src/HOL/GCD.thy
author wenzelm
Fri, 27 Jul 2018 22:23:37 +0200
changeset 68695 9072bfd24d8f
parent 68270 2bc921b2159b
child 68708 77858f347020
permissions -rw-r--r--
clarified documentation;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
     1
(*  Title:      HOL/GCD.thy
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
     2
    Author:     Christophe Tabacznyj
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
     3
    Author:     Lawrence C. Paulson
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
     4
    Author:     Amine Chaieb
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
     5
    Author:     Thomas M. Rasmussen
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
     6
    Author:     Jeremy Avigad
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
     7
    Author:     Tobias Nipkow
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
     8
32479
521cc9bf2958 some reorganization of number theory
haftmann
parents: 32415
diff changeset
     9
This file deals with the functions gcd and lcm.  Definitions and
521cc9bf2958 some reorganization of number theory
haftmann
parents: 32415
diff changeset
    10
lemmas are proved uniformly for the natural numbers and integers.
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    11
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    12
This file combines and revises a number of prior developments.
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    13
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    14
The original theories "GCD" and "Primes" were by Christophe Tabacznyj
58623
2db1df2c8467 more bibtex entries;
wenzelm
parents: 57514
diff changeset
    15
and Lawrence C. Paulson, based on @{cite davenport92}. They introduced
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    16
gcd, lcm, and prime for the natural numbers.
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    17
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    18
The original theory "IntPrimes" was by Thomas M. Rasmussen, and
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    19
extended gcd, lcm, primes to the integers. Amine Chaieb provided
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    20
another extension of the notions to the integers, and added a number
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    21
of results to "Primes" and "GCD". IntPrimes also defined and developed
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    22
the congruence relations on the integers. The notion was extended to
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 34223
diff changeset
    23
the natural numbers by Chaieb.
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    24
32036
8a9228872fbd Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents: 31952
diff changeset
    25
Jeremy Avigad combined all of these, made everything uniform for the
8a9228872fbd Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents: 31952
diff changeset
    26
natural numbers and the integers, and added a number of new theorems.
8a9228872fbd Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents: 31952
diff changeset
    27
31798
fe9a3043d36c Cleaned up GCD
nipkow
parents: 31766
diff changeset
    28
Tobias Nipkow cleaned up a lot.
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
    29
*)
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
    30
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
    31
section \<open>Greatest common divisor and least common multiple\<close>
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
    32
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
    33
theory GCD
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    34
  imports Groups_List 
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    35
begin
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
    36
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    37
subsection \<open>Abstract bounded quasi semilattices as common foundation\<close>
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
    38
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
    39
locale bounded_quasi_semilattice = abel_semigroup +
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    40
  fixes top :: 'a  ("\<^bold>\<top>") and bot :: 'a  ("\<^bold>\<bottom>")
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    41
    and normalize :: "'a \<Rightarrow> 'a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    42
  assumes idem_normalize [simp]: "a \<^bold>* a = normalize a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    43
    and normalize_left_idem [simp]: "normalize a \<^bold>* b = a \<^bold>* b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    44
    and normalize_idem [simp]: "normalize (a \<^bold>* b) = a \<^bold>* b"
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    45
    and normalize_top [simp]: "normalize \<^bold>\<top> = \<^bold>\<top>"
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    46
    and normalize_bottom [simp]: "normalize \<^bold>\<bottom> = \<^bold>\<bottom>"
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    47
    and top_left_normalize [simp]: "\<^bold>\<top> \<^bold>* a = normalize a"
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    48
    and bottom_left_bottom [simp]: "\<^bold>\<bottom> \<^bold>* a = \<^bold>\<bottom>"
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    49
begin
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    50
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    51
lemma left_idem [simp]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    52
  "a \<^bold>* (a \<^bold>* b) = a \<^bold>* b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    53
  using assoc [of a a b, symmetric] by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    54
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    55
lemma right_idem [simp]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    56
  "(a \<^bold>* b) \<^bold>* b = a \<^bold>* b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    57
  using left_idem [of b a] by (simp add: ac_simps)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    58
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    59
lemma comp_fun_idem: "comp_fun_idem f"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    60
  by standard (simp_all add: fun_eq_iff ac_simps)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    61
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    62
interpretation comp_fun_idem f
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    63
  by (fact comp_fun_idem)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    64
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    65
lemma top_right_normalize [simp]:
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    66
  "a \<^bold>* \<^bold>\<top> = normalize a"
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    67
  using top_left_normalize [of a] by (simp add: ac_simps)
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
    68
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    69
lemma bottom_right_bottom [simp]:
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    70
  "a \<^bold>* \<^bold>\<bottom> = \<^bold>\<bottom>"
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    71
  using bottom_left_bottom [of a] by (simp add: ac_simps)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    72
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    73
lemma normalize_right_idem [simp]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    74
  "a \<^bold>* normalize b = a \<^bold>* b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    75
  using normalize_left_idem [of b a] by (simp add: ac_simps)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    76
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
    77
end
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    78
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    79
