author | wenzelm |
Fri, 27 Jul 2018 22:23:37 +0200 | |
changeset 68695 | 9072bfd24d8f |
parent 68270 | 2bc921b2159b |
child 68708 | 77858f347020 |
permissions | -rw-r--r-- |
63489 | 1 |
(* Title: HOL/GCD.thy |
2 |
Author: Christophe Tabacznyj |
|
3 |
Author: Lawrence C. Paulson |
|
4 |
Author: Amine Chaieb |
|
5 |
Author: Thomas M. Rasmussen |
|
6 |
Author: Jeremy Avigad |
|
7 |
Author: Tobias Nipkow |
|
31706 | 8 |
|
32479 | 9 |
This file deals with the functions gcd and lcm. Definitions and |
10 |
lemmas are proved uniformly for the natural numbers and integers. |
|
31706 | 11 |
|
12 |
This file combines and revises a number of prior developments. |
|
13 |
||
14 |
The original theories "GCD" and "Primes" were by Christophe Tabacznyj |
|
58623 | 15 |
and Lawrence C. Paulson, based on @{cite davenport92}. They introduced |
31706 | 16 |
gcd, lcm, and prime for the natural numbers. |
17 |
||
18 |
The original theory "IntPrimes" was by Thomas M. Rasmussen, and |
|
19 |
extended gcd, lcm, primes to the integers. Amine Chaieb provided |
|
20 |
another extension of the notions to the integers, and added a number |
|
21 |
of results to "Primes" and "GCD". IntPrimes also defined and developed |
|
22 |
the congruence relations on the integers. The notion was extended to |
|
34915 | 23 |
the natural numbers by Chaieb. |
31706 | 24 |
|
32036
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
25 |
Jeremy Avigad combined all of these, made everything uniform for the |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
26 |
natural numbers and the integers, and added a number of new theorems. |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
27 |
|
31798 | 28 |
Tobias Nipkow cleaned up a lot. |
21256 | 29 |
*) |
30 |
||
60758 | 31 |
section \<open>Greatest common divisor and least common multiple\<close> |
21256 | 32 |
|
33 |
theory GCD |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
34 |
imports Groups_List |
31706 | 35 |
begin |
36 |
||
64850 | 37 |
subsection \<open>Abstract bounded quasi semilattices as common foundation\<close> |
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
38 |
|
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
39 |
locale bounded_quasi_semilattice = abel_semigroup + |
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
40 |
fixes top :: 'a ("\<^bold>\<top>") and bot :: 'a ("\<^bold>\<bottom>") |
64850 | 41 |
and normalize :: "'a \<Rightarrow> 'a" |
42 |
assumes idem_normalize [simp]: "a \<^bold>* a = normalize a" |
|
43 |
and normalize_left_idem [simp]: "normalize a \<^bold>* b = a \<^bold>* b" |
|
44 |
and normalize_idem [simp]: "normalize (a \<^bold>* b) = a \<^bold>* b" |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
45 |
and normalize_top [simp]: "normalize \<^bold>\<top> = \<^bold>\<top>" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
46 |
and normalize_bottom [simp]: "normalize \<^bold>\<bottom> = \<^bold>\<bottom>" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
47 |
and top_left_normalize [simp]: "\<^bold>\<top> \<^bold>* a = normalize a" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
48 |
and bottom_left_bottom [simp]: "\<^bold>\<bottom> \<^bold>* a = \<^bold>\<bottom>" |
64850 | 49 |
begin |
50 |
||
51 |
lemma left_idem [simp]: |
|
52 |
"a \<^bold>* (a \<^bold>* b) = a \<^bold>* b" |
|
53 |
using assoc [of a a b, symmetric] by simp |
|
54 |
||
55 |
lemma right_idem [simp]: |
|
56 |
"(a \<^bold>* b) \<^bold>* b = a \<^bold>* b" |
|
57 |
using left_idem [of b a] by (simp add: ac_simps) |
|
58 |
||
59 |
lemma comp_fun_idem: "comp_fun_idem f" |
|
60 |
by standard (simp_all add: fun_eq_iff ac_simps) |
|
61 |
||
62 |
interpretation comp_fun_idem f |
|
63 |
by (fact comp_fun_idem) |
|
64 |
||
65 |
lemma top_right_normalize [simp]: |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
66 |
"a \<^bold>* \<^bold>\<top> = normalize a" |
64850 | 67 |
using top_left_normalize [of a] by (simp add: ac_simps) |
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
68 |
|
64850 | 69 |
lemma bottom_right_bottom [simp]: |
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
70 |
"a \<^bold>* \<^bold>\<bottom> = \<^bold>\<bottom>" |
64850 | 71 |
using bottom_left_bottom [of a] by (simp add: ac_simps) |
72 |
||
73 |
lemma normalize_right_idem [simp]: |
|
74 |
"a \<^bold>* normalize b = a \<^bold>* b" |
|
75 |
using normalize_left_idem [of b a] by (simp add: ac_simps) |
|
76 |
||
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
77 |
end |
64850 | 78 |
|
79 |
locale bounded_quasi_semilattice_set = bounded_quasi_semilattice |
|
80 |
begin |
|
81 |
||
82 |
interpretation comp_fun_idem f |
|
83 |
by (fact comp_fun_idem) |
|
84 |
||
85 |
definition F :: "'a set \<Rightarrow> 'a" |
|
86 |
where |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
87 |
eq_fold: "F A = (if finite A then Finite_Set.fold f \<^bold>\<top> A else \<^bold>\<bottom>)" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
88 |
|
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
89 |
lemma infinite [simp]: |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
90 |
"infinite A \<Longrightarrow> F A = \<^bold>\<bottom>" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
91 |
by (simp add: eq_fold) |
64850 | 92 |
|
93 |
lemma set_eq_fold [code]: |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
94 |
"F (set xs) = fold f xs \<^bold>\<top>" |
64850 | 95 |
by (simp add: eq_fold fold_set_fold) |
96 |
||
97 |
lemma empty [simp]: |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
98 |
"F {} = \<^bold>\<top>" |
64850 | 99 |
by (simp add: eq_fold) |
100 |
||
101 |
lemma insert [simp]: |
|
102 |
"F (insert a A) = a \<^bold>* F A" |
|
103 |
by (cases "finite A") (simp_all add: eq_fold) |
|
104 |
||
105 |
lemma normalize [simp]: |
|
106 |
"normalize (F A) = F A" |
|
107 |
by (induct A rule: infinite_finite_induct) simp_all |
|
108 |
||
109 |
lemma in_idem: |
|
110 |
assumes "a \<in> A" |
|
111 |
shows "a \<^bold>* F A = F A" |
|
112 |
using assms by (induct A rule: infinite_finite_induct) |
|
113 |
(auto simp add: left_commute [of a]) |
|
114 |
||
115 |
lemma union: |
|
116 |
"F (A \<union> B) = F A \<^bold>* F B" |
|
117 |
by (induct A rule: infinite_finite_induct) |
|
118 |
(simp_all add: ac_simps) |
|
119 |
||
120 |
lemma remove: |
|
121 |
assumes "a \<in> A" |
|
122 |
shows "F A = a \<^bold>* F (A - {a})" |
|
123 |
proof - |
|
124 |
from assms obtain B where "A = insert a B" and "a \<notin> B" |
|
125 |
by (blast dest: mk_disjoint_insert) |
|
126 |
with assms show ?thesis by simp |
|
127 |
qed |
|
128 |
||
129 |
lemma insert_remove: |
|
130 |
"F (insert a A) = a \<^bold>* F (A - {a})" |
|
131 |
by (cases "a \<in> A") (simp_all add: insert_absorb remove) |
|
132 |
||
133 |
lemma subset: |
|
134 |
assumes "B \<subseteq> A" |
|
135 |
shows "F B \<^bold>* F A = F A" |
|
136 |
using assms by (simp add: union [symmetric] Un_absorb1) |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
137 |
|
64850 | 138 |
end |
63489 | 139 |
|
62345 | 140 |
subsection \<open>Abstract GCD and LCM\<close> |
31706 | 141 |
|
31992 | 142 |
class gcd = zero + one + dvd + |
41550 | 143 |
fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
144 |
and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
31706 | 145 |
|
60686 | 146 |
class Gcd = gcd + |
63025 | 147 |
fixes Gcd :: "'a set \<Rightarrow> 'a" |
148 |
and Lcm :: "'a set \<Rightarrow> 'a" |
|
62350 | 149 |
begin |
150 |
||
63025 | 151 |
abbreviation GREATEST_COMMON_DIVISOR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" |
63489 | 152 |
where "GREATEST_COMMON_DIVISOR A f \<equiv> Gcd (f ` A)" |
62350 | 153 |
|
63025 | 154 |
abbreviation LEAST_COMMON_MULTIPLE :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" |
63489 | 155 |
where "LEAST_COMMON_MULTIPLE A f \<equiv> Lcm (f ` A)" |
62350 | 156 |
|
157 |
end |
|
158 |
||
159 |
syntax |
|
63025 | 160 |
"_GCD1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3GCD _./ _)" [0, 10] 10) |
161 |
"_GCD" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3GCD _\<in>_./ _)" [0, 0, 10] 10) |
|
162 |
"_LCM1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3LCM _./ _)" [0, 10] 10) |
|
163 |
"_LCM" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3LCM _\<in>_./ _)" [0, 0, 10] 10) |
|
62350 | 164 |
translations |
63025 | 165 |
"GCD x y. B" \<rightleftharpoons> "GCD x. GCD y. B" |
166 |
"GCD x. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR CONST UNIV (\<lambda>x. B)" |
|
167 |
"GCD x. B" \<rightleftharpoons> "GCD x \<in> CONST UNIV. B" |
|
168 |
"GCD x\<in>A. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR A (\<lambda>x. B)" |
|
169 |
"LCM x y. B" \<rightleftharpoons> "LCM x. LCM y. B" |
|
170 |
"LCM x. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE CONST UNIV (\<lambda>x. B)" |
|
171 |
"LCM x. B" \<rightleftharpoons> "LCM x \<in> CONST UNIV. B" |
|
172 |
"LCM x\<in>A. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE A (\<lambda>x. B)" |
|
62350 | 173 |
|
174 |
print_translation \<open> |
|
63025 | 175 |
[Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax GREATEST_COMMON_DIVISOR} @{syntax_const "_GCD"}, |
176 |
Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax LEAST_COMMON_MULTIPLE} @{syntax_const "_LCM"}] |
|
62350 | 177 |
\<close> \<comment> \<open>to avoid eta-contraction of body\<close> |
60686 | 178 |
|
179 |
class semiring_gcd = normalization_semidom + gcd + |
|
59008 | 180 |
assumes gcd_dvd1 [iff]: "gcd a b dvd a" |
59977 | 181 |
and gcd_dvd2 [iff]: "gcd a b dvd b" |
182 |
and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" |
|
60686 | 183 |
and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b" |
184 |
and lcm_gcd: "lcm a b = normalize (a * b) div gcd a b" |
|
63489 | 185 |
begin |
186 |
||
187 |
lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c" |
|
60686 | 188 |
by (blast intro!: gcd_greatest intro: dvd_trans) |
189 |
||
63489 | 190 |
lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c" |
60689 | 191 |
by (rule dvd_trans) (rule gcd_dvd1) |
192 |
||
63489 | 193 |
lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c" |
60689 | 194 |
by (rule dvd_trans) (rule gcd_dvd2) |
195 |
||
63489 | 196 |
lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b" |
62345 | 197 |
using gcd_dvd1 [of b c] by (blast intro: dvd_trans) |
198 |
||
63489 | 199 |
lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c" |
62345 | 200 |
using gcd_dvd2 [of b c] by (blast intro: dvd_trans) |
201 |
||
63489 | 202 |
lemma gcd_0_left [simp]: "gcd 0 a = normalize a" |
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
203 |
by (rule associated_eqI) simp_all |
60686 | 204 |
|
63489 | 205 |
lemma gcd_0_right [simp]: "gcd a 0 = normalize a" |
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
206 |
by (rule associated_eqI) simp_all |
63489 | 207 |
|
208 |
lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" |
|
209 |
(is "?P \<longleftrightarrow> ?Q") |
|
60686 | 210 |
proof |
63489 | 211 |
assume ?P |
212 |
then have "0 dvd gcd a b" |
|
213 |
by simp |
|
214 |
then have "0 dvd a" and "0 dvd b" |
|
215 |
by (blast intro: dvd_trans)+ |
|
216 |
then show ?Q |
|
217 |
by simp |
|
60686 | 218 |
next |
63489 | 219 |
assume ?Q |
220 |
then show ?P |
|
221 |
by simp |
|
60686 | 222 |
qed |
223 |
||
63489 | 224 |
lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" |
60686 | 225 |
proof (cases "gcd a b = 0") |
63489 | 226 |
case True |
227 |
then show ?thesis by simp |
|
60686 | 228 |
next |
229 |
case False |
|
230 |
have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b" |
|
231 |
by (rule unit_factor_mult_normalize) |
|
232 |
then have "unit_factor (gcd a b) * gcd a b = gcd a b" |
|
233 |
by simp |
|
234 |
then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b" |
|
235 |
by simp |
|
63489 | 236 |
with False show ?thesis |
237 |
by simp |
|
60686 | 238 |
qed |
239 |
||
67051 | 240 |
lemma is_unit_gcd_iff [simp]: |
241 |
"is_unit (gcd a b) \<longleftrightarrow> gcd a b = 1" |
|
60690 | 242 |
by (cases "a = 0 \<and> b = 0") (auto simp add: unit_factor_gcd dest: is_unit_unit_factor) |
243 |
||
61605 | 244 |
sublocale gcd: abel_semigroup gcd |
60686 | 245 |
proof |
246 |
fix a b c |
|
247 |
show "gcd a b = gcd b a" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
248 |
by (rule associated_eqI) simp_all |
60686 | 249 |
from gcd_dvd1 have "gcd (gcd a b) c dvd a" |
250 |
by (rule dvd_trans) simp |
|
251 |
moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b" |
|
252 |
by (rule dvd_trans) simp |
|
253 |
ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)" |
|
254 |
by (auto intro!: gcd_greatest) |
|
255 |
from gcd_dvd2 have "gcd a (gcd b c) dvd b" |
|
256 |
by (rule dvd_trans) simp |
|
257 |
moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c" |
|
258 |
by (rule dvd_trans) simp |
|
259 |
ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c" |
|
260 |
by (auto intro!: gcd_greatest) |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
261 |
from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
262 |
by (rule associated_eqI) simp_all |
60686 | 263 |
qed |
264 |
||
64850 | 265 |
sublocale gcd: bounded_quasi_semilattice gcd 0 1 normalize |
266 |
proof |
|
267 |
show "gcd a a = normalize a" for a |
|
268 |
proof - |
|
269 |
have "a dvd gcd a a" |
|
270 |
by (rule gcd_greatest) simp_all |
|
271 |
then show ?thesis |
|
272 |
by (auto intro: associated_eqI) |
|
273 |
qed |
|
274 |
show "gcd (normalize a) b = gcd a b" for a b |
|
275 |
using gcd_dvd1 [of "normalize a" b] |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
276 |
by (auto intro: associated_eqI) |
67051 | 277 |
show "gcd 1 a = 1" for a |
64850 | 278 |
by (rule associated_eqI) simp_all |
279 |
qed simp_all |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
280 |
|
64850 | 281 |
lemma gcd_self: "gcd a a = normalize a" |
282 |
by (fact gcd.idem_normalize) |
|
283 |
||
284 |
lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b" |
|
285 |
by (fact gcd.left_idem) |
|
286 |
||
287 |
lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b" |
|
288 |
by (fact gcd.right_idem) |
|
289 |
||
63489 | 290 |
lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize c * gcd a b" |
60686 | 291 |
proof (cases "c = 0") |
63489 | 292 |
case True |
293 |
then show ?thesis by simp |
|
60686 | 294 |
next |
295 |
case False |
|
63489 | 296 |
then have *: "c * gcd a b dvd gcd (c * a) (c * b)" |
60686 | 297 |
by (auto intro: gcd_greatest) |
63489 | 298 |
moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b" |
60686 | 299 |
by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute) |
300 |
ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
301 |
by (auto intro: associated_eqI) |
63489 | 302 |
then show ?thesis |
303 |
by (simp add: normalize_mult) |
|
60686 | 304 |
qed |
305 |
||
63489 | 306 |
lemma gcd_mult_right: "gcd (a * c) (b * c) = gcd b a * normalize c" |
60686 | 307 |
using gcd_mult_left [of c a b] by (simp add: ac_simps) |
308 |
||
63489 | 309 |
lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)" |
60686 | 310 |
by (simp add: gcd_mult_left mult.assoc [symmetric]) |
311 |
||
63489 | 312 |
lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c" |
60686 | 313 |
using mult_gcd_left [of c a b] by (simp add: ac_simps) |
314 |
||
63489 | 315 |
lemma dvd_lcm1 [iff]: "a dvd lcm a b" |
60686 | 316 |
proof - |
317 |
have "normalize (a * b) div gcd a b = normalize a * (normalize b div gcd a b)" |
|
318 |
by (simp add: lcm_gcd normalize_mult div_mult_swap) |
|
319 |
then show ?thesis |
|
320 |
by (simp add: lcm_gcd) |
|
321 |
qed |
|
63489 | 322 |
|
323 |
lemma dvd_lcm2 [iff]: "b dvd lcm a b" |
|
60686 | 324 |
proof - |
325 |
have "normalize (a * b) div gcd a b = normalize b * (normalize a div gcd a b)" |
|
326 |
by (simp add: lcm_gcd normalize_mult div_mult_swap ac_simps) |
|
327 |
then show ?thesis |
|
328 |
by (simp add: lcm_gcd) |
|
329 |
qed |
|
330 |
||
63489 | 331 |
lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c" |
332 |
by (rule dvd_trans) (assumption, blast) |
|
333 |
||
334 |
lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c" |
|
60689 | 335 |
by (rule dvd_trans) (assumption, blast) |
336 |
||
