "self_append_conv"; |
|
158 |
AddIffs [append_self_conv,self_append_conv]; |
|
159 |
||
3860 | 160 |
goal thy "!ys. length xs = length ys | length us = length vs \ |
161 |
\ --> (xs@us = ys@vs) = (xs=ys & us=vs)"; |
|
162 |
by(induct_tac "xs" 1); |
|
163 |
by(rtac allI 1); |
|
164 |
by(exhaust_tac "ys" 1); |
|
165 |
by(Asm_simp_tac 1); |
|
166 |
by(fast_tac (!claset addIs [less_add_Suc2] addss !simpset |
|
167 |
addEs [less_not_refl2 RSN (2,rev_notE)]) 1); |
|
168 |
by(rtac allI 1); |
|
169 |
by(exhaust_tac "ys" 1); |
|
170 |
by(fast_tac (!claset addIs [less_add_Suc2] addss !simpset |
|
171 |
addEs [(less_not_refl2 RS not_sym) RSN (2,rev_notE)]) 1); |
|
172 |
by(Asm_simp_tac 1); |
|
173 |
qed_spec_mp "append_eq_append_conv"; |
|
174 |
Addsimps [append_eq_append_conv]; |
|
175 |
||
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
176 |
goal thy "(xs @ ys = xs @ zs) = (ys=zs)"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
177 |
by (Simp_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
178 |
qed "same_append_eq"; |
3860 | 179 |
|
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
180 |
goal thy "(xs @ [x] = ys @ [y]) = (xs = ys & x = y)"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
181 |
by (Simp_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
182 |
qed "append1_eq_conv"; |
2608 | 183 |
|
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
184 |
goal thy "(ys @ xs = zs @ xs) = (ys=zs)"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
185 |
by (Simp_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
186 |
qed "append_same_eq"; |
2608 | 187 |
|
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
188 |
AddSIs |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
189 |
[same_append_eq RS iffD2, append1_eq_conv RS iffD2, append_same_eq RS iffD2]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
190 |
AddSDs |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
191 |
[same_append_eq RS iffD1, append1_eq_conv RS iffD1, append_same_eq RS iffD1]; |
3571 | 192 |
|
3011 | 193 |
goal thy "xs ~= [] --> hd xs # tl xs = xs"; |
3457 | 194 |
by (induct_tac "xs" 1); |
195 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 196 |
qed_spec_mp "hd_Cons_tl"; |
197 |
Addsimps [hd_Cons_tl]; |
|
923 | 198 |
|
3011 | 199 |
goal thy "hd(xs@ys) = (if xs=[] then hd ys else hd xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
200 |
by (induct_tac "xs" 1); |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
201 |
by (ALLGOALS Asm_simp_tac); |
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
202 |
qed "hd_append"; |
923 | 203 |
|
3571 | 204 |
goal thy "!!xs. xs ~= [] ==> hd(xs @ ys) = hd xs"; |
205 |
by (asm_simp_tac (!simpset addsimps [hd_append] |
|
3919 | 206 |
addsplits [expand_list_case]) 1); |
3571 | 207 |
qed "hd_append2"; |
208 |
Addsimps [hd_append2]; |
|
209 |
||
3011 | 210 |
goal thy "tl(xs@ys) = (case xs of [] => tl(ys) | z#zs => zs@ys)"; |
3919 | 211 |
by (simp_tac (!simpset addsplits [expand_list_case]) 1); |
2608 | 212 |
qed "tl_append"; |
213 |
||
3571 | 214 |
goal thy "!!xs. xs ~= [] ==> tl(xs @ ys) = (tl xs) @ ys"; |
215 |
by (asm_simp_tac (!simpset addsimps [tl_append] |
|
3919 | 216 |
addsplits [expand_list_case]) 1); |
3571 | 217 |
qed "tl_append2"; |
218 |
Addsimps [tl_append2]; |
|
219 |
||
2608 | 220 |
(** map **) |
221 |
||
3467 | 222 |
section "map"; |
223 |
||
3011 | 224 |
goal thy |
3465 | 225 |
"(!x. x : set xs --> f x = g x) --> map f xs = map g xs"; |
3457 | 226 |
by (induct_tac "xs" 1); |
227 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 228 |
bind_thm("map_ext", impI RS (allI RS (result() RS mp))); |
229 |
||
3842 | 230 |
goal thy "map (%x. x) = (%xs. xs)"; |
2608 | 231 |
by (rtac ext 1); |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
232 |
by (induct_tac "xs" 1); |