locale bounded_quasi_semilattice_set = bounded_quasi_semilattice
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    80
begin
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    81
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    82
interpretation comp_fun_idem f
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    83
  by (fact comp_fun_idem)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    84
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    85
definition F :: "'a set \<Rightarrow> 'a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    86
where
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    87
  eq_fold: "F A = (if finite A then Finite_Set.fold f \<^bold>\<top> A else \<^bold>\<bottom>)"
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    88
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    89
lemma infinite [simp]:
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    90
  "infinite A \<Longrightarrow> F A = \<^bold>\<bottom>"
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    91
  by (simp add: eq_fold)
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    92
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    93
lemma set_eq_fold [code]:
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    94
  "F (set xs) = fold f xs \<^bold>\<top>"
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    95
  by (simp add: eq_fold fold_set_fold)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    96
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    97
lemma empty [simp]:
65555
85ed070017b7 include GCD as integral part of computational algebra in session HOL
haftmann
parents: 65552
diff changeset
    98
  "F {} = \<^bold>\<top>"
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
    99
  by (simp add: eq_fold)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   100
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   101
lemma insert [simp]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   102
  "F (insert a A) = a \<^bold>* F A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   103
  by (cases "finite A") (simp_all add: eq_fold)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   104
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   105
lemma normalize [simp]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   106
  "normalize (F A) = F A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   107
  by (induct A rule: infinite_finite_induct) simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   108
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   109
lemma in_idem:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   110
  assumes "a \<in> A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   111
  shows "a \<^bold>* F A = F A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   112
  using assms by (induct A rule: infinite_finite_induct)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   113
    (auto simp add: left_commute [of a])
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   114
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   115
lemma union:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   116
  "F (A \<union> B) = F A \<^bold>* F B"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   117
  by (induct A rule: infinite_finite_induct)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   118
    (simp_all add: ac_simps)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   119
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   120
lemma remove:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   121
  assumes "a \<in> A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   122
  shows "F A = a \<^bold>* F (A - {a})"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   123
proof -
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   124
  from assms obtain B where "A = insert a B" and "a \<notin> B"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   125
    by (blast dest: mk_disjoint_insert)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   126
  with assms show ?thesis by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   127
qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   128
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   129
lemma insert_remove:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   130
  "F (insert a A) = a \<^bold>* F (A - {a})"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   131
  by (cases "a \<in> A") (simp_all add: insert_absorb remove)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   132
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   133
lemma subset:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   134
  assumes "B \<subseteq> A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   135
  shows "F B \<^bold>* F A = F A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   136
  using assms by (simp add: union [symmetric] Un_absorb1)
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
   137
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   138
end
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   139
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   140
subsection \<open>Abstract GCD and LCM\<close>
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
   141
31992
f8aed98faae7 More about gcd/lcm, and some cleaning up
nipkow
parents: 31952
diff changeset
   142
class gcd = zero + one + dvd +
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 37770
diff changeset
   143
  fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
efa734d9b221 eliminated global prems;
wenzelm
parents: 37770
diff changeset
   144
    and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
   145
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   146
class Gcd = gcd +
63025
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   147
  fixes Gcd :: "'a set \<Rightarrow> 'a"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   148
    and Lcm :: "'a set \<Rightarrow> 'a"
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   149
begin
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   150
63025
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   151
abbreviation GREATEST_COMMON_DIVISOR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   152
  where "GREATEST_COMMON_DIVISOR A f \<equiv> Gcd (f ` A)"
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   153
63025
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   154
abbreviation LEAST_COMMON_MULTIPLE :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   155
  where "LEAST_COMMON_MULTIPLE A f \<equiv> Lcm (f ` A)"
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   156
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   157
end
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   158
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   159
syntax
63025
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   160
  "_GCD1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3GCD _./ _)" [0, 10] 10)
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   161
  "_GCD"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3GCD _\<in>_./ _)" [0, 0, 10] 10)
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   162
  "_LCM1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3LCM _./ _)" [0, 10] 10)
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   163
  "_LCM"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3LCM _\<in>_./ _)" [0, 0, 10] 10)
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   164
translations
63025
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   165
  "GCD x y. B"   \<rightleftharpoons> "GCD x. GCD y. B"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   166
  "GCD x. B"     \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR CONST UNIV (\<lambda>x. B)"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   167
  "GCD x. B"     \<rightleftharpoons> "GCD x \<in> CONST UNIV. B"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   168