63489 | 337 |
lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c" |
62345 | 338 |
using dvd_lcm1 [of a b] by (blast intro: dvd_trans) |
339 |
||
63489 | 340 |
lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c" |
62345 | 341 |
using dvd_lcm2 [of a b] by (blast intro: dvd_trans) |
342 |
||
60686 | 343 |
lemma lcm_least: |
344 |
assumes "a dvd c" and "b dvd c" |
|
345 |
shows "lcm a b dvd c" |
|
346 |
proof (cases "c = 0") |
|
63489 | 347 |
case True |
348 |
then show ?thesis by simp |
|
60686 | 349 |
next |
63489 | 350 |
case False |
351 |
then have *: "is_unit (unit_factor c)" |
|
352 |
by simp |
|
60686 | 353 |
show ?thesis |
354 |
proof (cases "gcd a b = 0") |
|
63489 | 355 |
case True |
356 |
with assms show ?thesis by simp |
|
60686 | 357 |
next |
63489 | 358 |
case False |
359 |
then have "a \<noteq> 0 \<or> b \<noteq> 0" |
|
360 |
by simp |
|
60686 | 361 |
with \<open>c \<noteq> 0\<close> assms have "a * b dvd a * c" "a * b dvd c * b" |
362 |
by (simp_all add: mult_dvd_mono) |
|
363 |
then have "normalize (a * b) dvd gcd (a * c) (b * c)" |
|
364 |
by (auto intro: gcd_greatest simp add: ac_simps) |
|
365 |
then have "normalize (a * b) dvd gcd (a * c) (b * c) * unit_factor c" |
|
63489 | 366 |
using * by (simp add: dvd_mult_unit_iff) |
60686 | 367 |
then have "normalize (a * b) dvd gcd a b * c" |
368 |
by (simp add: mult_gcd_right [of a b c]) |
|
369 |
then have "normalize (a * b) div gcd a b dvd c" |
|
370 |
using False by (simp add: div_dvd_iff_mult ac_simps) |
|
63489 | 371 |
then show ?thesis |
372 |
by (simp add: lcm_gcd) |
|
60686 | 373 |
qed |
374 |
qed |
|
375 |
||
63489 | 376 |
lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c" |
60686 | 377 |
by (blast intro!: lcm_least intro: dvd_trans) |
378 |
||
63489 | 379 |
lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b" |
60686 | 380 |
by (simp add: lcm_gcd dvd_normalize_div) |
381 |
||
63489 | 382 |
lemma lcm_0_left [simp]: "lcm 0 a = 0" |
383 |
by (simp add: lcm_gcd) |
|
384 |
||
385 |
lemma lcm_0_right [simp]: "lcm a 0 = 0" |
|
60686 | 386 |
by (simp add: lcm_gcd) |
63489 | 387 |
|
388 |
lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" |
|
389 |
(is "?P \<longleftrightarrow> ?Q") |
|
60686 | 390 |
proof |
63489 | 391 |
assume ?P |
392 |
then have "0 dvd lcm a b" |
|
393 |
by simp |
|
60686 | 394 |
then have "0 dvd normalize (a * b) div gcd a b" |
395 |
by (simp add: lcm_gcd) |
|
396 |
then have "0 * gcd a b dvd normalize (a * b)" |
|
397 |
using dvd_div_iff_mult [of "gcd a b" _ 0] by (cases "gcd a b = 0") simp_all |
|
398 |
then have "normalize (a * b) = 0" |
|
399 |
by simp |
|
63489 | 400 |
then show ?Q |
401 |
by simp |
|
60686 | 402 |
next |
63489 | 403 |
assume ?Q |
404 |
then show ?P |
|
405 |
by auto |
|
60686 | 406 |
qed |
407 |
||
63489 | 408 |
lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" |
61913 | 409 |
by (auto intro: associated_eqI) |
410 |
||
63489 | 411 |
lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" |
60686 | 412 |
by (simp add: unit_factor_gcd dvd_unit_factor_div lcm_gcd) |
413 |
||
61605 | 414 |
sublocale lcm: abel_semigroup lcm |
60686 | 415 |
proof |
416 |
fix a b c |
|
417 |
show "lcm a b = lcm b a" |
|
418 |
by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div) |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
419 |
have "lcm (lcm a b) c dvd lcm a (lcm b c)" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
420 |
and "lcm a (lcm b c) dvd lcm (lcm a b) c" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
421 |
by (auto intro: lcm_least |
60686 | 422 |
dvd_trans [of b "lcm b c" "lcm a (lcm b c)"] |
423 |
dvd_trans [of c "lcm b c" "lcm a (lcm b c)"] |
|
424 |
dvd_trans [of a "lcm a b" "lcm (lcm a b) c"] |
|
425 |
dvd_trans [of b "lcm a b" "lcm (lcm a b) c"]) |
|
426 |
then show "lcm (lcm a b) c = lcm a (lcm b c)" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
427 |
by (rule associated_eqI) simp_all |
60686 | 428 |
qed |
429 |
||
64850 | 430 |
sublocale lcm: bounded_quasi_semilattice lcm 1 0 normalize |
431 |
proof |
|
432 |
show "lcm a a = normalize a" for a |
|
433 |
proof - |
|
434 |
have "lcm a a dvd a" |
|
435 |
by (rule lcm_least) simp_all |
|
436 |
then show ?thesis |
|
437 |
by (auto intro: associated_eqI) |
|
438 |
qed |
|
439 |
show "lcm (normalize a) b = lcm a b" for a b |
|
440 |
using dvd_lcm1 [of "normalize a" b] unfolding normalize_dvd_iff |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
441 |
by (auto intro: associated_eqI) |
64850 | 442 |
show "lcm 1 a = normalize a" for a |
443 |
by (rule associated_eqI) simp_all |
|
444 |
qed simp_all |
|
445 |
||
446 |
lemma lcm_self: "lcm a a = normalize a" |
|
447 |
by (fact lcm.idem_normalize) |
|
448 |
||
449 |
lemma lcm_left_idem: "lcm a (lcm a b) = lcm a b" |
|
450 |
by (fact lcm.left_idem) |
|
451 |
||
452 |
lemma lcm_right_idem: "lcm (lcm a b) b = lcm a b" |
|
453 |
by (fact lcm.right_idem) |
|
61913 | 454 |
|
63489 | 455 |
lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b" |
60686 | 456 |
by (simp add: lcm_gcd normalize_mult) |
457 |
||
63489 | 458 |
lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b" |
459 |
using gcd_mult_lcm [of a b] by (simp add: ac_simps) |
|
60686 | 460 |
|
461 |
lemma gcd_lcm: |
|
462 |
assumes "a \<noteq> 0" and "b \<noteq> 0" |
|
463 |
shows "gcd a b = normalize (a * b) div lcm a b" |
|
464 |
proof - |
|
465 |
from assms have "lcm a b \<noteq> 0" |
|
466 |
by (simp add: lcm_eq_0_iff) |
|
63489 | 467 |
have "gcd a b * lcm a b = normalize a * normalize b" |
468 |
by simp |
|
60686 | 469 |
then have "gcd a b * lcm a b div lcm a b = normalize (a * b) div lcm a b" |
470 |
by (simp_all add: normalize_mult) |
|
471 |
with \<open>lcm a b \<noteq> 0\<close> show ?thesis |
|
64240 | 472 |
using nonzero_mult_div_cancel_right [of "lcm a b" "gcd a b"] by simp |
60686 | 473 |
qed |
474 |
||
64850 | 475 |
lemma lcm_1_left: "lcm 1 a = normalize a" |
476 |
by (fact lcm.top_left_normalize) |
|
477 |
||
478 |
lemma lcm_1_right: "lcm a 1 = normalize a" |
|
479 |
by (fact lcm.top_right_normalize) |
|
63489 | 480 |
|
481 |
lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize c * lcm a b" |
|
60686 | 482 |
by (cases "c = 0") |
483 |
(simp_all add: gcd_mult_right lcm_gcd div_mult_swap normalize_mult ac_simps, |
|
484 |
simp add: dvd_div_mult2_eq mult.left_commute [of "normalize c", symmetric]) |
|
485 |
||
63489 | 486 |
lemma lcm_mult_right: "lcm (a * c) (b * c) = lcm b a * normalize c" |
60686 | 487 |
using lcm_mult_left [of c a b] by (simp add: ac_simps) |
488 |
||
63489 | 489 |
lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)" |
60686 | 490 |
by (simp add: lcm_mult_left mult.assoc [symmetric]) |
491 |
||
63489 | 492 |
lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c" |
60686 | 493 |
using mult_lcm_left [of c a b] by (simp add: ac_simps) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
494 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
495 |
lemma gcdI: |
63489 | 496 |
assumes "c dvd a" and "c dvd b" |
497 |
and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
498 |
and "normalize c = c" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
499 |
shows "c = gcd a b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
500 |
by (rule associated_eqI) (auto simp: assms intro: gcd_greatest) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
501 |
|
63489 | 502 |
lemma gcd_unique: |
503 |
"d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
504 |
by rule (auto intro: gcdI simp: gcd_greatest) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
505 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
506 |
lemma gcd_dvd_prod: "gcd a b dvd k * b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
507 |
using mult_dvd_mono [of 1] by auto |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
508 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
509 |
lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
510 |
by (rule gcdI [symmetric]) simp_all |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
511 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
512 |
lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
513 |
by (rule gcdI [symmetric]) simp_all |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
514 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
515 |
lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
516 |
proof |
63489 | 517 |
assume *: "gcd m n = normalize m" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
518 |
show "m dvd n" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
519 |
proof (cases "m = 0") |
63489 | 520 |
case True |
521 |
with * show ?thesis by simp |
|
522 |
next |
|
523 |
case [simp]: False |
|
524 |
from * have **: "m = gcd m n * unit_factor m" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
525 |
by (simp add: unit_eq_div2) |
63489 | 526 |
show ?thesis |
527 |
by (subst **) (simp add: mult_unit_dvd_iff) |
|
528 |
qed |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
529 |
next |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
530 |
assume "m dvd n" |
63489 | 531 |
then show "gcd m n = normalize m" |
532 |
by (rule gcd_proj1_if_dvd) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
533 |
qed |
63489 | 534 |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
535 |
lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
536 |
using gcd_proj1_iff [of n m] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
537 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
538 |
lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
539 |
by (rule gcdI) (auto simp: normalize_mult gcd_greatest mult_dvd_mono gcd_mult_left[symmetric]) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
540 |
|
63489 | 541 |
lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
542 |
proof- |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
543 |
have "normalize k * gcd a b = gcd (k * a) (k * b)" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
544 |
by (simp add: gcd_mult_distrib') |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
545 |
then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
546 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
547 |
then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
548 |
by (simp only: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
549 |
then show ?thesis |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
550 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
551 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
552 |
|
63489 | 553 |
lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
554 |
by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
555 |
|
63489 | 556 |
lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
557 |
using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
558 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
559 |
lemma lcm_div_unit1: |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
560 |
"is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" |
63489 | 561 |
by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) |
562 |
||
563 |
lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
564 |
by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
565 |
|
64850 | 566 |
lemma normalize_lcm_left: "lcm (normalize a) b = lcm a b" |
567 |
by (fact lcm.normalize_left_idem) |
|
568 |
||
569 |
lemma normalize_lcm_right: "lcm a (normalize b) = lcm a b" |
|
570 |
by (fact lcm.normalize_right_idem) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
571 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
572 |
lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
573 |
apply (rule gcdI) |
63489 | 574 |
apply simp_all |
575 |
apply (rule dvd_trans) |
|
576 |
apply (rule gcd_dvd1) |
|
577 |
apply (simp add: unit_simps) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
578 |
done |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
579 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
580 |
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" |
63489 | 581 |
apply (subst gcd.commute) |
582 |
apply (subst gcd_mult_unit1) |
|
583 |
apply assumption |
|
584 |
apply (rule gcd.commute) |
|
585 |
done |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
586 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
587 |
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
588 |
by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
589 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
590 |
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
591 |
by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
592 |
|
64850 | 593 |
lemma normalize_gcd_left: "gcd (normalize a) b = gcd a b" |
594 |
by (fact gcd.normalize_left_idem) |
|
595 |
||
596 |
lemma normalize_gcd_right: "gcd a (normalize b) = gcd a b" |
|
597 |
by (fact gcd.normalize_right_idem) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
598 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
599 |
lemma comp_fun_idem_gcd: "comp_fun_idem gcd" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
600 |
by standard (simp_all add: fun_eq_iff ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
601 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
602 |
lemma comp_fun_idem_lcm: "comp_fun_idem lcm" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
603 |
by standard (simp_all add: fun_eq_iff ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
604 |
|
63489 | 605 |
lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
606 |
proof (rule gcdI) |
63489 | 607 |
assume *: "gcd a b dvd gcd c d" |
608 |
and **: "gcd c d dvd gcd a b" |
|
609 |
have "gcd c d dvd c" |
|
610 |
by simp |
|
611 |
with * show "gcd a b dvd c" |
|
612 |
by (rule dvd_trans) |
|
613 |
have "gcd c d dvd d" |
|
614 |
by simp |
|
615 |
with * show "gcd a b dvd d" |
|
616 |
by (rule dvd_trans) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
617 |
show "normalize (gcd a b) = gcd a b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
618 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
619 |
fix l assume "l dvd c" and "l dvd d" |
63489 | 620 |
then have "l dvd gcd c d" |
621 |
by (rule gcd_greatest) |
|
622 |
from this and ** show "l dvd gcd a b" |
|
623 |
by (rule dvd_trans) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
624 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
625 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
626 |
lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
627 |
by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
628 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
629 |
lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
630 |
using gcd_add1 [of n m] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
631 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
632 |
lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
633 |
by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
634 |
|
63489 | 635 |
lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
636 |
by (simp add: lcm_gcd) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
637 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
638 |
declare unit_factor_lcm [simp] |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
639 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
640 |
lemma lcmI: |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
641 |
assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
642 |
and "normalize c = c" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
643 |
shows "c = lcm a b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
644 |
by (rule associated_eqI) (auto simp: assms intro: lcm_least) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
645 |
|
63489 | 646 |
lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
647 |
using gcd_dvd2 by (rule dvd_lcmI2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
648 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
649 |
lemmas lcm_0 = lcm_0_right |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
650 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
651 |
lemma lcm_unique: |
63489 | 652 |
"a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
653 |