2608 | 233 |
by (ALLGOALS Asm_simp_tac); |
234 |
qed "map_ident"; |
|
235 |
Addsimps[map_ident]; |
|
236 |
||
3011 | 237 |
goal thy "map f (xs@ys) = map f xs @ map f ys"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
238 |
by (induct_tac "xs" 1); |
2608 | 239 |
by (ALLGOALS Asm_simp_tac); |
240 |
qed "map_append"; |
|
241 |
Addsimps[map_append]; |
|
242 |
||
3011 | 243 |
goalw thy [o_def] "map (f o g) xs = map f (map g xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
244 |
by (induct_tac "xs" 1); |
2608 | 245 |
by (ALLGOALS Asm_simp_tac); |
246 |
qed "map_compose"; |
|
247 |
Addsimps[map_compose]; |
|
248 |
||
3011 | 249 |
goal thy "rev(map f xs) = map f (rev xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
250 |
by (induct_tac "xs" 1); |
2608 | 251 |
by (ALLGOALS Asm_simp_tac); |
252 |
qed "rev_map"; |
|
253 |
||
3589
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
254 |
(* a congruence rule for map: *) |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
255 |
goal thy |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
256 |
"(xs=ys) --> (!x. x : set ys --> f x = g x) --> map f xs = map g ys"; |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
257 |
by(rtac impI 1); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
258 |
by(hyp_subst_tac 1); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
259 |
by(induct_tac "ys" 1); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
260 |
by(ALLGOALS Asm_simp_tac); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
261 |
val lemma = result(); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
262 |
bind_thm("map_cong",impI RSN (2,allI RSN (2,lemma RS mp RS mp))); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
263 |
|
3860 | 264 |
goal List.thy "(map f xs = []) = (xs = [])"; |
265 |
by(induct_tac "xs" 1); |
|
266 |
by(ALLGOALS Asm_simp_tac); |
|
267 |
qed "map_is_Nil_conv"; |
|
268 |
AddIffs [map_is_Nil_conv]; |
|
269 |
||
270 |
goal List.thy "([] = map f xs) = (xs = [])"; |
|
271 |
by(induct_tac "xs" 1); |
|
272 |
by(ALLGOALS Asm_simp_tac); |
|
273 |
qed "Nil_is_map_conv"; |
|
274 |
AddIffs [Nil_is_map_conv]; |
|
275 |
||
276 |
||
1169 | 277 |
(** rev **) |
278 |
||
3467 | 279 |
section "rev"; |
280 |
||
3011 | 281 |
goal thy "rev(xs@ys) = rev(ys) @ rev(xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
282 |
by (induct_tac "xs" 1); |
2512 | 283 |
by (ALLGOALS Asm_simp_tac); |
1169 | 284 |
qed "rev_append"; |
2512 | 285 |
Addsimps[rev_append]; |
1169 | 286 |
|
3011 | 287 |
goal thy "rev(rev l) = l"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
288 |
by (induct_tac "l" 1); |
2512 | 289 |
by (ALLGOALS Asm_simp_tac); |
1169 | 290 |
qed "rev_rev_ident"; |
2512 | 291 |
Addsimps[rev_rev_ident]; |
1169 | 292 |
|
3860 | 293 |
goal thy "(rev xs = []) = (xs = [])"; |
294 |
by(induct_tac "xs" 1); |
|
295 |
by(ALLGOALS Asm_simp_tac); |
|
296 |
qed "rev_is_Nil_conv"; |
|
297 |
AddIffs [rev_is_Nil_conv]; |
|
298 |
||
299 |
goal thy "([] = rev xs) = (xs = [])"; |
|
300 |
by(induct_tac "xs" 1); |
|
301 |
by(ALLGOALS Asm_simp_tac); |
|
302 |
qed "Nil_is_rev_conv"; |
|
303 |
AddIffs [Nil_is_rev_conv]; |
|
304 |
||
2608 | 305 |
|
923 | 306 |
(** mem **) |
307 |
||
3467 | 308 |
section "mem"; |
309 |
||
3011 | 310 |
goal thy "x mem (xs@ys) = (x mem xs | x mem ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
311 |
by (induct_tac "xs" 1); |
3919 | 312 |
by (ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
923 | 313 |
qed "mem_append"; |
2512 | 314 |
Addsimps[mem_append]; |
923 | 315 |
|
3842 | 316 |
goal thy "x mem [x:xs. P(x)] = (x mem xs & P(x))"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
317 |
by (induct_tac "xs" 1); |
3919 | 318 |
by (ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
923 | 319 |
qed "mem_filter"; |
2512 | 320 |
Addsimps[mem_filter]; |
923 | 321 |
|
3465 | 322 |
(** set **) |
1812 | 323 |
|
3467 | 324 |
section "set"; |
325 |
||
3465 | 326 |
goal thy "set (xs@ys) = (set xs Un set ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
327 |
by (induct_tac "xs" 1); |
1812 | 328 |
by (ALLGOALS Asm_simp_tac); |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
329 |
qed "set_append"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
330 |
Addsimps[set_append]; |
1812 | 331 |
|
3465 | 332 |
goal thy "(x mem xs) = (x: set xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
333 |
by (induct_tac "xs" 1); |
3919 | 334 |
by (ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
2891 | 335 |
by (Blast_tac 1); |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
336 |
qed "set_mem_eq"; |
1812 | 337 |
|
3465 | 338 |
goal thy "set l <= set (x#l)"; |
1936 | 339 |
by (Simp_tac 1); |
2891 | 340 |
by (Blast_tac 1); |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
341 |
qed "set_subset_Cons"; |
1936 | 342 |
|
3465 | 343 |
goal thy "(set xs = {}) = (xs = [])"; |
3457 | 344 |
by (induct_tac "xs" 1); |
345 |
by (ALLGOALS Asm_simp_tac); |
|
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
346 |
qed "set_empty"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
347 |
Addsimps [set_empty]; |
2608 | 348 |
|
3465 | 349 |
goal thy "set(rev xs) = set(xs)"; |
3457 | 350 |
by (induct_tac "xs" 1); |
351 |
by (ALLGOALS Asm_simp_tac); |
|
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
352 |
qed "set_rev"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
353 |
Addsimps [set_rev]; |
2608 | 354 |
|
3465 | 355 |
goal thy "set(map f xs) = f``(set xs)"; |
3457 | 356 |
by (induct_tac "xs" 1); |
357 |
by (ALLGOALS Asm_simp_tac); |
|
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
358 |
qed "set_map"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
359 |
Addsimps [set_map]; |
2608 | 360 |
|
1812 | 361 |
|
923 | 362 |
(** list_all **) |
363 |
||
3467 | 364 |
section "list_all"; |
365 |
||
3842 | 366 |
goal thy "list_all (%x. True) xs = True"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
367 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
368 |
by (ALLGOALS Asm_simp_tac); |
923 | 369 |
qed "list_all_True"; |
2512 | 370 |
Addsimps [list_all_True]; |
923 | 371 |
|
3011 | 372 |
goal thy "list_all p (xs@ys) = (list_all p xs & list_all p ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
373 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
374 |
by (ALLGOALS Asm_simp_tac); |
2512 | 375 |
qed "list_all_append"; |
376 |
Addsimps [list_all_append]; |
|
923 | 377 |
|
3011 | 378 |
goal thy "list_all P xs = (!x. x mem xs --> P(x))"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
379 |
by (induct_tac "xs" 1); |
3919 | 380 |
by (ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
2891 | 381 |
by (Blast_tac 1); |
923 | 382 |
qed "list_all_mem_conv"; |
383 |
||
384 |
||
2608 | 385 |
(** filter **) |
923 | 386 |
|
3467 | 387 |
section "filter"; |
388 |
||
3383
7707cb7a5054
Corrected statement of filter_append; added filter_size
paulson
parents:
3342
diff
changeset
|
389 |
goal thy "filter P (xs@ys) = filter P xs @ filter P ys"; |
3457 | 390 |
by (induct_tac "xs" 1); |
3919 | 391 |
by (ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
2608 | 392 |
qed "filter_append"; |
393 |
Addsimps [filter_append]; |
|
394 |
||
3383
7707cb7a5054
Corrected statement of filter_append; added filter_size
paulson
parents:
3342
diff
changeset
|
395 |
goal thy "size (filter P xs) <= size xs"; |
3457 | 396 |
by (induct_tac "xs" 1); |
3919 | 397 |
by (ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
3383
7707cb7a5054
Corrected statement of filter_append; added filter_size
paulson
parents:
3342
diff
changeset
|
398 |
qed "filter_size"; |
7707cb7a5054
Corrected statement of filter_append; added filter_size