by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
654 |
|
63489 | 655 |
lemma lcm_proj1_if_dvd: "b dvd a \<Longrightarrow> lcm a b = normalize a" |
656 |
apply (cases "a = 0") |
|
657 |
apply simp |
|
658 |
apply (rule sym) |
|
659 |
apply (rule lcmI) |
|
660 |
apply simp_all |
|
661 |
done |
|
662 |
||
663 |
lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
664 |
using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
665 |
|
63489 | 666 |
lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
667 |
proof |
63489 | 668 |
assume *: "lcm m n = normalize m" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
669 |
show "n dvd m" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
670 |
proof (cases "m = 0") |
63489 | 671 |
case True |
672 |
then show ?thesis by simp |
|
673 |
next |
|
674 |
case [simp]: False |
|
675 |
from * have **: "m = lcm m n * unit_factor m" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
676 |
by (simp add: unit_eq_div2) |
63489 | 677 |
show ?thesis by (subst **) simp |
678 |
qed |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
679 |
next |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
680 |
assume "n dvd m" |
63489 | 681 |
then show "lcm m n = normalize m" |
682 |
by (rule lcm_proj1_if_dvd) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
683 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
684 |
|
63489 | 685 |
lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
686 |
using lcm_proj1_iff [of n m] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
687 |
|
64850 | 688 |
lemma lcm_mult_distrib': "normalize c * lcm a b = lcm (c * a) (c * b)" |
689 |
by (rule lcmI) (auto simp: normalize_mult lcm_least mult_dvd_mono lcm_mult_left [symmetric]) |
|
690 |
||
691 |
lemma lcm_mult_distrib: "k * lcm a b = lcm (k * a) (k * b) * unit_factor k" |
|
692 |
proof- |
|
693 |
have "normalize k * lcm a b = lcm (k * a) (k * b)" |
|
694 |
by (simp add: lcm_mult_distrib') |
|
695 |
then have "normalize k * lcm a b * unit_factor k = lcm (k * a) (k * b) * unit_factor k" |
|
696 |
by simp |
|
697 |
then have "normalize k * unit_factor k * lcm a b = lcm (k * a) (k * b) * unit_factor k" |
|
698 |
by (simp only: ac_simps) |
|
699 |
then show ?thesis |
|
700 |
by simp |
|
701 |
qed |
|
702 |
||
63924 | 703 |
lemma dvd_productE: |
67051 | 704 |
assumes "p dvd a * b" |
63924 | 705 |
obtains x y where "p = x * y" "x dvd a" "y dvd b" |
706 |
proof (cases "a = 0") |
|
707 |
case True |
|
708 |
thus ?thesis by (intro that[of p 1]) simp_all |
|
709 |
next |
|
710 |
case False |
|
711 |
define x y where "x = gcd a p" and "y = p div x" |
|
712 |
have "p = x * y" by (simp add: x_def y_def) |
|
713 |
moreover have "x dvd a" by (simp add: x_def) |
|
714 |
moreover from assms have "p dvd gcd (b * a) (b * p)" |
|
715 |
by (intro gcd_greatest) (simp_all add: mult.commute) |
|
716 |
hence "p dvd b * gcd a p" by (simp add: gcd_mult_distrib) |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
717 |
with False have "y dvd b" |
63924 | 718 |
by (simp add: x_def y_def div_dvd_iff_mult assms) |
719 |
ultimately show ?thesis by (rule that) |
|
720 |
qed |
|
721 |
||
60686 | 722 |
end |
723 |
||
62345 | 724 |
class ring_gcd = comm_ring_1 + semiring_gcd |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
725 |
begin |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
726 |
|
63489 | 727 |
lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b" |
728 |
by (rule sym, rule gcdI) (simp_all add: gcd_greatest) |
|
729 |
||
730 |
lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b" |
|
731 |
by (rule sym, rule gcdI) (simp_all add: gcd_greatest) |
|
732 |
||
733 |
lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
734 |
by (fact gcd_neg1) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
735 |
|
63489 | 736 |
lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
737 |
by (fact gcd_neg2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
738 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
739 |
lemma gcd_diff1: "gcd (m - n) n = gcd m n" |
63489 | 740 |
by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
741 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
742 |
lemma gcd_diff2: "gcd (n - m) n = gcd m n" |
63489 | 743 |
by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
744 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
745 |
lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" |
63489 | 746 |
by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
747 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
748 |
lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" |
63489 | 749 |
by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
750 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
751 |
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
752 |
by (fact lcm_neg1) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
753 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
754 |
lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
755 |
by (fact lcm_neg2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
756 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
757 |
end |
62345 | 758 |
|
60686 | 759 |
class semiring_Gcd = semiring_gcd + Gcd + |
760 |
assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a" |
|
761 |
and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A" |
|
762 |
and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A" |
|
62345 | 763 |
assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A" |
764 |
and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a" |
|
765 |
and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A" |
|
60686 | 766 |
begin |
767 |
||
63489 | 768 |
lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}" |
62345 | 769 |
by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) |
770 |
||
63489 | 771 |
lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}" |
62345 | 772 |
by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) |
773 |
||
63489 | 774 |
lemma Gcd_empty [simp]: "Gcd {} = 0" |
60686 | 775 |
by (rule dvd_0_left, rule Gcd_greatest) simp |
776 |
||
63489 | 777 |
lemma Lcm_empty [simp]: "Lcm {} = 1" |
62345 | 778 |
by (auto intro: associated_eqI Lcm_least) |
779 |
||
63489 | 780 |
lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)" |
62345 | 781 |
proof - |
782 |
have "Gcd (insert a A) dvd gcd a (Gcd A)" |
|
783 |
by (auto intro: Gcd_dvd Gcd_greatest) |
|
784 |
moreover have "gcd a (Gcd A) dvd Gcd (insert a A)" |
|
785 |
proof (rule Gcd_greatest) |
|
786 |
fix b |
|
787 |
assume "b \<in> insert a A" |
|
788 |
then show "gcd a (Gcd A) dvd b" |
|
789 |
proof |
|
63489 | 790 |
assume "b = a" |
791 |
then show ?thesis |
|
792 |
by simp |
|
62345 | 793 |
next |
794 |
assume "b \<in> A" |
|
63489 | 795 |
then have "Gcd A dvd b" |
796 |
by (rule Gcd_dvd) |
|
797 |
moreover have "gcd a (Gcd A) dvd Gcd A" |
|
798 |
by simp |
|
799 |
ultimately show ?thesis |
|
800 |
by (blast intro: dvd_trans) |
|
62345 | 801 |
qed |
802 |
qed |
|
803 |
ultimately show ?thesis |
|
804 |
by (auto intro: associated_eqI) |
|
805 |
qed |
|
806 |
||
63489 | 807 |
lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)" |
62345 | 808 |
proof (rule sym) |
809 |
have "lcm a (Lcm A) dvd Lcm (insert a A)" |
|
810 |
by (auto intro: dvd_Lcm Lcm_least) |
|
811 |
moreover have "Lcm (insert a A) dvd lcm a (Lcm A)" |
|
812 |
proof (rule Lcm_least) |
|
813 |
fix b |
|
814 |
assume "b \<in> insert a A" |
|
815 |
then show "b dvd lcm a (Lcm A)" |
|
816 |
proof |
|
63489 | 817 |
assume "b = a" |
818 |
then show ?thesis by simp |
|
62345 | 819 |
next |
820 |
assume "b \<in> A" |
|
63489 | 821 |
then have "b dvd Lcm A" |
822 |
by (rule dvd_Lcm) |
|
823 |
moreover have "Lcm A dvd lcm a (Lcm A)" |
|
824 |
by simp |
|
825 |
ultimately show ?thesis |
|
826 |
by (blast intro: dvd_trans) |
|
62345 | 827 |
qed |
828 |
qed |
|
829 |
ultimately show "lcm a (Lcm A) = Lcm (insert a A)" |
|
830 |
by (rule associated_eqI) (simp_all add: lcm_eq_0_iff) |
|
831 |
qed |
|
832 |
||
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
833 |
lemma LcmI: |
63489 | 834 |
assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b" |
835 |
and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c" |
|
836 |
and "normalize b = b" |
|
837 |
shows "b = Lcm A" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
838 |
by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
839 |
|
63489 | 840 |
lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
841 |
by (blast intro: Lcm_least dvd_Lcm) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
842 |
|
63489 | 843 |
lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
844 |
apply (rule lcmI) |
63489 | 845 |
apply (blast intro: Lcm_subset) |
846 |
apply (blast intro: Lcm_subset) |
|
847 |
apply (intro Lcm_least ballI, elim UnE) |
|
848 |
apply (rule dvd_trans, erule dvd_Lcm, assumption) |
|
849 |
apply (rule dvd_trans, erule dvd_Lcm, assumption) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
850 |
apply simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
851 |
done |
63489 | 852 |
|
853 |
lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}" |
|
854 |
(is "?P \<longleftrightarrow> ?Q") |
|
60686 | 855 |
proof |
856 |
assume ?P |
|
857 |
show ?Q |
|
858 |
proof |
|
859 |
fix a |
|
860 |
assume "a \<in> A" |
|
63489 | 861 |
then have "Gcd A dvd a" |
862 |
by (rule Gcd_dvd) |
|
863 |
with \<open>?P\<close> have "a = 0" |
|
864 |
by simp |
|
865 |
then show "a \<in> {0}" |
|
866 |
by simp |
|
60686 | 867 |
qed |
868 |
next |
|
869 |
assume ?Q |
|
870 |
have "0 dvd Gcd A" |
|
871 |
proof (rule Gcd_greatest) |
|
872 |
fix a |
|
873 |
assume "a \<in> A" |
|
63489 | 874 |
with \<open>?Q\<close> have "a = 0" |
875 |
by auto |
|
876 |
then show "0 dvd a" |
|
877 |
by simp |
|
60686 | 878 |
qed |
63489 | 879 |
then show ?P |
880 |
by simp |
|
60686 | 881 |
qed |
882 |
||
63489 | 883 |
lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" |
884 |
(is "?P \<longleftrightarrow> ?Q") |
|
60686 | 885 |
proof |
886 |
assume ?P |
|
887 |
show ?Q |
|
888 |
proof |
|
889 |
fix a |
|
890 |
assume "a \<in> A" |
|
891 |
then have "a dvd Lcm A" |
|
892 |
by (rule dvd_Lcm) |
|
893 |
with \<open>?P\<close> show "is_unit a" |
|
894 |
by simp |
|
895 |
qed |
|
896 |
next |
|
897 |
assume ?Q |
|
898 |
then have "is_unit (Lcm A)" |
|
899 |
by (blast intro: Lcm_least) |
|
900 |
then have "normalize (Lcm A) = 1" |
|
901 |
by (rule is_unit_normalize) |
|
902 |
then show ?P |
|
903 |
by simp |
|
904 |
qed |
|
905 |
||
63489 | 906 |
lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" |
62345 | 907 |
proof (cases "Lcm A = 0") |
63489 | 908 |
case True |
909 |
then show ?thesis |
|
910 |
by simp |
|
62345 | 911 |
next |
912 |
case False |
|
913 |
with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1" |
|
914 |
by blast |
|
915 |
with False show ?thesis |
|
916 |
by simp |
|
917 |
qed |
|
918 |
||
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
919 |
lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" |
63489 | 920 |
by (simp add: Gcd_Lcm unit_factor_Lcm) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
921 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
922 |
lemma GcdI: |
63489 | 923 |
assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a" |
924 |
and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
925 |
and "normalize b = b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
926 |
shows "b = Gcd A" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
927 |
by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
928 |
|
62345 | 929 |
lemma Gcd_eq_1_I: |
930 |
assumes "is_unit a" and "a \<in> A" |
|
931 |
shows "Gcd A = 1" |
|
932 |
proof - |
|
933 |
from assms have "is_unit (Gcd A)" |
|
934 |
by (blast intro: Gcd_dvd dvd_unit_imp_unit) |
|
935 |
then have "normalize (Gcd A) = 1" |
|
936 |
by (rule is_unit_normalize) |
|
937 |
then show ?thesis |
|
938 |
by simp |
|
939 |
qed |
|
940 |
||
60686 | 941 |
lemma Lcm_eq_0_I: |
942 |
assumes "0 \<in> A" |
|
943 |
shows "Lcm A = 0" |
|
944 |
proof - |
|
945 |
from assms have "0 dvd Lcm A" |
|
946 |
by (rule dvd_Lcm) |
|
947 |
then show ?thesis |
|
948 |
by simp |
|
949 |
qed |
|
950 |
||
63489 | 951 |
lemma Gcd_UNIV [simp]: "Gcd UNIV = 1" |
62345 | 952 |
using dvd_refl by (rule Gcd_eq_1_I) simp |
953 |
||
63489 | 954 |
lemma Lcm_UNIV [simp]: "Lcm UNIV = 0" |
61929 | 955 |
by (rule Lcm_eq_0_I) simp |
60686 | 956 |
|
61929 | 957 |
lemma Lcm_0_iff: |
958 |
assumes "finite A" |
|
959 |
shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" |
|
960 |
proof (cases "A = {}") |
|
63489 | 961 |
case True |
962 |
then show ?thesis by simp |
|
61929 | 963 |
next |
63489 | 964 |
case False |
965 |
with assms show ?thesis |
|
966 |
by (induct A rule: finite_ne_induct) (auto simp add: lcm_eq_0_iff) |
|
60686 | 967 |
qed |
61929 | 968 |
|
63489 | 969 |
lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A" |
62345 | 970 |
proof - |
971 |
have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a |
|
972 |
proof - |
|
63489 | 973 |
from that obtain B where "A = insert a B" |
974 |
by blast |
|
62350 | 975 |
moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a" |
62345 | 976 |
by (rule gcd_dvd1) |
977 |
ultimately show "Gcd (normalize ` A) dvd a" |
|
978 |
by simp |
|
979 |
qed |
|
980 |
then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)" |
|
981 |
by (auto intro!: Gcd_greatest intro: Gcd_dvd) |
|
982 |
then show ?thesis |
|
983 |
by (auto intro: associated_eqI) |
|
984 |
qed |
|
985 |
||
62346 | 986 |
lemma Gcd_eqI: |
987 |
assumes "normalize a = a" |
|
988 |
assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b" |
|
989 |
and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a" |
|
990 |
shows "Gcd A = a" |
|
991 |
using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd) |
|
992 |
||
63489 | 993 |
lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y" |
994 |
using Gcd_dvd dvd_trans by blast |
|
995 |
||
996 |
lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)" |
|
63359 | 997 |
by (blast dest: dvd_GcdD intro: Gcd_greatest) |
998 |
||
67399 | 999 |
lemma Gcd_mult: "Gcd (( * ) c ` A) = normalize c * Gcd A" |
63359 | 1000 |
proof (cases "c = 0") |
63489 | 1001 |
case True |
1002 |
then show ?thesis by auto |
|
1003 |
next |
|
63359 | 1004 |
case [simp]: False |
67399 | 1005 |
have "Gcd (( * ) c ` A) div c dvd Gcd A" |
63359 | 1006 |
by (intro Gcd_greatest, subst div_dvd_iff_mult) |
1007 |
(auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c]) |
|
67399 | 1008 |
then have "Gcd (( * ) c ` A) dvd c * Gcd A" |
63359 | 1009 |
by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac) |
1010 |
also have "c * Gcd A = (normalize c * Gcd A) * unit_factor c" |
|
1011 |
by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) |
|
67399 | 1012 |
also have "Gcd (( * ) c ` A) dvd \<dots> \<longleftrightarrow> Gcd (( * ) c ` A) dvd normalize c * Gcd A" |
63359 | 1013 |
by (simp add: dvd_mult_unit_iff) |
67399 | 1014 |
finally have "Gcd (( * ) c ` A) dvd normalize c * Gcd A" . |
1015 |
moreover have "normalize c * Gcd A dvd Gcd (( * ) c ` A)" |
|
63359 | 1016 |
by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd) |
67399 | 1017 |
ultimately have "normalize (Gcd (( * ) c ` A)) = normalize (normalize c * Gcd A)" |
63359 | 1018 |
by (rule associatedI) |
63489 | 1019 |
then show ?thesis |
1020 |
by (simp add: normalize_mult) |
|
1021 |
qed |
|
63359 | 1022 |
|
62346 | 1023 |
lemma Lcm_eqI: |
1024 |
assumes "normalize a = a" |
|
63489 | 1025 |
and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" |
62346 | 1026 |
and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c" |
1027 |
shows "Lcm A = a" |
|
1028 |
using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm) |
|
1029 |
||
63489 | 1030 |
lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x" |
1031 |
using dvd_Lcm dvd_trans by blast |
|
1032 |
||
1033 |
lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)" |
|
63359 | 1034 |
by (blast dest: Lcm_dvdD intro: Lcm_least) |
1035 |
||
63489 | 1036 |
lemma Lcm_mult: |
63359 | 1037 |
assumes "A \<noteq> {}" |
67399 | 1038 |
shows "Lcm (( * ) c ` A) = normalize c * Lcm A" |