paulson
parents:
3342
diff
changeset
|
399 |
|
2608 | 400 |
|
401 |
(** concat **) |
|
402 |
||
3467 | 403 |
section "concat"; |
404 |
||
3011 | 405 |
goal thy "concat(xs@ys) = concat(xs)@concat(ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
406 |
by (induct_tac "xs" 1); |
1264
3eb91524b938
added local simpsets; removed IOA from 'make test'
clasohm
parents:
1202
diff
changeset
|
407 |
by (ALLGOALS Asm_simp_tac); |
2608 | 408 |
qed"concat_append"; |
409 |
Addsimps [concat_append]; |
|
2512 | 410 |
|
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
411 |
goal thy "(concat xss = []) = (!xs:set xss. xs=[])"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
412 |
by(induct_tac "xss" 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
413 |
by(ALLGOALS Asm_simp_tac); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
414 |
qed "concat_eq_Nil_conv"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
415 |
AddIffs [concat_eq_Nil_conv]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
416 |
|
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
417 |
goal thy "([] = concat xss) = (!xs:set xss. xs=[])"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
418 |
by(induct_tac "xss" 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
419 |
by(ALLGOALS Asm_simp_tac); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
420 |
qed "Nil_eq_concat_conv"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
421 |
AddIffs [Nil_eq_concat_conv]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
422 |
|
3467 | 423 |
goal thy "set(concat xs) = Union(set `` set xs)"; |
424 |
by (induct_tac "xs" 1); |
|
425 |
by (ALLGOALS Asm_simp_tac); |
|
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
426 |
qed"set_concat"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
427 |
Addsimps [set_concat]; |
3467 | 428 |
|
429 |
goal thy "map f (concat xs) = concat (map (map f) xs)"; |
|
430 |
by (induct_tac "xs" 1); |
|
431 |
by (ALLGOALS Asm_simp_tac); |
|
432 |
qed "map_concat"; |
|
433 |
||
434 |
goal thy "filter p (concat xs) = concat (map (filter p) xs)"; |
|
435 |
by (induct_tac "xs" 1); |
|
436 |
by (ALLGOALS Asm_simp_tac); |
|
437 |
qed"filter_concat"; |
|
438 |
||
439 |
goal thy "rev(concat xs) = concat (map rev (rev xs))"; |
|
440 |
by (induct_tac "xs" 1); |
|
2512 | 441 |
by (ALLGOALS Asm_simp_tac); |
2608 | 442 |
qed "rev_concat"; |
923 | 443 |
|
444 |
(** nth **) |
|
445 |
||
3467 | 446 |
section "nth"; |
447 |
||
3011 | 448 |
goal thy |
2608 | 449 |
"!xs. nth n (xs@ys) = \ |
450 |
\ (if n < length xs then nth n xs else nth (n - length xs) ys)"; |
|
3457 | 451 |
by (nat_ind_tac "n" 1); |
452 |
by (Asm_simp_tac 1); |
|
453 |
by (rtac allI 1); |
|
454 |
by (exhaust_tac "xs" 1); |
|
455 |
by (ALLGOALS Asm_simp_tac); |
|
456 |
by (rtac allI 1); |
|
457 |
by (exhaust_tac "xs" 1); |
|
458 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 459 |
qed_spec_mp "nth_append"; |
460 |
||
3011 | 461 |
goal thy "!n. n < length xs --> nth n (map f xs) = f (nth n xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
462 |
by (induct_tac "xs" 1); |
1301 | 463 |
(* case [] *) |
464 |
by (Asm_full_simp_tac 1); |
|
465 |
(* case x#xl *) |
|
466 |
by (rtac allI 1); |
|
467 |
by (nat_ind_tac "n" 1); |
|
468 |
by (ALLGOALS Asm_full_simp_tac); |
|
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
469 |
qed_spec_mp "nth_map"; |
1301 | 470 |
Addsimps [nth_map]; |
471 |
||
3011 | 472 |
goal thy "!n. n < length xs --> list_all P xs --> P(nth n xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
473 |
by (induct_tac "xs" 1); |
1301 | 474 |
(* case [] *) |
475 |
by (Simp_tac 1); |
|
476 |
(* case x#xl *) |
|
477 |
by (rtac allI 1); |
|
478 |
by (nat_ind_tac "n" 1); |
|
479 |
by (ALLGOALS Asm_full_simp_tac); |
|
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
480 |
qed_spec_mp "list_all_nth"; |
1301 | 481 |
|
3011 | 482 |
goal thy "!n. n < length xs --> (nth n xs) mem xs"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
483 |
by (induct_tac "xs" 1); |
1301 | 484 |
(* case [] *) |
485 |
by (Simp_tac 1); |
|
486 |
(* case x#xl *) |
|
487 |
by (rtac allI 1); |
|
488 |
by (nat_ind_tac "n" 1); |
|
489 |
(* case 0 *) |
|
490 |
by (Asm_full_simp_tac 1); |
|
491 |
(* case Suc x *) |
|
3919 | 492 |
by (asm_full_simp_tac (!simpset addsplits [expand_if]) 1); |
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
493 |
qed_spec_mp "nth_mem"; |
1301 | 494 |
Addsimps [nth_mem]; |
495 |
||
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
496 |
(** last & butlast **) |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
497 |
|
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
498 |
goal thy "last(xs@[x]) = x"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
499 |
by(induct_tac "xs" 1); |
3919 | 500 |
by(ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
501 |
qed "last_snoc"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
502 |
Addsimps [last_snoc]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
503 |
|
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
504 |
goal thy "butlast(xs@[x]) = xs"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
505 |
by(induct_tac "xs" 1); |
3919 | 506 |
by(ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
507 |
qed "butlast_snoc"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
508 |
Addsimps [butlast_snoc]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
509 |
|
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
510 |
goal thy |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
511 |
"!ys. butlast (xs@ys) = (if ys=[] then butlast xs else xs@butlast ys)"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
512 |
by(induct_tac "xs" 1); |
3919 | 513 |
by(ALLGOALS(asm_simp_tac (!simpset addsplits [expand_if]))); |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
514 |
qed_spec_mp "butlast_append"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
515 |
|
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
516 |
goal thy "x:set(butlast xs) --> x:set xs"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
517 |
by(induct_tac "xs" 1); |
3919 | 518 |
by(ALLGOALS (asm_simp_tac (!simpset addsplits [expand_if]))); |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
519 |
qed_spec_mp "in_set_butlastD"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
520 |
|
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
521 |
goal thy "!!xs. x:set(butlast xs) ==> x:set(butlast(xs@ys))"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
522 |
by(asm_simp_tac (!simpset addsimps [butlast_append] |
3919 | 523 |
addsplits [expand_if]) 1); |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
524 |
by(blast_tac (!claset addDs [in_set_butlastD]) 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
525 |
qed "in_set_butlast_appendI1"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
526 |
|
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
527 |
goal thy "!!xs. x:set(butlast ys) ==> x:set(butlast(xs@ys))"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
528 |
by(asm_simp_tac (!simpset addsimps [butlast_append] |
3919 | 529 |
addsplits [expand_if]) 1); |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
530 |
by(Clarify_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
531 |
by(Full_simp_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
532 |
qed "in_set_butlast_appendI2"; |
3902 | 533 |
|
2608 | 534 |
(** take & drop **) |
535 |
section "take & drop"; |
|
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
536 |
|
1419
a6a034a47a71
defined take/drop by induction over list rather than nat.