63359 | 1039 |
proof (cases "c = 0") |
1040 |
case True |
|
67399 | 1041 |
with assms have "( * ) c ` A = {0}" |
63489 | 1042 |
by auto |
1043 |
with True show ?thesis by auto |
|
63359 | 1044 |
next |
1045 |
case [simp]: False |
|
63489 | 1046 |
from assms obtain x where x: "x \<in> A" |
1047 |
by blast |
|
1048 |
have "c dvd c * x" |
|
1049 |
by simp |
|
67399 | 1050 |
also from x have "c * x dvd Lcm (( * ) c ` A)" |
63489 | 1051 |
by (intro dvd_Lcm) auto |
67399 | 1052 |
finally have dvd: "c dvd Lcm (( * ) c ` A)" . |
1053 |
||
1054 |
have "Lcm A dvd Lcm (( * ) c ` A) div c" |
|
63359 | 1055 |
by (intro Lcm_least dvd_mult_imp_div) |
63489 | 1056 |
(auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c]) |
67399 | 1057 |
then have "c * Lcm A dvd Lcm (( * ) c ` A)" |
63359 | 1058 |
by (subst (asm) dvd_div_iff_mult) (auto intro!: Lcm_least simp: mult_ac dvd) |
1059 |
also have "c * Lcm A = (normalize c * Lcm A) * unit_factor c" |
|
1060 |
by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) |
|
67399 | 1061 |
also have "\<dots> dvd Lcm (( * ) c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (( * ) c ` A)" |
63359 | 1062 |
by (simp add: mult_unit_dvd_iff) |
67399 | 1063 |
finally have "normalize c * Lcm A dvd Lcm (( * ) c ` A)" . |
1064 |
moreover have "Lcm (( * ) c ` A) dvd normalize c * Lcm A" |
|
63359 | 1065 |
by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm) |
67399 | 1066 |
ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (( * ) c ` A))" |
63359 | 1067 |
by (rule associatedI) |
63489 | 1068 |
then show ?thesis |
1069 |
by (simp add: normalize_mult) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1070 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1071 |
|
63489 | 1072 |
lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})" |
1073 |
proof - |
|
1074 |
have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A" |
|
1075 |
by blast |
|
1076 |
then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})" |
|
1077 |
by (simp add: Lcm_Un [symmetric]) |
|
1078 |
also have "Lcm {a\<in>A. is_unit a} = 1" |
|
1079 |
by simp |
|
1080 |
finally show ?thesis |
|
1081 |
by simp |
|
1082 |
qed |
|
1083 |
||
1084 |
lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1085 |
by (metis Lcm_least dvd_0_left dvd_Lcm) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1086 |
|
63489 | 1087 |
lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1088 |
by (auto simp: Lcm_0_iff') |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1089 |
|
63489 | 1090 |
lemma Lcm_singleton [simp]: "Lcm {a} = normalize a" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1091 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1092 |
|
63489 | 1093 |
lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1094 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1095 |
|
63489 | 1096 |
lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1097 |
by (auto intro!: Gcd_eq_1_I) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1098 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1099 |
lemma Gcd_singleton [simp]: "Gcd {a} = normalize a" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1100 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1101 |
|
63489 | 1102 |
lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1103 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1104 |
|
62350 | 1105 |
end |
62345 | 1106 |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1107 |
|
64850 | 1108 |
subsection \<open>An aside: GCD and LCM on finite sets for incomplete gcd rings\<close> |
1109 |
||
1110 |
context semiring_gcd |
|
1111 |
begin |
|
1112 |
||
1113 |
sublocale Gcd_fin: bounded_quasi_semilattice_set gcd 0 1 normalize |
|
1114 |
defines |
|
1115 |
Gcd_fin ("Gcd\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = "Gcd_fin.F :: 'a set \<Rightarrow> 'a" .. |
|
1116 |
||
1117 |
abbreviation gcd_list :: "'a list \<Rightarrow> 'a" |
|
1118 |
where "gcd_list xs \<equiv> Gcd\<^sub>f\<^sub>i\<^sub>n (set xs)" |
|
1119 |
||
1120 |
sublocale Lcm_fin: bounded_quasi_semilattice_set lcm 1 0 normalize |
|
1121 |
defines |
|
1122 |
Lcm_fin ("Lcm\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = Lcm_fin.F .. |
|
1123 |
||
1124 |
abbreviation lcm_list :: "'a list \<Rightarrow> 'a" |
|
1125 |
where "lcm_list xs \<equiv> Lcm\<^sub>f\<^sub>i\<^sub>n (set xs)" |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1126 |
|
64850 | 1127 |
lemma Gcd_fin_dvd: |
1128 |
"a \<in> A \<Longrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A dvd a" |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1129 |
by (induct A rule: infinite_finite_induct) |
64850 | 1130 |
(auto intro: dvd_trans) |
1131 |
||
1132 |
lemma dvd_Lcm_fin: |
|
1133 |
"a \<in> A \<Longrightarrow> a dvd Lcm\<^sub>f\<^sub>i\<^sub>n A" |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1134 |
by (induct A rule: infinite_finite_induct) |
64850 | 1135 |
(auto intro: dvd_trans) |
1136 |
||
1137 |
lemma Gcd_fin_greatest: |
|
1138 |
"a dvd Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> a dvd b" |
|
1139 |
using that by (induct A) simp_all |
|
1140 |
||
1141 |
lemma Lcm_fin_least: |
|
1142 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A dvd a" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" |
|
1143 |
using that by (induct A) simp_all |
|
1144 |
||
1145 |
lemma gcd_list_greatest: |
|
1146 |
"a dvd gcd_list bs" if "\<And>b. b \<in> set bs \<Longrightarrow> a dvd b" |
|
1147 |
by (rule Gcd_fin_greatest) (simp_all add: that) |
|
1148 |
||
1149 |
lemma lcm_list_least: |
|
1150 |
"lcm_list bs dvd a" if "\<And>b. b \<in> set bs \<Longrightarrow> b dvd a" |
|
1151 |
by (rule Lcm_fin_least) (simp_all add: that) |
|
1152 |
||
1153 |
lemma dvd_Gcd_fin_iff: |
|
1154 |
"b dvd Gcd\<^sub>f\<^sub>i\<^sub>n A \<longleftrightarrow> (\<forall>a\<in>A. b dvd a)" if "finite A" |
|
1155 |
using that by (auto intro: Gcd_fin_greatest Gcd_fin_dvd dvd_trans [of b "Gcd\<^sub>f\<^sub>i\<^sub>n A"]) |
|
1156 |
||
1157 |
lemma dvd_gcd_list_iff: |
|
1158 |
"b dvd gcd_list xs \<longleftrightarrow> (\<forall>a\<in>set xs. b dvd a)" |
|
1159 |
by (simp add: dvd_Gcd_fin_iff) |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1160 |
|
64850 | 1161 |
lemma Lcm_fin_dvd_iff: |
1162 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A dvd b \<longleftrightarrow> (\<forall>a\<in>A. a dvd b)" if "finite A" |
|
1163 |
using that by (auto intro: Lcm_fin_least dvd_Lcm_fin dvd_trans [of _ "Lcm\<^sub>f\<^sub>i\<^sub>n A" b]) |
|
1164 |
||
1165 |
lemma lcm_list_dvd_iff: |
|
1166 |
"lcm_list xs dvd b \<longleftrightarrow> (\<forall>a\<in>set xs. a dvd b)" |
|
1167 |
by (simp add: Lcm_fin_dvd_iff) |
|
1168 |
||
1169 |
lemma Gcd_fin_mult: |
|
1170 |
"Gcd\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" |
|
1171 |
using that proof induct |
|
1172 |
case empty |
|
1173 |
then show ?case |
|
1174 |
by simp |
|
1175 |
next |
|
1176 |
case (insert a A) |
|
1177 |
have "gcd (b * a) (b * Gcd\<^sub>f\<^sub>i\<^sub>n A) = gcd (b * a) (normalize (b * Gcd\<^sub>f\<^sub>i\<^sub>n A))" |
|
1178 |
by simp |
|
1179 |
also have "\<dots> = gcd (b * a) (normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A)" |
|
1180 |
by (simp add: normalize_mult) |
|
1181 |
finally show ?case |
|
1182 |
using insert by (simp add: gcd_mult_distrib') |
|
1183 |
qed |
|
1184 |
||
1185 |
lemma Lcm_fin_mult: |
|
1186 |
"Lcm\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A" if "A \<noteq> {}" |
|
1187 |
proof (cases "b = 0") |
|
1188 |
case True |
|
1189 |
moreover from that have "times 0 ` A = {0}" |
|
1190 |
by auto |
|
1191 |
ultimately show ?thesis |
|
1192 |
by simp |
|
1193 |
next |
|
1194 |
case False |
|
1195 |
show ?thesis proof (cases "finite A") |
|
1196 |
case False |
|
66936 | 1197 |
moreover have "inj_on (times b) A" |
1198 |
using \<open>b \<noteq> 0\<close> by (rule inj_on_mult) |
|
64850 | 1199 |
ultimately have "infinite (times b ` A)" |
1200 |
by (simp add: finite_image_iff) |
|
1201 |
with False show ?thesis |
|
1202 |
by simp |
|
1203 |
next |
|
1204 |
case True |
|
1205 |
then show ?thesis using that proof (induct A rule: finite_ne_induct) |
|
1206 |
case (singleton a) |
|
1207 |
then show ?case |
|
1208 |
by (simp add: normalize_mult) |
|
1209 |
next |
|
1210 |
case (insert a A) |
|
1211 |
have "lcm (b * a) (b * Lcm\<^sub>f\<^sub>i\<^sub>n A) = lcm (b * a) (normalize (b * Lcm\<^sub>f\<^sub>i\<^sub>n A))" |
|
1212 |
by simp |
|
1213 |
also have "\<dots> = lcm (b * a) (normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A)" |
|
1214 |
by (simp add: normalize_mult) |
|
1215 |
finally show ?case |
|
1216 |
using insert by (simp add: lcm_mult_distrib') |
|
1217 |
qed |
|
1218 |
qed |
|
1219 |
qed |
|
1220 |
||
65811 | 1221 |
lemma unit_factor_Gcd_fin: |
1222 |
"unit_factor (Gcd\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Gcd\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" |
|
1223 |
by (rule normalize_idem_imp_unit_factor_eq) simp |
|
1224 |
||
1225 |
lemma unit_factor_Lcm_fin: |
|
1226 |
"unit_factor (Lcm\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Lcm\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" |
|
1227 |
by (rule normalize_idem_imp_unit_factor_eq) simp |
|
1228 |
||
1229 |
lemma is_unit_Gcd_fin_iff [simp]: |
|
1230 |
"is_unit (Gcd\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A = 1" |
|
1231 |
by (rule normalize_idem_imp_is_unit_iff) simp |
|
1232 |
||
1233 |
lemma is_unit_Lcm_fin_iff [simp]: |
|
1234 |
"is_unit (Lcm\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Lcm\<^sub>f\<^sub>i\<^sub>n A = 1" |
|
1235 |
by (rule normalize_idem_imp_is_unit_iff) simp |
|
1236 |
||
1237 |
lemma Gcd_fin_0_iff: |
|
1238 |
"Gcd\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> A \<subseteq> {0} \<and> finite A" |
|
1239 |
by (induct A rule: infinite_finite_induct) simp_all |
|
1240 |
||
1241 |
lemma Lcm_fin_0_iff: |
|
1242 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> 0 \<in> A" if "finite A" |
|
1243 |
using that by (induct A) (auto simp add: lcm_eq_0_iff) |
|
1244 |
||
1245 |
lemma Lcm_fin_1_iff: |
|
1246 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a) \<and> finite A" |
|
1247 |
by (induct A rule: infinite_finite_induct) simp_all |
|
1248 |
||
64850 | 1249 |
end |
1250 |
||
1251 |
context semiring_Gcd |
|
1252 |
begin |
|
1253 |
||
1254 |
lemma Gcd_fin_eq_Gcd [simp]: |
|
1255 |
"Gcd\<^sub>f\<^sub>i\<^sub>n A = Gcd A" if "finite A" for A :: "'a set" |
|
1256 |
using that by induct simp_all |
|
1257 |
||
1258 |
lemma Gcd_set_eq_fold [code_unfold]: |
|
1259 |
"Gcd (set xs) = fold gcd xs 0" |
|
1260 |
by (simp add: Gcd_fin.set_eq_fold [symmetric]) |
|
1261 |
||
1262 |
lemma Lcm_fin_eq_Lcm [simp]: |
|
1263 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A = Lcm A" if "finite A" for A :: "'a set" |
|
1264 |
using that by induct simp_all |
|
1265 |
||
1266 |
lemma Lcm_set_eq_fold [code_unfold]: |
|
1267 |
"Lcm (set xs) = fold lcm xs 1" |
|
1268 |
by (simp add: Lcm_fin.set_eq_fold [symmetric]) |
|
1269 |
||
1270 |
end |
|
63489 | 1271 |
|
67051 | 1272 |
|
1273 |
subsection \<open>Coprimality\<close> |
|
1274 |
||
1275 |
context semiring_gcd |
|
1276 |
begin |
|
1277 |
||
1278 |
lemma coprime_imp_gcd_eq_1 [simp]: |
|
1279 |
"gcd a b = 1" if "coprime a b" |
|
1280 |
proof - |
|
1281 |
define t r s where "t = gcd a b" and "r = a div t" and "s = b div t" |
|
1282 |
then have "a = t * r" and "b = t * s" |
|
1283 |
by simp_all |
|
1284 |
with that have "coprime (t * r) (t * s)" |
|
1285 |
by simp |
|
1286 |
then show ?thesis |
|
1287 |
by (simp add: t_def) |
|
1288 |
qed |
|
1289 |
||
68270
2bc921b2159b
treat gcd_eq_1_imp_coprime analogously to mod_0_imp_dvd
haftmann
parents:
67399
diff
changeset
|
1290 |
lemma gcd_eq_1_imp_coprime [dest!]: |
67051 | 1291 |
"coprime a b" if "gcd a b = 1" |
1292 |
proof (rule coprimeI) |
|
1293 |
fix c |
|
1294 |
assume "c dvd a" and "c dvd b" |
|
1295 |
then have "c dvd gcd a b" |
|
1296 |
by (rule gcd_greatest) |
|
1297 |
with that show "is_unit c" |
|
1298 |
by simp |
|
1299 |
qed |
|
1300 |
||
1301 |
lemma coprime_iff_gcd_eq_1 [presburger, code]: |
|
1302 |
"coprime a b \<longleftrightarrow> gcd a b = 1" |
|
1303 |
by rule (simp_all add: gcd_eq_1_imp_coprime) |
|
1304 |
||
1305 |
lemma is_unit_gcd [simp]: |
|
1306 |
"is_unit (gcd a b) \<longleftrightarrow> coprime a b" |
|
1307 |
by (simp add: coprime_iff_gcd_eq_1) |
|
1308 |
||
1309 |
lemma coprime_add_one_left [simp]: "coprime (a + 1) a" |
|
1310 |
by (simp add: gcd_eq_1_imp_coprime ac_simps) |
|
1311 |
||
1312 |
lemma coprime_add_one_right [simp]: "coprime a (a + 1)" |
|
1313 |
using coprime_add_one_left [of a] by (simp add: ac_simps) |
|
1314 |
||
1315 |
lemma coprime_mult_left_iff [simp]: |
|
1316 |
"coprime (a * b) c \<longleftrightarrow> coprime a c \<and> coprime b c" |
|
1317 |
proof |
|
1318 |
assume "coprime (a * b) c" |
|
1319 |
with coprime_common_divisor [of "a * b" c] |
|
1320 |
have *: "is_unit d" if "d dvd a * b" and "d dvd c" for d |
|
1321 |
using that by blast |
|
1322 |
have "coprime a c" |
|
1323 |
by (rule coprimeI, rule *) simp_all |
|
1324 |
moreover have "coprime b c" |
|
1325 |
by (rule coprimeI, rule *) simp_all |
|
1326 |
ultimately show "coprime a c \<and> coprime b c" .. |
|
1327 |
next |
|
1328 |
assume "coprime a c \<and> coprime b c" |
|
1329 |
then have "coprime a c" "coprime b c" |
|
1330 |
by simp_all |
|
1331 |
show "coprime (a * b) c" |
|
1332 |
proof (rule coprimeI) |
|
1333 |
fix d |
|
1334 |
assume "d dvd a * b" |
|
1335 |
then obtain r s where d: "d = r * s" "r dvd a" "s dvd b" |
|
1336 |
by (rule dvd_productE) |
|
1337 |
assume "d dvd c" |
|
1338 |
with d have "r * s dvd c" |
|
1339 |
by simp |
|
1340 |
then have "r dvd c" "s dvd c" |
|
1341 |
by (auto intro: dvd_mult_left dvd_mult_right) |
|
1342 |
from \<open>coprime a c\<close> \<open>r dvd a\<close> \<open>r dvd c\<close> |
|
1343 |
have "is_unit r" |
|
1344 |
by (rule coprime_common_divisor) |
|
1345 |
moreover from \<open>coprime b c\<close> \<open>s dvd b\<close> \<open>s dvd c\<close> |
|
1346 |
have "is_unit s" |
|
1347 |
by (rule coprime_common_divisor) |
|
1348 |
ultimately show "is_unit d" |
|
1349 |
by (simp add: d is_unit_mult_iff) |
|
1350 |
qed |
|
1351 |
qed |
|
1352 |
||
1353 |
lemma coprime_mult_right_iff [simp]: |
|
1354 |
"coprime c (a * b) \<longleftrightarrow> coprime c a \<and> coprime c b" |
|
1355 |
using coprime_mult_left_iff [of a b c] by (simp add: ac_simps) |
|
1356 |
||
1357 |
lemma coprime_power_left_iff [simp]: |
|
1358 |
"coprime (a ^ n) b \<longleftrightarrow> coprime a b \<or> n = 0" |
|
1359 |
proof (cases "n = 0") |
|
1360 |
case True |
|
1361 |
then show ?thesis |
|
1362 |
by simp |
|
1363 |
next |
|
1364 |
case False |
|
1365 |
then have "n > 0" |
|
1366 |
by simp |
|
1367 |
then show ?thesis |
|
1368 |
by (induction n rule: nat_induct_non_zero) simp_all |
|
1369 |
qed |
|
1370 |
||
1371 |
lemma coprime_power_right_iff [simp]: |
|
1372 |
"coprime a (b ^ n) \<longleftrightarrow> coprime a b \<or> n = 0" |
|
1373 |
using coprime_power_left_iff [of b n a] by (simp add: ac_simps) |
|
1374 |
||
1375 |
lemma prod_coprime_left: |
|
1376 |
"coprime (\<Prod>i\<in>A. f i) a" if "\<And>i. i \<in> A \<Longrightarrow> coprime (f i) a" |
|
1377 |
using that by (induct A rule: infinite_finite_induct) simp_all |
|
1378 |
||
1379 |
lemma prod_coprime_right: |
|
1380 |
"coprime a (\<Prod>i\<in>A. f i)" if "\<And>i. i \<in> A \<Longrightarrow> coprime a (f i)" |
|
1381 |
using that prod_coprime_left [of A f a] by (simp add: ac_simps) |
|
1382 |
||
1383 |
lemma prod_list_coprime_left: |
|
1384 |
"coprime (prod_list xs) a" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime x a" |
|
1385 |
using that by (induct xs) simp_all |
|
1386 |
||
1387 |
lemma prod_list_coprime_right: |
|
1388 |
"coprime a (prod_list xs)" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime a x" |
|
1389 |
using that prod_list_coprime_left [of xs a] by (simp add: ac_simps) |
|
1390 |
||
1391 |
lemma coprime_dvd_mult_left_iff: |
|
1392 |
"a dvd b * c \<longleftrightarrow> a dvd b" if "coprime a c" |
|
1393 |
proof |
|
1394 |
assume "a dvd b" |
|
1395 |
then show "a dvd b * c" |
|