nipkow
parents:
1327
diff
changeset
|
537 |
goal thy "take 0 xs = []"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
538 |
by (induct_tac "xs" 1); |
1419
a6a034a47a71
defined take/drop by induction over list rather than nat.
nipkow
parents:
1327
diff
changeset
|
539 |
by (ALLGOALS Asm_simp_tac); |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
540 |
qed "take_0"; |
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
541 |
|
2608 | 542 |
goal thy "drop 0 xs = xs"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
543 |
by (induct_tac "xs" 1); |
2608 | 544 |
by (ALLGOALS Asm_simp_tac); |
545 |
qed "drop_0"; |
|
546 |
||
1419
a6a034a47a71
defined take/drop by induction over list rather than nat.
nipkow
parents:
1327
diff
changeset
|
547 |
goal thy "take (Suc n) (x#xs) = x # take n xs"; |
1552 | 548 |
by (Simp_tac 1); |
1419
a6a034a47a71
defined take/drop by induction over list rather than nat.
nipkow
parents:
1327
diff
changeset
|
549 |
qed "take_Suc_Cons"; |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
550 |
|
2608 | 551 |
goal thy "drop (Suc n) (x#xs) = drop n xs"; |
552 |
by (Simp_tac 1); |
|
553 |
qed "drop_Suc_Cons"; |
|
554 |
||
555 |
Delsimps [take_Cons,drop_Cons]; |
|
556 |
Addsimps [take_0,take_Suc_Cons,drop_0,drop_Suc_Cons]; |
|
557 |
||
3011 | 558 |
goal thy "!xs. length(take n xs) = min (length xs) n"; |
3457 | 559 |
by (nat_ind_tac "n" 1); |
560 |
by (ALLGOALS Asm_simp_tac); |
|
561 |
by (rtac allI 1); |
|
562 |
by (exhaust_tac "xs" 1); |
|
563 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 564 |
qed_spec_mp "length_take"; |
565 |
Addsimps [length_take]; |
|
923 | 566 |
|
3011 | 567 |
goal thy "!xs. length(drop n xs) = (length xs - n)"; |
3457 | 568 |
by (nat_ind_tac "n" 1); |
569 |
by (ALLGOALS Asm_simp_tac); |
|
570 |
by (rtac allI 1); |
|
571 |
by (exhaust_tac "xs" 1); |
|
572 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 573 |
qed_spec_mp "length_drop"; |
574 |
Addsimps [length_drop]; |
|
575 |
||
3011 | 576 |
goal thy "!xs. length xs <= n --> take n xs = xs"; |
3457 | 577 |
by (nat_ind_tac "n" 1); |
578 |
by (ALLGOALS Asm_simp_tac); |
|
579 |
by (rtac allI 1); |
|
580 |
by (exhaust_tac "xs" 1); |
|
581 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 582 |
qed_spec_mp "take_all"; |
923 | 583 |
|
3011 | 584 |
goal thy "!xs. length xs <= n --> drop n xs = []"; |
3457 | 585 |
by (nat_ind_tac "n" 1); |
586 |
by (ALLGOALS Asm_simp_tac); |
|
587 |
by (rtac allI 1); |
|
588 |
by (exhaust_tac "xs" 1); |
|
589 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 590 |
qed_spec_mp "drop_all"; |
591 |
||
3011 | 592 |
goal thy |
2608 | 593 |
"!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"; |
3457 | 594 |
by (nat_ind_tac "n" 1); |
595 |
by (ALLGOALS Asm_simp_tac); |
|
596 |
by (rtac allI 1); |
|
597 |
by (exhaust_tac "xs" 1); |
|
598 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 599 |
qed_spec_mp "take_append"; |
600 |
Addsimps [take_append]; |
|
601 |
||
3011 | 602 |
goal thy "!xs. drop n (xs@ys) = drop n xs @ drop (n - length xs) ys"; |
3457 | 603 |
by (nat_ind_tac "n" 1); |
604 |
by (ALLGOALS Asm_simp_tac); |
|
605 |
by (rtac allI 1); |
|
606 |
by (exhaust_tac "xs" 1); |
|
607 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 608 |
qed_spec_mp "drop_append"; |
609 |
Addsimps [drop_append]; |
|
610 |
||
3011 | 611 |
goal thy "!xs n. take n (take m xs) = take (min n m) xs"; |
3457 | 612 |
by (nat_ind_tac "m" 1); |
613 |
by (ALLGOALS Asm_simp_tac); |
|
614 |
by (rtac allI 1); |
|
615 |
by (exhaust_tac "xs" 1); |
|
616 |
by (ALLGOALS Asm_simp_tac); |
|
617 |
by (rtac allI 1); |
|
618 |
by (exhaust_tac "n" 1); |
|
619 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 620 |
qed_spec_mp "take_take"; |
621 |
||
3011 | 622 |
goal thy "!xs. drop n (drop m xs) = drop (n + m) xs"; |
3457 | 623 |
by (nat_ind_tac "m" 1); |
624 |
by (ALLGOALS Asm_simp_tac); |
|
625 |
by (rtac allI 1); |
|
626 |
by (exhaust_tac "xs" 1); |
|
627 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 628 |
qed_spec_mp "drop_drop"; |
923 | 629 |
|
3011 | 630 |
goal thy "!xs n. take n (drop m xs) = drop m (take (n + m) xs)"; |
3457 | 631 |
by (nat_ind_tac "m" 1); |
632 |
by (ALLGOALS Asm_simp_tac); |
|
633 |
by (rtac allI 1); |
|
634 |
by (exhaust_tac "xs" 1); |
|
635 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 636 |
qed_spec_mp "take_drop"; |
637 |
||
3011 | 638 |
goal thy "!xs. take n (map f xs) = map f (take n xs)"; |
3457 | 639 |
by (nat_ind_tac "n" 1); |
640 |
by (ALLGOALS Asm_simp_tac); |
|
641 |
by (rtac allI 1); |
|
642 |
by (exhaust_tac "xs" 1); |
|
643 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 644 |
qed_spec_mp "take_map"; |
645 |
||
3011 | 646 |
goal thy "!xs. drop n (map f xs) = map f (drop n xs)"; |
3457 | 647 |
by (nat_ind_tac "n" 1); |
648 |
by (ALLGOALS Asm_simp_tac); |
|
649 |
by (rtac allI 1); |
|
650 |
by (exhaust_tac "xs" 1); |
|
651 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 652 |
qed_spec_mp "drop_map"; |
653 |
||
3283
0db086394024
Replaced res_inst-list_cases by generic exhaust_tac.