1396 |
by simp |
|
1397 |
next |
|
1398 |
assume "a dvd b * c" |
|
1399 |
show "a dvd b" |
|
1400 |
proof (cases "b = 0") |
|
1401 |
case True |
|
1402 |
then show ?thesis |
|
1403 |
by simp |
|
1404 |
next |
|
1405 |
case False |
|
1406 |
then have unit: "is_unit (unit_factor b)" |
|
1407 |
by simp |
|
1408 |
from \<open>coprime a c\<close> mult_gcd_left [of b a c] |
|
1409 |
have "gcd (b * a) (b * c) * unit_factor b = b" |
|
1410 |
by (simp add: ac_simps) |
|
1411 |
moreover from \<open>a dvd b * c\<close> |
|
1412 |
have "a dvd gcd (b * a) (b * c) * unit_factor b" |
|
1413 |
by (simp add: dvd_mult_unit_iff unit) |
|
1414 |
ultimately show ?thesis |
|
1415 |
by simp |
|
1416 |
qed |
|
1417 |
qed |
|
1418 |
||
1419 |
lemma coprime_dvd_mult_right_iff: |
|
1420 |
"a dvd c * b \<longleftrightarrow> a dvd b" if "coprime a c" |
|
1421 |
using that coprime_dvd_mult_left_iff [of a c b] by (simp add: ac_simps) |
|
1422 |
||
1423 |
lemma divides_mult: |
|
1424 |
"a * b dvd c" if "a dvd c" and "b dvd c" and "coprime a b" |
|
1425 |
proof - |
|
1426 |
from \<open>b dvd c\<close> obtain b' where "c = b * b'" .. |
|
1427 |
with \<open>a dvd c\<close> have "a dvd b' * b" |
|
1428 |
by (simp add: ac_simps) |
|
1429 |
with \<open>coprime a b\<close> have "a dvd b'" |
|
1430 |
by (simp add: coprime_dvd_mult_left_iff) |
|
1431 |
then obtain a' where "b' = a * a'" .. |
|
1432 |
with \<open>c = b * b'\<close> have "c = (a * b) * a'" |
|
1433 |
by (simp add: ac_simps) |
|
1434 |
then show ?thesis .. |
|
1435 |
qed |
|
1436 |
||
1437 |
lemma div_gcd_coprime: |
|
1438 |
assumes "a \<noteq> 0 \<or> b \<noteq> 0" |
|
1439 |
shows "coprime (a div gcd a b) (b div gcd a b)" |
|
1440 |
proof - |
|
1441 |
let ?g = "gcd a b" |
|
1442 |
let ?a' = "a div ?g" |
|
1443 |
let ?b' = "b div ?g" |
|
1444 |
let ?g' = "gcd ?a' ?b'" |
|
1445 |
have dvdg: "?g dvd a" "?g dvd b" |
|
1446 |
by simp_all |
|
1447 |
have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" |
|
1448 |
by simp_all |
|
1449 |
from dvdg dvdg' obtain ka kb ka' kb' where |
|
1450 |
kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" |
|
1451 |
unfolding dvd_def by blast |
|
1452 |
from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" |
|
1453 |
by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) |
|
1454 |
then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" |
|
1455 |
by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def) |
|
1456 |
have "?g \<noteq> 0" |
|
1457 |
using assms by simp |
|
1458 |
moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . |
|
1459 |
ultimately show ?thesis |
|
1460 |
using dvd_times_left_cancel_iff [of "gcd a b" _ 1] |
|
1461 |
by simp (simp only: coprime_iff_gcd_eq_1) |
|
1462 |
qed |
|
1463 |
||
1464 |
lemma gcd_coprime: |
|
1465 |
assumes c: "gcd a b \<noteq> 0" |
|
1466 |
and a: "a = a' * gcd a b" |
|
1467 |
and b: "b = b' * gcd a b" |
|
1468 |
shows "coprime a' b'" |
|
1469 |
proof - |
|
1470 |
from c have "a \<noteq> 0 \<or> b \<noteq> 0" |
|
1471 |
by simp |
|
1472 |
with div_gcd_coprime have "coprime (a div gcd a b) (b div gcd a b)" . |
|
1473 |
also from assms have "a div gcd a b = a'" |
|
1474 |
using dvd_div_eq_mult local.gcd_dvd1 by blast |
|
1475 |
also from assms have "b div gcd a b = b'" |
|
1476 |
using dvd_div_eq_mult local.gcd_dvd1 by blast |
|
1477 |
finally show ?thesis . |
|
1478 |
qed |
|
1479 |
||
1480 |
lemma gcd_coprime_exists: |
|
1481 |
assumes "gcd a b \<noteq> 0" |
|
1482 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" |
|
1483 |
apply (rule_tac x = "a div gcd a b" in exI) |
|
1484 |
apply (rule_tac x = "b div gcd a b" in exI) |
|
1485 |
using assms |
|
1486 |
apply (auto intro: div_gcd_coprime) |
|
1487 |
done |
|
1488 |
||
1489 |
lemma pow_divides_pow_iff [simp]: |
|
1490 |
"a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" if "n > 0" |
|
1491 |
proof (cases "gcd a b = 0") |
|
1492 |
case True |
|
1493 |
then show ?thesis |
|
1494 |
by simp |
|
1495 |
next |
|
1496 |
case False |
|
1497 |
show ?thesis |
|
1498 |
proof |
|
1499 |
let ?d = "gcd a b" |
|
1500 |
from \<open>n > 0\<close> obtain m where m: "n = Suc m" |
|
1501 |
by (cases n) simp_all |
|
1502 |
from False have zn: "?d ^ n \<noteq> 0" |
|
1503 |
by (rule power_not_zero) |
|
1504 |
from gcd_coprime_exists [OF False] |
|
1505 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" |
|
1506 |
by blast |
|
1507 |
assume "a ^ n dvd b ^ n" |
|
1508 |
then have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" |
|
1509 |
by (simp add: ab'(1,2)[symmetric]) |
|
1510 |
then have "?d^n * a'^n dvd ?d^n * b'^n" |
|
1511 |
by (simp only: power_mult_distrib ac_simps) |
|
1512 |
with zn have "a' ^ n dvd b' ^ n" |
|
1513 |
by simp |
|
1514 |
then have "a' dvd b' ^ n" |
|
1515 |
using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) |
|
1516 |
then have "a' dvd b' ^ m * b'" |
|
1517 |
by (simp add: m ac_simps) |
|
1518 |
moreover have "coprime a' (b' ^ n)" |
|
1519 |
using \<open>coprime a' b'\<close> by simp |
|
1520 |
then have "a' dvd b'" |
|
1521 |
using \<open>a' dvd b' ^ n\<close> coprime_dvd_mult_left_iff dvd_mult by blast |
|
1522 |
then have "a' * ?d dvd b' * ?d" |
|
1523 |
by (rule mult_dvd_mono) simp |
|
1524 |
with ab'(1,2) show "a dvd b" |
|
1525 |
by simp |
|
1526 |
next |
|
1527 |
assume "a dvd b" |
|
1528 |
with \<open>n > 0\<close> show "a ^ n dvd b ^ n" |
|
1529 |
by (induction rule: nat_induct_non_zero) |
|
1530 |
(simp_all add: mult_dvd_mono) |
|
1531 |
qed |
|
1532 |
qed |
|
1533 |
||
1534 |
lemma coprime_crossproduct: |
|
1535 |
fixes a b c d :: 'a |
|
1536 |
assumes "coprime a d" and "coprime b c" |
|
1537 |
shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow> |
|
1538 |
normalize a = normalize b \<and> normalize c = normalize d" |
|
1539 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
1540 |
proof |
|
1541 |
assume ?rhs |
|
1542 |
then show ?lhs by simp |
|
1543 |
next |
|
1544 |
assume ?lhs |
|
1545 |
from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d" |
|
1546 |
by (auto intro: dvdI dest: sym) |
|
1547 |
with \<open>coprime a d\<close> have "a dvd b" |
|
1548 |
by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) |
|
1549 |
from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c" |
|
1550 |
by (auto intro: dvdI dest: sym) |
|
1551 |
with \<open>coprime b c\<close> have "b dvd a" |
|
1552 |
by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) |
|
1553 |
from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b" |
|
1554 |
by (auto intro: dvdI dest: sym simp add: mult.commute) |
|
1555 |
with \<open>coprime b c\<close> have "c dvd d" |
|
1556 |
by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) |
|
1557 |
from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a" |
|
1558 |
by (auto intro: dvdI dest: sym simp add: mult.commute) |
|
1559 |
with \<open>coprime a d\<close> have "d dvd c" |
|
1560 |
by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) |
|
1561 |
from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b" |
|
1562 |
by (rule associatedI) |
|
1563 |
moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d" |
|
1564 |
by (rule associatedI) |
|
1565 |
ultimately show ?rhs .. |
|
1566 |
qed |
|
1567 |
||
1568 |
lemma coprime_crossproduct': |
|
1569 |
fixes a b c d |
|
1570 |
assumes "b \<noteq> 0" |
|
1571 |
assumes unit_factors: "unit_factor b = unit_factor d" |
|
1572 |
assumes coprime: "coprime a b" "coprime c d" |
|
1573 |
shows "a * d = b * c \<longleftrightarrow> a = c \<and> b = d" |
|
1574 |
proof safe |
|
1575 |
assume eq: "a * d = b * c" |
|
1576 |
hence "normalize a * normalize d = normalize c * normalize b" |
|
1577 |
by (simp only: normalize_mult [symmetric] mult_ac) |
|
1578 |
with coprime have "normalize b = normalize d" |
|
1579 |
by (subst (asm) coprime_crossproduct) simp_all |
|
1580 |
from this and unit_factors show "b = d" |
|
1581 |
by (rule normalize_unit_factor_eqI) |
|
1582 |
from eq have "a * d = c * d" by (simp only: \<open>b = d\<close> mult_ac) |
|
1583 |
with \<open>b \<noteq> 0\<close> \<open>b = d\<close> show "a = c" by simp |
|
1584 |
qed (simp_all add: mult_ac) |
|
1585 |
||
1586 |
lemma gcd_mult_left_left_cancel: |
|
1587 |
"gcd (c * a) b = gcd a b" if "coprime b c" |
|
1588 |
proof - |
|
1589 |
have "coprime (gcd b (a * c)) c" |
|
1590 |
by (rule coprimeI) (auto intro: that coprime_common_divisor) |
|
1591 |
then have "gcd b (a * c) dvd a" |
|
1592 |
using coprime_dvd_mult_left_iff [of "gcd b (a * c)" c a] |
|
1593 |
by simp |
|
1594 |
then show ?thesis |
|
1595 |
by (auto intro: associated_eqI simp add: ac_simps) |
|
1596 |
qed |
|
1597 |
||
1598 |
lemma gcd_mult_left_right_cancel: |
|
1599 |
"gcd (a * c) b = gcd a b" if "coprime b c" |
|
1600 |
using that gcd_mult_left_left_cancel [of b c a] |
|
1601 |
by (simp add: ac_simps) |
|
1602 |
||
1603 |
lemma gcd_mult_right_left_cancel: |
|
1604 |
"gcd a (c * b) = gcd a b" if "coprime a c" |
|
1605 |
using that gcd_mult_left_left_cancel [of a c b] |
|
1606 |
by (simp add: ac_simps) |
|
1607 |
||
1608 |
lemma gcd_mult_right_right_cancel: |
|
1609 |
"gcd a (b * c) = gcd a b" if "coprime a c" |
|
1610 |
using that gcd_mult_right_left_cancel [of a c b] |
|
1611 |
by (simp add: ac_simps) |
|
1612 |
||
1613 |
lemma gcd_exp [simp]: |
|
1614 |
"gcd (a ^ n) (b ^ n) = gcd a b ^ n" |
|
1615 |
proof (cases "a = 0 \<and> b = 0 \<or> n = 0") |
|
1616 |
case True |
|
1617 |
then show ?thesis |
|
1618 |
by (cases n) simp_all |
|
1619 |
next |
|
1620 |
case False |
|
1621 |
then have "coprime (a div gcd a b) (b div gcd a b)" and "n > 0" |
|
1622 |
by (auto intro: div_gcd_coprime) |
|
1623 |
then have "coprime ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" |
|
1624 |
by simp |
|
1625 |
then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" |
|
1626 |
by simp |
|
1627 |
then have "gcd a b ^ n = gcd a b ^ n * \<dots>" |
|
1628 |
by simp |
|
1629 |
also note gcd_mult_distrib |
|
1630 |
also have "unit_factor (gcd a b ^ n) = 1" |
|
1631 |
using False by (auto simp add: unit_factor_power unit_factor_gcd) |
|
1632 |
also have "(gcd a b) ^ n * (a div gcd a b) ^ n = a ^ n" |
|
1633 |
by (simp add: ac_simps div_power dvd_power_same) |
|
1634 |
also have "(gcd a b) ^ n * (b div gcd a b) ^ n = b ^ n" |
|
1635 |
by (simp add: ac_simps div_power dvd_power_same) |
|
1636 |
finally show ?thesis by simp |
|
1637 |
qed |
|
1638 |
||
1639 |
lemma division_decomp: |
|
1640 |
assumes "a dvd b * c" |
|
1641 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
|
1642 |
proof (cases "gcd a b = 0") |
|
1643 |
case True |
|
1644 |
then have "a = 0 \<and> b = 0" |
|
1645 |
by simp |
|
1646 |
then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c" |
|
1647 |
by simp |
|
1648 |
then show ?thesis by blast |
|
1649 |
next |
|
1650 |
case False |
|
1651 |
let ?d = "gcd a b" |
|
1652 |
from gcd_coprime_exists [OF False] |
|
1653 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" |
|
1654 |
by blast |
|
1655 |
from ab'(1) have "a' dvd a" .. |
|
1656 |
with assms have "a' dvd b * c" |
|
1657 |
using dvd_trans [of a' a "b * c"] by simp |
|
1658 |
from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c" |
|
1659 |
by simp |
|
1660 |
then have "?d * a' dvd ?d * (b' * c)" |
|
1661 |
by (simp add: mult_ac) |
|
1662 |
with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c" |
|
1663 |
by simp |
|
1664 |
then have "a' dvd c" |
|
1665 |
using \<open>coprime a' b'\<close> by (simp add: coprime_dvd_mult_right_iff) |
|
1666 |
with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" |
|
1667 |
by (simp add: ac_simps) |
|
1668 |
then show ?thesis by blast |
|
1669 |
qed |
|
1670 |
||
1671 |
lemma lcm_coprime: "coprime a b \<Longrightarrow> lcm a b = normalize (a * b)" |
|
1672 |
by (subst lcm_gcd) simp |
|
1673 |
||
1674 |
end |
|
1675 |
||
1676 |
context ring_gcd |
|
1677 |
begin |
|
1678 |
||
1679 |
lemma coprime_minus_left_iff [simp]: |
|
1680 |
"coprime (- a) b \<longleftrightarrow> coprime a b" |
|
1681 |
by (rule; rule coprimeI) (auto intro: coprime_common_divisor) |
|
1682 |
||
1683 |
lemma coprime_minus_right_iff [simp]: |
|
1684 |
"coprime a (- b) \<longleftrightarrow> coprime a b" |
|
1685 |
using coprime_minus_left_iff [of b a] by (simp add: ac_simps) |
|
1686 |
||
1687 |
lemma coprime_diff_one_left [simp]: "coprime (a - 1) a" |
|
1688 |
using coprime_add_one_right [of "a - 1"] by simp |
|
1689 |
||
1690 |
lemma coprime_doff_one_right [simp]: "coprime a (a - 1)" |
|
1691 |
using coprime_diff_one_left [of a] by (simp add: ac_simps) |
|
1692 |
||
1693 |
end |
|
1694 |
||
1695 |
context semiring_Gcd |
|
1696 |
begin |
|
1697 |
||
1698 |
lemma Lcm_coprime: |
|
1699 |
assumes "finite A" |
|
1700 |
and "A \<noteq> {}" |
|
1701 |
and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b" |
|
1702 |
shows "Lcm A = normalize (\<Prod>A)" |
|
1703 |
using assms |
|
1704 |
proof (induct rule: finite_ne_induct) |
|
1705 |
case singleton |
|
1706 |
then show ?case by simp |
|
1707 |
next |
|
1708 |
case (insert a A) |
|
1709 |
have "Lcm (insert a A) = lcm a (Lcm A)" |
|
1710 |
by simp |
|
1711 |
also from insert have "Lcm A = normalize (\<Prod>A)" |
|
1712 |
by blast |
|
1713 |
also have "lcm a \<dots> = lcm a (\<Prod>A)" |
|
1714 |
by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) |
|
1715 |
also from insert have "coprime a (\<Prod>A)" |
|
1716 |
by (subst coprime_commute, intro prod_coprime_left) auto |
|
1717 |
with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))" |
|
1718 |
by (simp add: lcm_coprime) |
|
1719 |
finally show ?case . |
|
1720 |
qed |
|
1721 |
||
1722 |
lemma Lcm_coprime': |
|
1723 |
"card A \<noteq> 0 \<Longrightarrow> |
|
1724 |
(\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b) \<Longrightarrow> |
|
1725 |
Lcm A = normalize (\<Prod>A)" |
|
1726 |
by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) |
|
1727 |
||
1728 |
end |
|
1729 |
||
1730 |
||
62345 | 1731 |
subsection \<open>GCD and LCM on @{typ nat} and @{typ int}\<close> |
59008 | 1732 |
|
31706 | 1733 |
instantiation nat :: gcd |
1734 |
begin |
|
21256 | 1735 |
|
62345 | 1736 |
fun gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
63489 | 1737 |
where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))" |
31706 | 1738 |
|
62345 | 1739 |
definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
63489 | 1740 |
where "lcm_nat x y = x * y div (gcd x y)" |
1741 |
||
1742 |
instance .. |
|
31706 | 1743 |
|
1744 |
end |
|
1745 |
||
1746 |
instantiation int :: gcd |
|
1747 |
begin |
|
21256 | 1748 |
|
62345 | 1749 |
definition gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" |
1750 |
where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1751 |
|
62345 | 1752 |
definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" |
1753 |
where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1754 |
|
61944 | 1755 |
instance .. |
31706 | 1756 |
|
1757 |
end |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1758 |
|
67118 | 1759 |
lemma gcd_int_int_eq [simp]: |
1760 |
"gcd (int m) (int n) = int (gcd m n)" |
|
1761 |
by (simp add: gcd_int_def) |
|
1762 |
||
1763 |
lemma gcd_nat_abs_left_eq [simp]: |
|
1764 |
"gcd (nat \<bar>k\<bar>) n = nat (gcd k (int n))" |
|
1765 |
by (simp add: gcd_int_def) |
|
1766 |
||
1767 |
lemma gcd_nat_abs_right_eq [simp]: |
|
1768 |
"gcd n (nat \<bar>k\<bar>) = nat (gcd (int n) k)" |
|
1769 |
by (simp add: gcd_int_def) |
|
1770 |
||
1771 |
lemma abs_gcd_int [simp]: |
|
1772 |
"\<bar>gcd x y\<bar> = gcd x y" |
|
1773 |
for x y :: int |
|
1774 |
by (simp only: gcd_int_def) |
|
1775 |
||
1776 |
lemma gcd_abs1_int [simp]: |
|
1777 |
"gcd \<bar>x\<bar> y = gcd x y" |
|
1778 |
for x y :: int |
|
1779 |
by (simp only: gcd_int_def) simp |
|
1780 |
||
1781 |
lemma gcd_abs2_int [simp]: |
|
1782 |
"gcd x \<bar>y\<bar> = gcd x y" |
|
1783 |
for x y :: int |
|
1784 |
by (simp only: gcd_int_def) simp |
|
1785 |
||
1786 |
lemma lcm_int_int_eq [simp]: |
|
1787 |
"lcm (int m) (int n) = int (lcm m n)" |
|
1788 |
by (simp add: lcm_int_def) |
|
1789 |
||
1790 |
lemma lcm_nat_abs_left_eq [simp]: |
|
1791 |
"lcm (nat \<bar>k\<bar>) n = nat (lcm k (int n))" |
|
1792 |
by (simp add: lcm_int_def) |
|
1793 |
||
1794 |
lemma lcm_nat_abs_right_eq [simp]: |
|
1795 |
"lcm n (nat \<bar>k\<bar>) = nat (lcm (int n) k)" |
|
1796 |
by (simp add: lcm_int_def) |
|
1797 |
||
1798 |
lemma lcm_abs1_int [simp]: |
|
1799 |
"lcm \<bar>x\<bar> y = lcm x y" |
|
1800 |
for x y :: int |
|
1801 |
by (simp only: lcm_int_def) simp |
|
1802 |
||
1803 |
lemma lcm_abs2_int [simp]: |
|
1804 |
"lcm x \<bar>y\<bar> = lcm x y" |
|
1805 |
for x y :: int |
|
1806 |
by (simp only: lcm_int_def) simp |
|
1807 |
||
1808 |
lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j" |
|
1809 |
for i j :: int |
|
1810 |
by (simp only: lcm_int_def) |
|
1811 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1812 |
lemma gcd_nat_induct: |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1813 |
fixes m n :: nat |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1814 |
assumes "\<And>m. P m 0" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1815 |
and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1816 |
shows "P m n" |
31706 | 1817 |
apply (rule gcd_nat.induct) |
1818 |
apply (case_tac "y = 0") |
|
63489 | 1819 |
using assms |
1820 |
apply simp_all |
|
1821 |
done |
|
1822 |
||
1823 |
lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y" |
|
1824 |
for x y :: int |
|
67118 | 1825 |
by (simp only: gcd_int_def) simp |
31706 | 1826 |
|
63489 | 1827 |
lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y" |
1828 |
for x y :: int |
|
67118 | 1829 |
by (simp only: gcd_int_def) simp |
31706 | 1830 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1831 |
lemma gcd_cases_int: |
63489 | 1832 |
fixes x y :: int |
1833 |
assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)" |
|
1834 |
and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))" |
|
1835 |
and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)" |
|
1836 |
and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))" |
|
31706 | 1837 |
shows "P (gcd x y)" |
63489 | 1838 |
using assms by auto arith |
21256 | 1839 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1840 |
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" |
63489 | 1841 |
for x y :: int |
31706 | 1842 |
by (simp add: gcd_int_def) |
1843 |
||
63489 | 1844 |
lemma lcm_neg1_int: "lcm (- x) y = lcm x y" |
1845 |
for x y :: int |
|
67118 | 1846 |
by (simp only: lcm_int_def) simp |
31706 | 1847 |
|
63489 | 1848 |
lemma lcm_neg2_int: "lcm x (- y) = lcm x y" |
1849 |
for x y :: int |
|
67118 | 1850 |
by (simp only: lcm_int_def) simp |
31814 | 1851 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1852 |
lemma lcm_cases_int: |
63489 | 1853 |
fixes x y :: int |
1854 |
assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)" |
|
1855 |
and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))" |
|
1856 |
and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)" |
|
1857 |
and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))" |
|
31706 | 1858 |
shows "P (lcm x y)" |
41550 | 1859 |
using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith |
31706 | 1860 |
|
63489 | 1861 |
lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0" |
1862 |
for x y :: int |
|
67118 | 1863 |
by (simp only: lcm_int_def) |
31706 | 1864 |
|
63489 | 1865 |
lemma gcd_0_nat: "gcd x 0 = x" |
1866 |
for x :: nat |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1867 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1868 |
|
63489 | 1869 |
lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>" |
1870 |
for x :: int |
|
1871 |
by (auto simp: gcd_int_def) |
|
1872 |
||
1873 |
lemma gcd_0_left_nat: "gcd 0 x = x" |
|
1874 |
for x :: nat |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1875 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1876 |
|
63489 | 1877 |
lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>" |
1878 |
for x :: int |
|
67118 | 1879 |
by (auto simp: gcd_int_def) |
63489 | 1880 |
|
1881 |
lemma gcd_red_nat: "gcd x y = gcd y (x mod y)" |
|
1882 |
for x y :: nat |
|
1883 |
by (cases "y = 0") auto |
|
1884 |
||
1885 |
||
1886 |
text \<open>Weaker, but useful for the simplifier.\<close> |
|
1887 |
||
1888 |
lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" |
|
1889 |
for x y :: nat |
|
21263 | 1890 |
by simp |
21256 | 1891 |
|
63489 | 1892 |
lemma gcd_1_nat [simp]: "gcd m 1 = 1" |
1893 |
for m :: nat |
|
60690 | 1894 |
by simp |
31706 | 1895 |
|
63489 | 1896 |
lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0" |
1897 |
for m :: nat |
|
1898 |
by simp |
|
1899 |
||
1900 |
lemma gcd_1_int [simp]: "gcd m 1 = 1" |
|
1901 |
for m :: int |
|
31706 | 1902 |
by (simp add: gcd_int_def) |
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
1903 |
|
63489 | 1904 |
lemma gcd_idem_nat: "gcd x x = x" |
1905 |
for x :: nat |
|
1906 |
by simp |
|
1907 |
||
1908 |
lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>" |
|
1909 |
for x :: int |
|
1910 |
by (auto simp add: gcd_int_def) |
|
31706 | 1911 |
|
1912 |
declare gcd_nat.simps [simp del] |
|
21256 | 1913 |
|
60758 | 1914 |
text \<open> |
63489 | 1915 |
\<^medskip> @{term "gcd m n"} divides \<open>m\<close> and \<open>n\<close>. |
1916 |
The conjunctions don't seem provable separately. |
|
60758 | 1917 |
\<close> |
21256 | 1918 |
|
59008 | 1919 |
instance nat :: semiring_gcd |
1920 |
proof |
|
1921 |
fix m n :: nat |
|
1922 |
show "gcd m n dvd m" and "gcd m n dvd n" |
|
1923 |
proof (induct m n rule: gcd_nat_induct) |
|
1924 |
fix m n :: nat |
|
63489 | 1925 |
assume "gcd n (m mod n) dvd m mod n" |
1926 |
and "gcd n (m mod n) dvd n" |
|
59008 | 1927 |
then have "gcd n (m mod n) dvd m" |
1928 |
by (rule dvd_mod_imp_dvd) |
|
1929 |
moreover assume "0 < n" |
|
1930 |
ultimately show "gcd m n dvd m" |
|
1931 |
by (simp add: gcd_non_0_nat) |
|
1932 |
qed (simp_all add: gcd_0_nat gcd_non_0_nat) |
|
1933 |
next |
|
1934 |
fix m n k :: nat |
|
1935 |
assume "k dvd m" and "k dvd n" |
|
1936 |
then show "k dvd gcd m n" |
|
1937 |
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) |
|
60686 | 1938 |
qed (simp_all add: lcm_nat_def) |
59667
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
1939 |
|
59008 | 1940 |
instance int :: ring_gcd |
67118 | 1941 |
proof |
1942 |
fix k l r :: int |
|
1943 |
show "gcd k l dvd k" "gcd k l dvd l" |
|
1944 |
using gcd_dvd1 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
|
1945 |
gcd_dvd2 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
|
1946 |
by simp_all |
|
1947 |
show "lcm k l = normalize (k * l) div gcd k l" |
|
1948 |
using lcm_gcd [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
|
1949 |
by (simp add: nat_eq_iff of_nat_div abs_mult) |
|
1950 |
assume "r dvd k" "r dvd l" |
|
1951 |
then show "r dvd gcd k l" |
|
1952 |
using gcd_greatest [of "nat \<bar>r\<bar>" "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
|
1953 |
by simp |
|
1954 |
qed simp |
|
63489 | 1955 |
|
1956 |
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a" |
|
1957 |
for a b :: nat |
|
1958 |
by (rule dvd_imp_le) auto |
|
1959 |
||
1960 |
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b" |
|
1961 |
for a b :: nat |
|
1962 |
by (rule dvd_imp_le) auto |
|
1963 |
||
1964 |
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a" |
|
1965 |
for a b :: int |
|
1966 |
by (rule zdvd_imp_le) auto |
|
1967 |
||
1968 |
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b" |
|
1969 |
for a b :: int |
|
1970 |
by (rule zdvd_imp_le) auto |
|
1971 |
||
1972 |
lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" |
|
1973 |
for m n :: nat |
|
1974 |
using gcd_eq_0_iff [of m n] by arith |
|
1975 |
||
1976 |
lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" |
|
1977 |
for m n :: int |
|
1978 |
using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith |
|
1979 |
||
1980 |
lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
|
1981 |
for d a :: nat |
|
31706 | 1982 |
apply auto |
33657 | 1983 |
apply (rule dvd_antisym) |
63489 | 1984 |
apply (erule (1) gcd_greatest) |
31706 | 1985 |
apply auto |
63489 | 1986 |
done |
1987 |
||
1988 |
lemma gcd_unique_int: |
|
1989 |
"d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
|
1990 |
for d a :: int |
|
1991 |
apply (cases "d = 0") |
|
1992 |
apply simp |
|
1993 |
apply (rule iffI) |
|
1994 |
apply (rule zdvd_antisym_nonneg) |
|
1995 |
apply (auto intro: gcd_greatest) |
|
1996 |
done |
|
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
1997 |
|
61913 | 1998 |
interpretation gcd_nat: |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
1999 |
semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n" |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2000 |
by standard (auto simp add: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans) |
31798 | 2001 |
|
63489 | 2002 |
lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>" |
2003 |
for x y :: int |
|
67118 | 2004 |
by (metis abs_dvd_iff gcd_0_left_int gcd_unique_int) |
31798 | 2005 |
|
63489 | 2006 |
lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>" |
2007 |
for x y :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2008 |
by (metis gcd_proj1_if_dvd_int gcd.commute) |
31798 | 2009 |
|
63489 | 2010 |
|
2011 |
text \<open>\<^medskip> Multiplication laws.\<close> |
|
2012 |
||
2013 |
lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)" |
|
2014 |
for k m n :: nat |
|
2015 |
\<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close> |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2016 |
apply (induct m n rule: gcd_nat_induct) |
63489 | 2017 |
apply simp |
2018 |
apply (cases "k = 0") |
|
2019 |
apply (simp_all add: gcd_non_0_nat) |
|
2020 |
done |
|
2021 |
||
2022 |
lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)" |
|
2023 |
for k m n :: int |
|
67118 | 2024 |
using gcd_mult_distrib' [of k m n] by simp |
21256 | 2025 |
|
63489 | 2026 |
text \<open>\medskip Addition laws.\<close> |
2027 |
||
2028 |
(* TODO: add the other variations? *) |
|
2029 |
||
2030 |
lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n" |
|
2031 |
for m n :: nat |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
2032 |
by (subst gcd_add1 [symmetric]) auto |
31706 | 2033 |
|
63489 | 2034 |
lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n" |
2035 |
for m n :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2036 |
apply (subst gcd.commute) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2037 |
apply (subst gcd_diff1_nat [symmetric]) |
63489 | 2038 |
apply auto |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2039 |
apply (subst gcd.commute) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2040 |
apply (subst gcd_diff1_nat) |
63489 | 2041 |
apply assumption |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2042 |
apply (rule gcd.commute) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2043 |
done |
31706 | 2044 |
|
63489 | 2045 |
lemma gcd_non_0_int: "y > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" |
2046 |
for x y :: int |
|
31706 | 2047 |
apply (frule_tac b = y and a = x in pos_mod_sign) |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66803
diff
changeset
|
2048 |
apply (simp del: Euclidean_Division.pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib) |
63489 | 2049 |
apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] zmod_zminus1_eq_if) |
31706 | 2050 |
apply (frule_tac a = x in pos_mod_bound) |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2051 |
apply (subst (1 2) gcd.commute) |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66803
diff
changeset
|
2052 |
apply (simp del: Euclidean_Division.pos_mod_bound add: nat_diff_distrib gcd_diff2_nat nat_le_eq_zle) |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2053 |
done |
21256 | 2054 |
|
63489 | 2055 |
lemma gcd_red_int: "gcd x y = gcd y (x mod y)" |
2056 |
for x y :: int |
|
2057 |
apply (cases "y = 0") |
|
2058 |
apply force |
|
2059 |
apply (cases "y > 0") |
|
2060 |
apply (subst gcd_non_0_int, auto) |
|
2061 |
apply (insert gcd_non_0_int [of "- y" "- x"]) |
|
35216 | 2062 |
apply auto |
63489 | 2063 |
done |
2064 |
||
2065 |
(* TODO: differences, and all variations of addition rules |
|
31706 | 2066 |
as simplification rules for nat and int *) |
2067 |
||
63489 | 2068 |
(* TODO: add the three variations of these, and for ints? *) |
2069 |
||
2070 |
lemma finite_divisors_nat [simp]: (* FIXME move *) |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2071 |
fixes m :: nat |
63489 | 2072 |
assumes "m > 0" |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2073 |
shows "finite {d. d dvd m}" |
31734 | 2074 |
proof- |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2075 |
from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2076 |
by (auto dest: dvd_imp_le) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2077 |
then show ?thesis |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2078 |
using finite_Collect_le_nat by (rule finite_subset) |
31734 | 2079 |
qed |
2080 |
||
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2081 |
lemma finite_divisors_int [simp]: |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2082 |
fixes i :: int |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2083 |
assumes "i \<noteq> 0" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2084 |
shows "finite {d. d dvd i}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2085 |
proof - |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2086 |
have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2087 |
by (auto simp: abs_if) |
63489 | 2088 |
then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}" |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2089 |
by simp |
63489 | 2090 |
from finite_subset [OF _ this] show ?thesis |
2091 |
using assms by (simp add: dvd_imp_le_int subset_iff) |
|
31734 | 2092 |
qed |
2093 |
||
63489 | 2094 |
lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n" |
2095 |
apply (rule antisym) |
|
2096 |
apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le) |
|
2097 |
apply simp |
|
2098 |
done |
|
2099 |
||
2100 |
lemma Max_divisors_self_int [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::int. d dvd n} = \<bar>n\<bar>" |
|
2101 |
apply (rule antisym) |
|
2102 |
apply (rule Max_le_iff [THEN iffD2]) |
|
2103 |
apply (auto intro: abs_le_D1 dvd_imp_le_int) |
|
2104 |
done |
|
2105 |
||
2106 |
lemma gcd_is_Max_divisors_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}" |
|
2107 |
for m n :: nat |
|
2108 |
apply (rule Max_eqI[THEN sym]) |
|
2109 |
apply (metis finite_Collect_conjI finite_divisors_nat) |
|
2110 |
apply simp |
|
2111 |
apply (metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff gcd_pos_nat) |
|
2112 |
apply simp |
|
2113 |
done |
|
2114 |
||
2115 |
lemma gcd_is_Max_divisors_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}" |
|
2116 |
for m n :: int |
|
2117 |
apply (rule Max_eqI[THEN sym]) |
|
2118 |
apply (metis finite_Collect_conjI finite_divisors_int) |
|
2119 |
apply simp |
|
2120 |
apply (metis gcd_greatest_iff gcd_pos_int zdvd_imp_le) |
|
2121 |
apply simp |
|
2122 |
done |
|
2123 |
||
2124 |
lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" |
|
2125 |
for k l :: int |
|
67118 | 2126 |
using gcd_red_int [of "\<bar>k\<bar>" "\<bar>l\<bar>"] by simp |
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
2127 |
|
67051 | 2128 |
lemma coprime_Suc_left_nat [simp]: |
2129 |
"coprime (Suc n) n" |
|
2130 |
using coprime_add_one_left [of n] by simp |
|
2131 |
||
2132 |
lemma coprime_Suc_right_nat [simp]: |
|
2133 |
"coprime n (Suc n)" |
|
2134 |
using coprime_Suc_left_nat [of n] by (simp add: ac_simps) |
|
2135 |
||
2136 |
lemma coprime_diff_one_left_nat [simp]: |
|
2137 |
"coprime (n - 1) n" if "n > 0" for n :: nat |
|
2138 |
using that coprime_Suc_right_nat [of "n - 1"] by simp |
|
2139 |
||
2140 |
lemma coprime_diff_one_right_nat [simp]: |
|
2141 |
"coprime n (n - 1)" if "n > 0" for n :: nat |
|
2142 |
using that coprime_diff_one_left_nat [of n] by (simp add: ac_simps) |
|
2143 |
||
2144 |
lemma coprime_crossproduct_nat: |
|
2145 |
fixes a b c d :: nat |
|
2146 |
assumes "coprime a d" and "coprime b c" |
|
2147 |
shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" |
|
2148 |
using assms coprime_crossproduct [of a d b c] by simp |
|
2149 |
||
2150 |
lemma coprime_crossproduct_int: |