nipkow
parents:
3196
diff
changeset
|
654 |
goal thy "!n i. i < n --> nth i (take n xs) = nth i xs"; |
3457 | 655 |
by (induct_tac "xs" 1); |
656 |
by (ALLGOALS Asm_simp_tac); |
|
3708 | 657 |
by (Clarify_tac 1); |
3457 | 658 |
by (exhaust_tac "n" 1); |
659 |
by (Blast_tac 1); |
|
660 |
by (exhaust_tac "i" 1); |
|
661 |
by (ALLGOALS Asm_full_simp_tac); |
|
2608 | 662 |
qed_spec_mp "nth_take"; |
663 |
Addsimps [nth_take]; |
|
923 | 664 |
|
3585 | 665 |
goal thy "!xs i. n + i <= length xs --> nth i (drop n xs) = nth (n + i) xs"; |
3457 | 666 |
by (nat_ind_tac "n" 1); |
667 |
by (ALLGOALS Asm_simp_tac); |
|
668 |
by (rtac allI 1); |
|
669 |
by (exhaust_tac "xs" 1); |
|
670 |
by (ALLGOALS Asm_simp_tac); |
|
2608 | 671 |
qed_spec_mp "nth_drop"; |
672 |
Addsimps [nth_drop]; |
|
673 |
||
674 |
(** takeWhile & dropWhile **) |
|
675 |
||
3467 | 676 |
section "takeWhile & dropWhile"; |
677 |
||
3586 | 678 |
goal thy "takeWhile P xs @ dropWhile P xs = xs"; |
679 |
by (induct_tac "xs" 1); |
|
680 |
by (Simp_tac 1); |
|
3919 | 681 |
by (asm_full_simp_tac (!simpset addsplits [expand_if]) 1); |
3586 | 682 |
qed "takeWhile_dropWhile_id"; |
683 |
Addsimps [takeWhile_dropWhile_id]; |
|
684 |
||
685 |
goal thy "x:set xs & ~P(x) --> takeWhile P (xs @ ys) = takeWhile P xs"; |
|
3457 | 686 |
by (induct_tac "xs" 1); |
687 |
by (Simp_tac 1); |
|
3919 | 688 |
by (asm_full_simp_tac (!simpset addsplits [expand_if]) 1); |
3457 | 689 |
by (Blast_tac 1); |
2608 | 690 |
bind_thm("takeWhile_append1", conjI RS (result() RS mp)); |
691 |
Addsimps [takeWhile_append1]; |
|
923 | 692 |
|
3011 | 693 |
goal thy |
3842 | 694 |
"(!x:set xs. P(x)) --> takeWhile P (xs @ ys) = xs @ takeWhile P ys"; |
3457 | 695 |
by (induct_tac "xs" 1); |
696 |
by (Simp_tac 1); |
|
3919 | 697 |
by (asm_full_simp_tac (!simpset addsplits [expand_if]) 1); |
2608 | 698 |
bind_thm("takeWhile_append2", ballI RS (result() RS mp)); |
699 |
Addsimps [takeWhile_append2]; |
|
1169 | 700 |
|
3011 | 701 |
goal thy |
3465 | 702 |
"x:set xs & ~P(x) --> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"; |
3457 | 703 |
by (induct_tac "xs" 1); |
704 |
by (Simp_tac 1); |
|
3919 | 705 |
by (asm_full_simp_tac (!simpset addsplits [expand_if]) 1); |
3457 | 706 |
by (Blast_tac 1); |
2608 | 707 |
bind_thm("dropWhile_append1", conjI RS (result() RS mp)); |
708 |
Addsimps [dropWhile_append1]; |
|
709 |
||
3011 | 710 |
goal thy |
3842 | 711 |
"(!x:set xs. P(x)) --> dropWhile P (xs @ ys) = dropWhile P ys"; |
3457 | 712 |
by (induct_tac "xs" 1); |
713 |
by (Simp_tac 1); |
|
3919 | 714 |
by (asm_full_simp_tac (!simpset addsplits [expand_if]) 1); |
2608 | 715 |
bind_thm("dropWhile_append2", ballI RS (result() RS mp)); |
716 |
Addsimps [dropWhile_append2]; |
|
717 |
||
3465 | 718 |
goal thy "x:set(takeWhile P xs) --> x:set xs & P x"; |
3457 | 719 |
by (induct_tac "xs" 1); |
720 |
by (Simp_tac 1); |
|
3919 | 721 |
by (asm_full_simp_tac (!simpset addsplits [expand_if]) 1); |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
722 |
qed_spec_mp"set_take_whileD"; |
2608 | 723 |
|
3589
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
724 |
(** replicate **) |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
725 |
section "replicate"; |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
726 |
|
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
727 |
goal thy "set(replicate (Suc n) x) = {x}"; |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
728 |
by(induct_tac "n" 1); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
729 |
by(ALLGOALS Asm_full_simp_tac); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
730 |
val lemma = result(); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
731 |
|
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
732 |
goal thy "!!n. n ~= 0 ==> set(replicate n x) = {x}"; |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
733 |
by(fast_tac (!claset addSDs [not0_implies_Suc] addSIs [lemma]) 1); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
734 |
qed "set_replicate"; |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
735 |
Addsimps [set_replicate]; |