|
2151 |
fixes a b c d :: int |
|
2152 |
assumes "coprime a d" and "coprime b c" |
|
2153 |
shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" |
|
2154 |
using assms coprime_crossproduct [of a d b c] by simp |
|
31706 | 2155 |
|
2156 |
||
60758 | 2157 |
subsection \<open>Bezout's theorem\<close> |
31706 | 2158 |
|
63489 | 2159 |
text \<open> |
2160 |
Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem -- |
|
2161 |
see the theorems that follow the definition. |
|
2162 |
\<close> |
|
2163 |
||
2164 |
fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" |
|
2165 |
where "bezw x y = |
|
2166 |
(if y = 0 then (1, 0) |
|
2167 |
else |
|
31706 | 2168 |
(snd (bezw y (x mod y)), |
2169 |
fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" |
|
2170 |
||
63489 | 2171 |
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" |
2172 |
by simp |
|
2173 |
||
2174 |
lemma bezw_non_0: |
|
2175 |
"y > 0 \<Longrightarrow> bezw x y = |
|
2176 |
(snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" |
|
31706 | 2177 |
by simp |
2178 |
||
2179 |
declare bezw.simps [simp del] |
|
2180 |
||
63489 | 2181 |
lemma bezw_aux: "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2182 |
proof (induct x y rule: gcd_nat_induct) |
31706 | 2183 |
fix m :: nat |
2184 |
show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)" |
|
2185 |
by auto |
|
63489 | 2186 |
next |
2187 |
fix m n :: nat |
|
2188 |
assume ngt0: "n > 0" |
|
2189 |
and ih: "fst (bezw n (m mod n)) * int n + snd (bezw n (m mod n)) * int (m mod n) = |
|
2190 |
int (gcd n (m mod n))" |
|
2191 |
then show "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)" |
|
2192 |
apply (simp add: bezw_non_0 gcd_non_0_nat) |
|
2193 |
apply (erule subst) |
|
2194 |
apply (simp add: field_simps) |
|
64242
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
haftmann
parents:
64240
diff
changeset
|
2195 |
apply (subst div_mult_mod_eq [of m n, symmetric]) |
63489 | 2196 |
(* applying simp here undoes the last substitution! what is procedure cancel_div_mod? *) |
2197 |
apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult) |
|
2198 |
done |
|
31706 | 2199 |
qed |
2200 |
||
63489 | 2201 |
lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y" |
2202 |
for x y :: int |
|
31706 | 2203 |
proof - |
63489 | 2204 |
have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int |
31706 | 2205 |
apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) |
2206 |
apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) |
|
2207 |
apply (unfold gcd_int_def) |
|
2208 |
apply simp |
|
2209 |
apply (subst bezw_aux [symmetric]) |
|
2210 |
apply auto |
|
2211 |
done |
|
63489 | 2212 |
consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0" |
2213 |
by atomize_elim auto |
|
2214 |
then show ?thesis |
|
2215 |
proof cases |
|
2216 |
case 1 |
|
2217 |
then show ?thesis by (rule aux) |
|
2218 |
next |
|
2219 |
case 2 |
|
2220 |
then show ?thesis |
|
2221 |
apply - |
|
2222 |
apply (insert aux [of x "-y"]) |
|
2223 |
apply auto |
|
2224 |
apply (rule_tac x = u in exI) |
|
2225 |
apply (rule_tac x = "-v" in exI) |
|
2226 |
apply (subst gcd_neg2_int [symmetric]) |
|
2227 |
apply auto |
|
2228 |
done |
|
2229 |
next |
|
2230 |
case 3 |
|
2231 |
then show ?thesis |
|
2232 |
apply - |
|
2233 |
apply (insert aux [of "-x" y]) |
|
2234 |
apply auto |
|
2235 |
apply (rule_tac x = "-u" in exI) |
|
2236 |
apply (rule_tac x = v in exI) |
|
2237 |
apply (subst gcd_neg1_int [symmetric]) |
|
2238 |
apply auto |
|
2239 |
done |
|
2240 |
next |
|
2241 |
case 4 |
|
2242 |
then show ?thesis |
|
2243 |
apply - |
|
2244 |
apply (insert aux [of "-x" "-y"]) |
|
2245 |
apply auto |
|
2246 |
apply (rule_tac x = "-u" in exI) |
|
2247 |
apply (rule_tac x = "-v" in exI) |
|
2248 |
apply (subst gcd_neg1_int [symmetric]) |
|
2249 |
apply (subst gcd_neg2_int [symmetric]) |
|
2250 |
apply auto |
|
2251 |
done |
|
2252 |
qed |
|
31706 | 2253 |
qed |
2254 |
||
63489 | 2255 |
|
2256 |
text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close> |
|
31706 | 2257 |
|
2258 |
lemma ind_euclid: |
|
63489 | 2259 |
fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool" |
2260 |
assumes c: " \<forall>a b. P a b \<longleftrightarrow> P b a" |
|
2261 |
and z: "\<forall>a. P a 0" |
|
2262 |
and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2263 |
shows "P a b" |
63489 | 2264 |
proof (induct "a + b" arbitrary: a b rule: less_induct) |
34915 | 2265 |
case less |
63489 | 2266 |
consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b" |
2267 |
by arith |
|
2268 |
show ?case |
|
2269 |
proof (cases a b rule: linorder_cases) |
|
2270 |
case equal |
|
2271 |
with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp |
|
2272 |
next |
|
2273 |
case lt: less |
|
2274 |
then consider "a = 0" | "a + b - a < a + b" by arith |
|
2275 |
then show ?thesis |
|
2276 |
proof cases |
|
2277 |
case 1 |
|
2278 |
with z c show ?thesis by blast |
|
2279 |
next |
|
2280 |
case 2 |
|
2281 |
also have *: "a + b - a = a + (b - a)" using lt by arith |
|
34915 | 2282 |
finally have "a + (b - a) < a + b" . |
63489 | 2283 |
then have "P a (a + (b - a))" by (rule add [rule_format, OF less]) |
2284 |
then show ?thesis by (simp add: *[symmetric]) |
|
2285 |
qed |
|
2286 |
next |
|
2287 |
case gt: greater |
|
2288 |
then consider "b = 0" | "b + a - b < a + b" by arith |
|
2289 |
then show ?thesis |
|
2290 |
proof cases |
|
2291 |
case 1 |
|
2292 |
with z c show ?thesis by blast |
|
2293 |
next |
|
2294 |
case 2 |
|
2295 |
also have *: "b + a - b = b + (a - b)" using gt by arith |
|
34915 | 2296 |
finally have "b + (a - b) < a + b" . |
63489 | 2297 |
then have "P b (b + (a - b))" by (rule add [rule_format, OF less]) |
2298 |
then have "P b a" by (simp add: *[symmetric]) |
|
2299 |
with c show ?thesis by blast |
|
2300 |
qed |
|
2301 |
qed |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2302 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2303 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2304 |
lemma bezout_lemma_nat: |
31706 | 2305 |
assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
2306 |
(a * x = b * y + d \<or> b * x = a * y + d)" |
|
2307 |
shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> |
|
2308 |
(a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" |
|
2309 |
using ex |
|
2310 |
apply clarsimp |
|
63489 | 2311 |
apply (rule_tac x="d" in exI) |
2312 |
apply simp |
|
2313 |
apply (case_tac "a * x = b * y + d") |
|
2314 |
apply simp_all |
|
2315 |
apply (rule_tac x="x + y" in exI) |
|
2316 |
apply (rule_tac x="y" in exI) |
|
2317 |
apply algebra |
|
31706 | 2318 |
apply (rule_tac x="x" in exI) |
2319 |
apply (rule_tac x="x + y" in exI) |
|
2320 |
apply algebra |
|
63489 | 2321 |
done |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2322 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2323 |
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
31706 | 2324 |
(a * x = b * y + d \<or> b * x = a * y + d)" |
63489 | 2325 |
apply (induct a b rule: ind_euclid) |
2326 |
apply blast |
|
2327 |
apply clarify |
|
2328 |
apply (rule_tac x="a" in exI) |
|
2329 |
apply simp |
|
31706 | 2330 |
apply clarsimp |
2331 |
apply (rule_tac x="d" in exI) |
|
63489 | 2332 |
apply (case_tac "a * x = b * y + d") |
2333 |
apply simp_all |
|
2334 |
apply (rule_tac x="x+y" in exI) |
|
2335 |
apply (rule_tac x="y" in exI) |
|
2336 |
apply algebra |
|
31706 | 2337 |
apply (rule_tac x="x" in exI) |
2338 |
apply (rule_tac x="x+y" in exI) |
|
2339 |
apply algebra |
|
63489 | 2340 |
done |
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2341 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2342 |
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> |
31706 | 2343 |
(a * x - b * y = d \<or> b * x - a * y = d)" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2344 |
using bezout_add_nat[of a b] |
31706 | 2345 |
apply clarsimp |
63489 | 2346 |
apply (rule_tac x="d" in exI) |
2347 |
apply simp |
|
31706 | 2348 |
apply (rule_tac x="x" in exI) |
2349 |
apply (rule_tac x="y" in exI) |
|
2350 |
apply auto |
|
63489 | 2351 |
done |
2352 |
||
2353 |
lemma bezout_add_strong_nat: |
|
2354 |
fixes a b :: nat |
|
2355 |
assumes a: "a \<noteq> 0" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2356 |
shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" |
63489 | 2357 |
proof - |
2358 |
consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d" |
|
2359 |
| d x y where "d dvd a" "d dvd b" "b * x = a * y + d" |
|
2360 |
using bezout_add_nat [of a b] by blast |
|
2361 |
then show ?thesis |
|
2362 |
proof cases |
|
2363 |
case 1 |
|
2364 |
then show ?thesis by blast |
|
2365 |
next |
|
2366 |
case H: 2 |
|
2367 |
show ?thesis |
|
2368 |
proof (cases "b = 0") |
|
2369 |
case True |
|
2370 |
with H show ?thesis by simp |
|
2371 |
next |
|
2372 |
case False |
|
2373 |
then have bp: "b > 0" by simp |
|
2374 |
with dvd_imp_le [OF H(2)] consider "d = b" | "d < b" |
|
2375 |
by atomize_elim auto |
|
2376 |
then show ?thesis |
|
2377 |
proof cases |
|
2378 |
case 1 |
|
2379 |
with a H show ?thesis |
|
2380 |
apply simp |
|
2381 |
apply (rule exI[where x = b]) |
|
2382 |
apply simp |
|
2383 |
apply (rule exI[where x = b]) |
|
2384 |
apply (rule exI[where x = "a - 1"]) |
|
2385 |
apply (simp add: diff_mult_distrib2) |
|
2386 |
done |
|
2387 |
next |
|
2388 |
case 2 |
|
2389 |
show ?thesis |
|
2390 |
proof (cases "x = 0") |
|
2391 |
case True |
|
2392 |
with a H show ?thesis by simp |
|
2393 |
next |
|
2394 |
case x0: False |
|
2395 |
then have xp: "x > 0" by simp |
|
2396 |
from \<open>d < b\<close> have "d \<le> b - 1" by simp |
|
2397 |
then have "d * b \<le> b * (b - 1)" by simp |
|
2398 |
with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"] |
|
2399 |
have dble: "d * b \<le> x * b * (b - 1)" using bp by simp |
|
2400 |
from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)" |
|
31706 | 2401 |
by simp |
63489 | 2402 |
then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
2403 |
by (simp only: mult.assoc distrib_left) |
63489 | 2404 |
then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)" |
31706 | 2405 |
by algebra |
63489 | 2406 |
then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b" |
2407 |
using bp by simp |
|
2408 |
then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
2409 |
by (simp only: diff_add_assoc[OF dble, of d, symmetric]) |
63489 | 2410 |
then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d" |
59008 | 2411 |
by (simp only: diff_mult_distrib2 ac_simps) |
63489 | 2412 |
with H(1,2) show ?thesis |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
2413 |
apply - |
63489 | 2414 |
apply (rule exI [where x = d]) |
2415 |
apply simp |
|
2416 |
apply (rule exI [where x = "(b - 1) * y"]) |
|
2417 |
apply (rule exI [where x = "x * (b - 1) - d"]) |
|
2418 |
apply simp |
|
2419 |
done |
|
2420 |
qed |
|
2421 |
qed |
|
2422 |
qed |
|
2423 |
qed |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2424 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2425 |
|
63489 | 2426 |
lemma bezout_nat: |
2427 |
fixes a :: nat |
|
2428 |
assumes a: "a \<noteq> 0" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2429 |
shows "\<exists>x y. a * x = b * y + gcd a b" |
63489 | 2430 |
proof - |
2431 |
obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d" |
|
2432 |
using bezout_add_strong_nat [OF a, of b] by blast |
|
2433 |
from d have "d dvd gcd a b" |
|
2434 |
by simp |
|
2435 |
then obtain k where k: "gcd a b = d * k" |
|
2436 |
unfolding dvd_def by blast |
|
2437 |
from eq have "a * x * k = (b * y + d) * k" |
|
2438 |
by auto |
|
2439 |
then have "a * (x * k) = b * (y * k) + gcd a b" |
|
2440 |
by (algebra add: k) |
|
2441 |
then show ?thesis |
|
2442 |
by blast |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2443 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2444 |
|
31706 | 2445 |
|
63489 | 2446 |
subsection \<open>LCM properties on @{typ nat} and @{typ int}\<close> |
2447 |
||
2448 |
lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" |
|
2449 |
for a b :: int |
|
67118 | 2450 |
by (simp add: abs_mult lcm_gcd) |
2451 |
||
63489 | 2452 |
lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n" |
2453 |
for m n :: nat |
|
31706 | 2454 |
unfolding lcm_nat_def |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
2455 |
by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod]) |
31706 | 2456 |
|
63489 | 2457 |
lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n" |
2458 |
for m n :: int |
|
31706 | 2459 |
unfolding lcm_int_def gcd_int_def |
62348 | 2460 |
apply (subst of_nat_mult [symmetric]) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2461 |
apply (subst prod_gcd_lcm_nat [symmetric]) |
31706 | 2462 |
apply (subst nat_abs_mult_distrib [symmetric]) |
63489 | 2463 |
apply (simp add: abs_mult) |
2464 |
done |
|
2465 |
||
2466 |
lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0" |
|
2467 |
for m n :: nat |
|
67118 | 2468 |
using lcm_eq_0_iff [of m n] by auto |
63489 | 2469 |
|
2470 |
lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0" |
|
2471 |
for m n :: int |
|
67118 | 2472 |
by (simp add: less_le lcm_eq_0_iff) |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
2473 |
|
63489 | 2474 |
lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0" (* FIXME move *) |
2475 |
for m n :: nat |
|
2476 |
by (cases m) auto |
|
2477 |
||
2478 |
lemma lcm_unique_nat: |
|
2479 |
"a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
|
2480 |
for a b d :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2481 |
by (auto intro: dvd_antisym lcm_least) |
27568
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
chaieb
parents:
27556
diff
changeset
|
2482 |
|
63489 | 2483 |
lemma lcm_unique_int: |
2484 |
"d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
|
2485 |
for a b d :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2486 |
using lcm_least zdvd_antisym_nonneg by auto |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
2487 |
|
63489 | 2488 |
lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y" |
2489 |
for x y :: nat |
|
31706 | 2490 |
apply (rule sym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2491 |
apply (subst lcm_unique_nat [symmetric]) |
31706 | 2492 |
apply auto |
63489 | 2493 |
done |
2494 |
||
2495 |
lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>" |
|
2496 |
for x y :: int |
|
31706 | 2497 |
apply (rule sym) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2498 |
apply (subst lcm_unique_int [symmetric]) |
31706 | 2499 |
apply auto |
63489 | 2500 |
done |
2501 |
||
2502 |
lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y" |
|
2503 |
for x y :: nat |
|
2504 |
by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat) |
|
2505 |
||
2506 |
lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>" |
|
2507 |
for x y :: int |
|
2508 |
by (subst lcm.commute) (erule lcm_proj2_if_dvd_int) |
|
2509 |
||
2510 |
lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m" |
|
2511 |
for m n :: nat |
|
2512 |
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) |
|
2513 |
||
2514 |
lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n" |
|
2515 |
for m n :: nat |
|
2516 |
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) |
|
2517 |
||
2518 |
lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m" |
|
2519 |
for m n :: int |
|
2520 |
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) |
|
2521 |
||
2522 |
lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n" |
|
2523 |
for m n :: int |
|
2524 |
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) |
|
2525 |
||
2526 |
lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" |
|
2527 |
for m n :: nat |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2528 |
using lcm_eq_1_iff [of m n] by simp |
63489 | 2529 |
|
2530 |
lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)" |
|
2531 |
for m n :: int |
|
61913 | 2532 |
by auto |
31995 | 2533 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
2534 |
|
62345 | 2535 |
subsection \<open>The complete divisibility lattice on @{typ nat} and @{typ int}\<close> |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2536 |
|
63489 | 2537 |
text \<open> |
2538 |
Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>). |
|
2539 |
\<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice. |
|
60758 | 2540 |
\<close> |
45264 | 2541 |
|
62345 | 2542 |
instantiation nat :: semiring_Gcd |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2543 |
begin |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2544 |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2545 |
interpretation semilattice_neutr_set lcm "1::nat" |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2546 |
by standard simp_all |
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
2547 |
|
63489 | 2548 |
definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set" |
2549 |
||
2550 |
lemma Lcm_nat_empty: "Lcm {} = (1::nat)" |
|
60690 | 2551 |
by (simp add: Lcm_nat_def del: One_nat_def) |
51489 | 2552 |
|
63489 | 2553 |
lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat |
61929 | 2554 |
by (cases "finite M") (auto simp add: Lcm_nat_def simp del: One_nat_def) |
2555 |
||
63489 | 2556 |
lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set" |
61929 | 2557 |
by (simp add: Lcm_nat_def) |
2558 |
||
2559 |
lemma dvd_Lcm_nat [simp]: |
|
2560 |
fixes M :: "nat set" |
|
2561 |
assumes "m \<in> M" |
|
2562 |
shows "m dvd Lcm M" |
|
2563 |
proof - |
|
63489 | 2564 |
from assms have "insert m M = M" |
2565 |
by auto |
|
61929 | 2566 |
moreover have "m dvd Lcm (insert m M)" |
2567 |
by (simp add: Lcm_nat_insert) |
|
63489 | 2568 |
ultimately show ?thesis |
2569 |
by simp |
|
61929 | 2570 |
qed |
2571 |
||
2572 |
lemma Lcm_dvd_nat [simp]: |
|
2573 |
fixes M :: "nat set" |
|
2574 |
assumes "\<forall>m\<in>M. m dvd n" |
|
2575 |
shows "Lcm M dvd n" |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2576 |
proof (cases "n > 0") |
63489 | 2577 |
case False |
2578 |
then show ?thesis by simp |
|
61929 | 2579 |
next |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2580 |
case True |
63489 | 2581 |
then have "finite {d. d dvd n}" |
2582 |
by (rule finite_divisors_nat) |
|
2583 |
moreover have "M \<subseteq> {d. d dvd n}" |
|
2584 |
using assms by fast |
|
2585 |
ultimately have "finite M" |
|
2586 |
by (rule rev_finite_subset) |
|
2587 |
then show ?thesis |
|
2588 |
using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) |
|
61929 | 2589 |
qed |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2590 |
|
63489 | 2591 |
definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set" |
2592 |
||
2593 |
instance |
|
2594 |
proof |
|
2595 |
fix N :: "nat set" |
|
2596 |
fix n :: nat |
|
2597 |
show "Gcd N dvd n" if "n \<in> N" |
|
2598 |
using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def) |
|
2599 |
show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m" |
|
2600 |
using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def) |
|
2601 |
show "n dvd Lcm N" if "n \<in> N" |
|
2602 |
using that by (induct N rule: infinite_finite_induct) auto |
|
2603 |
show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n" |
|
2604 |
using that by (induct N rule: infinite_finite_induct) auto |
|
2605 |
show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N" |
|
2606 |
by simp_all |
|
2607 |
qed |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2608 |
|
62345 | 2609 |
end |
61913 | 2610 |
|
63489 | 2611 |
lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1" |
2612 |
for N :: "nat set" |
|
62346 | 2613 |
by (rule Gcd_eq_1_I) auto |
2614 |
||
63489 | 2615 |
|
2616 |
text \<open>Alternative characterizations of Gcd:\<close> |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2617 |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2618 |
lemma Gcd_eq_Max: |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2619 |
fixes M :: "nat set" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2620 |
assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2621 |
shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2622 |
proof (rule antisym) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2623 |
from assms obtain m where "m \<in> M" and "m > 0" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2624 |
by auto |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2625 |
from \<open>m > 0\<close> have "finite {d. d dvd m}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2626 |
by (blast intro: finite_divisors_nat) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2627 |
with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2628 |
by blast |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2629 |
from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2630 |
by (auto intro: Max_ge Gcd_dvd) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2631 |
from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2632 |
apply (rule Max.boundedI) |
63489 | 2633 |
apply auto |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2634 |
apply (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2635 |
done |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2636 |
qed |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2637 |
|
63489 | 2638 |
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})" |
2639 |
for M :: "nat set" |
|
2640 |
apply (induct pred: finite) |
|
2641 |
apply simp |
|
2642 |
apply (case_tac "x = 0") |
|
2643 |
apply simp |
|
2644 |
apply (subgoal_tac "insert x F - {0} = insert x (F - {0})") |
|
2645 |
apply simp |
|
2646 |
apply blast |
|
2647 |
done |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2648 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2649 |
lemma Lcm_in_lcm_closed_set_nat: |
63489 | 2650 |
"finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M \<in> M" |
2651 |
for M :: "nat set" |
|
2652 |
apply (induct rule: finite_linorder_min_induct) |
|
2653 |
apply simp |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2654 |
apply simp |
63489 | 2655 |
apply (subgoal_tac "\<forall>m n. m \<in> A \<longrightarrow> n \<in> A \<longrightarrow> lcm m n \<in> A") |
2656 |
apply simp |
|
2657 |
apply(case_tac "A = {}") |
|
2658 |
apply simp |
|
2659 |
apply simp |
|
2660 |
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0) |
|
2661 |
done |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2662 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2663 |
lemma Lcm_eq_Max_nat: |
63489 | 2664 |
"finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M = Max M" |
2665 |
for M :: "nat set" |
|
2666 |
apply (rule antisym) |
|
2667 |
apply (rule Max_ge) |
|
2668 |
apply assumption |
|
2669 |
apply (erule (2) Lcm_in_lcm_closed_set_nat) |
|
2670 |
apply (auto simp add: not_le Lcm_0_iff dvd_imp_le leD le_neq_trans) |
|
2671 |
done |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2672 |
|
34222 | 2673 |
lemma mult_inj_if_coprime_nat: |
63489 | 2674 |
"inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> \<forall>a\<in>A. \<forall>b\<in>B. coprime (f a) (g b) \<Longrightarrow> |
2675 |
inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)" |
|
2676 |
for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat" |
|
61913 | 2677 |
by (auto simp add: inj_on_def coprime_crossproduct_nat simp del: One_nat_def) |
34222 | 2678 |
|
63489 | 2679 |
|
2680 |
subsubsection \<open>Setwise GCD and LCM for integers\<close> |
|
45264 | 2681 |
|
67118 | 2682 |
instantiation int :: Gcd |
45264 | 2683 |
begin |
2684 |
||
67118 | 2685 |
definition Gcd_int :: "int set \<Rightarrow> int" |
2686 |
where "Gcd K = int (GCD k\<in>K. (nat \<circ> abs) k)" |
|
2687 |
||
2688 |
definition Lcm_int :: "int set \<Rightarrow> int" |
|
2689 |
where "Lcm K = int (LCM k\<in>K. (nat \<circ> abs) k)" |
|
2690 |
||
2691 |
instance .. |
|
62345 | 2692 |
|
2693 |
end |
|
2694 |
||
67118 | 2695 |
lemma Gcd_int_eq [simp]: |
2696 |
"(GCD n\<in>N. int n) = int (Gcd N)" |
|
2697 |
by (simp add: Gcd_int_def image_image) |
|
2698 |
||
2699 |
lemma Gcd_nat_abs_eq [simp]: |
|
2700 |
"(GCD k\<in>K. nat \<bar>k\<bar>) = nat (Gcd K)" |
|
2701 |
by (simp add: Gcd_int_def) |
|
2702 |
||
2703 |
lemma abs_Gcd_eq [simp]: |
|
2704 |
"\<bar>Gcd K\<bar> = Gcd K" for K :: "int set" |
|
2705 |
by (simp only: Gcd_int_def) |
|
2706 |
||
2707 |
lemma Gcd_int_greater_eq_0 [simp]: |
|
2708 |
"Gcd K \<ge> 0" |
|
63489 | 2709 |
for K :: "int set" |
67118 | 2710 |
using abs_ge_zero [of "Gcd K"] by simp |
2711 |
||
2712 |
lemma Gcd_abs_eq [simp]: |
|
2713 |
"(GCD k\<in>K. \<bar>k\<bar>) = Gcd K" |
|
63489 | 2714 |
for K :: "int set" |
67118 | 2715 |
by (simp only: Gcd_int_def image_image) simp |
2716 |
||
2717 |
lemma Lcm_int_eq [simp]: |
|
2718 |
"(LCM n\<in>N. int n) = int (Lcm N)" |
|
2719 |
by (simp add: Lcm_int_def image_image) |
|
2720 |
||
2721 |
lemma Lcm_nat_abs_eq [simp]: |
|
2722 |
"(LCM k\<in>K. nat \<bar>k\<bar>) = nat (Lcm K)" |
|
2723 |
by (simp add: Lcm_int_def) |
|
2724 |
||
2725 |
lemma abs_Lcm_eq [simp]: |
|
2726 |
"\<bar>Lcm K\<bar> = Lcm K" for K :: "int set" |
|
2727 |
by (simp only: Lcm_int_def) |
|
2728 |
||
2729 |
lemma Lcm_int_greater_eq_0 [simp]: |
|
2730 |
"Lcm K \<ge> 0" |
|
2731 |
for K :: "int set" |
|
2732 |
using abs_ge_zero [of "Lcm K"] by simp |
|
2733 |
||
2734 |
lemma Lcm_abs_eq [simp]: |
|
2735 |
"(LCM k\<in>K. \<bar>k\<bar>) = Lcm K" |
|
2736 |
for K :: "int set" |
|
2737 |
by (simp only: Lcm_int_def image_image) simp |
|
2738 |
||
2739 |
instance int :: semiring_Gcd |
|
2740 |
proof |
|
2741 |
fix K :: "int set" and k :: int |
|
2742 |
show "Gcd K dvd k" and "k dvd Lcm K" if "k \<in> K" |
|
2743 |
using that Gcd_dvd [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] |
|
2744 |
dvd_Lcm [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] |
|
2745 |
by (simp_all add: comp_def) |
|
2746 |
show "k dvd Gcd K" if "\<And>l. l \<in> K \<Longrightarrow> k dvd l" |
|
2747 |
proof - |
|
2748 |
have "nat \<bar>k\<bar> dvd (GCD k\<in>K. nat \<bar>k\<bar>)" |
|
2749 |
by (rule Gcd_greatest) (use that in auto) |
|
2750 |
then show ?thesis by simp |
|
2751 |
qed |
|
2752 |
show "Lcm K dvd k" if "\<And>l. l \<in> K \<Longrightarrow> l dvd k" |
|
2753 |
proof - |
|
2754 |
have "(LCM k\<in>K. nat \<bar>k\<bar>) dvd nat \<bar>k\<bar>" |
|
2755 |
by (rule Lcm_least) (use that in auto) |
|
2756 |
then show ?thesis by simp |
|
2757 |
qed |
|
2758 |
qed simp_all |
|
62346 | 2759 |
|
62345 | 2760 |
|
2761 |
subsection \<open>GCD and LCM on @{typ integer}\<close> |
|
2762 |
||
2763 |
instantiation integer :: gcd |
|
2764 |
begin |
|
2765 |
||
2766 |
context |
|
2767 |
includes integer.lifting |
|
2768 |
begin |
|
2769 |
||
63489 | 2770 |
lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd . |
2771 |
||
2772 |
lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm . |
|
62345 | 2773 |
|
2774 |
end |
|
63489 | 2775 |
|
45264 | 2776 |
instance .. |
60686 | 2777 |
|
21256 | 2778 |
end |
45264 | 2779 |
|
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2780 |
lifting_update integer.lifting |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2781 |
lifting_forget integer.lifting |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2782 |
|
62345 | 2783 |
context |
2784 |
includes integer.lifting |
|
2785 |
begin |
|
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2786 |
|
63489 | 2787 |
lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" |
62345 | 2788 |
by transfer (fact gcd_code_int) |
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2789 |
|
63489 | 2790 |
lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" |
2791 |
for a b :: integer |
|
62345 | 2792 |
by transfer (fact lcm_altdef_int) |
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2793 |
|
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2794 |
end |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2795 |
|
63489 | 2796 |
code_printing |
2797 |
constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup> |
|
2798 |
(OCaml) "Big'_int.gcd'_big'_int" |
|
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2799 |
and (Haskell) "Prelude.gcd" |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2800 |
and (Scala) "_.gcd'((_)')" |
61975 | 2801 |
\<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close> |
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2802 |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2803 |
text \<open>Some code equations\<close> |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2804 |
|
64850 | 2805 |
lemmas Gcd_nat_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = nat] |
2806 |
lemmas Lcm_nat_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = nat] |
|
2807 |
lemmas Gcd_int_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = int] |
|
2808 |
lemmas Lcm_int_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = int] |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2809 |
|
63489 | 2810 |
text \<open>Fact aliases.\<close> |
2811 |
||
2812 |
lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" |
|
2813 |
for m n :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2814 |
by (fact lcm_eq_0_iff) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2815 |
|
63489 | 2816 |
lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" |
2817 |
for m n :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2818 |
by (fact lcm_eq_0_iff) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2819 |
|
63489 | 2820 |
lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n" |
2821 |
for k m n :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2822 |
by (fact dvd_lcmI1) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2823 |
|
63489 | 2824 |
lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n" |
2825 |
for k m n :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2826 |
by (fact dvd_lcmI2) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2827 |
|
63489 | 2828 |
lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n" |
2829 |
for i m n :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2830 |
by (fact dvd_lcmI1) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2831 |
|
63489 | 2832 |
lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n" |
2833 |
for i m n :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2834 |
by (fact dvd_lcmI2) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2835 |
|
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2836 |
lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat] |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2837 |
lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int] |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2838 |
lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat] |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2839 |
lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int] |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2840 |
|
63489 | 2841 |
lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M" |
2842 |
for M :: "int set" |
|
2843 |
by (fact dvd_Lcm) |
|
2844 |
||
2845 |
lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x" |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2846 |
by (fact gcd_neg1_int) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2847 |
|
63489 | 2848 |
lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)" |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2849 |
by (fact gcd_neg2_int) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2850 |
|
63489 | 2851 |
lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x" |
2852 |
for x y :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2853 |
by (fact gcd_nat.absorb1) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2854 |
|
63489 | 2855 |
lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y" |
2856 |
for x y :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2857 |
by (fact gcd_nat.absorb2) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2858 |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2859 |
lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat] |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2860 |
lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat] |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2861 |
lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int] |
62345 | 2862 |
|
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2863 |
end |