  "GCD x\<in>A. B"   \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR A (\<lambda>x. B)"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   169
  "LCM x y. B"   \<rightleftharpoons> "LCM x. LCM y. B"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   170
  "LCM x. B"     \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE CONST UNIV (\<lambda>x. B)"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   171
  "LCM x. B"     \<rightleftharpoons> "LCM x \<in> CONST UNIV. B"
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   172
  "LCM x\<in>A. B"   \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE A (\<lambda>x. B)"
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   173
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   174
print_translation \<open>
63025
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   175
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax GREATEST_COMMON_DIVISOR} @{syntax_const "_GCD"},
92680537201f capitalized GCD and LCM syntax
haftmann
parents: 62429
diff changeset
   176
    Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax LEAST_COMMON_MULTIPLE} @{syntax_const "_LCM"}]
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   177
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   178
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   179
class semiring_gcd = normalization_semidom + gcd +
59008
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
   180
  assumes gcd_dvd1 [iff]: "gcd a b dvd a"
59977
ad2d1cd53877 eliminated hard tabs;
wenzelm
parents: 59807
diff changeset
   181
    and gcd_dvd2 [iff]: "gcd a b dvd b"
ad2d1cd53877 eliminated hard tabs;
wenzelm
parents: 59807
diff changeset
   182
    and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   183
    and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   184
    and lcm_gcd: "lcm a b = normalize (a * b) div gcd a b"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   185
begin
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   186
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   187
lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   188
  by (blast intro!: gcd_greatest intro: dvd_trans)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   189
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   190
lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c"
60689
8a2d7c04d8c0 more cautious use of [iff] declarations
haftmann
parents: 60688
diff changeset
   191
  by (rule dvd_trans) (rule gcd_dvd1)
8a2d7c04d8c0 more cautious use of [iff] declarations
haftmann
parents: 60688
diff changeset
   192
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   193
lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c"
60689
8a2d7c04d8c0 more cautious use of [iff] declarations
haftmann
parents: 60688
diff changeset
   194
  by (rule dvd_trans) (rule gcd_dvd2)
8a2d7c04d8c0 more cautious use of [iff] declarations
haftmann
parents: 60688
diff changeset
   195
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   196
lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   197
  using gcd_dvd1 [of b c] by (blast intro: dvd_trans)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   198
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   199
lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   200
  using gcd_dvd2 [of b c] by (blast intro: dvd_trans)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   201
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   202
lemma gcd_0_left [simp]: "gcd 0 a = normalize a"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   203
  by (rule associated_eqI) simp_all
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   204
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   205
lemma gcd_0_right [simp]: "gcd a 0 = normalize a"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   206
  by (rule associated_eqI) simp_all
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   207
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   208
lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   209
  (is "?P \<longleftrightarrow> ?Q")
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   210
proof
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   211
  assume ?P
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   212
  then have "0 dvd gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   213
    by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   214
  then have "0 dvd a" and "0 dvd b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   215
    by (blast intro: dvd_trans)+
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   216
  then show ?Q
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   217
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   218
next
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   219
  assume ?Q
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   220
  then show ?P
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   221
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   222
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   223
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   224
lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   225
proof (cases "gcd a b = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   226
  case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   227
  then show ?thesis by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   228
next
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   229
  case False
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   230
  have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   231
    by (rule unit_factor_mult_normalize)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   232
  then have "unit_factor (gcd a b) * gcd a b = gcd a b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   233
    by simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   234
  then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   235
    by simp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   236
  with False show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   237
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   238
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   239
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
   240
lemma is_unit_gcd_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
   241
  "is_unit (gcd a b) \<longleftrightarrow> gcd a b = 1"
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60689
diff changeset
   242
  by (cases "a = 0 \<and> b = 0") (auto simp add: unit_factor_gcd dest: is_unit_unit_factor)
a9e45c9588c3 tuned facts
haftmann
parents: 60689
diff changeset
   243
61605
1bf7b186542e qualifier is mandatory by default;
wenzelm
parents: 61566
diff changeset
   244
sublocale gcd: abel_semigroup gcd
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   245
proof
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   246
  fix a b c
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   247
  show "gcd a b = gcd b a"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   248
    by (rule associated_eqI) simp_all
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   249
  from gcd_dvd1 have "gcd (gcd a b) c dvd a"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   250
    by (rule dvd_trans) simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   251
  moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   252
    by (rule dvd_trans) simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   253
  ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   254
    by (auto intro!: gcd_greatest)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   255
  from gcd_dvd2 have "gcd a (gcd b c) dvd b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   256
    by (rule dvd_trans) simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   257
  moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   258
    by (rule dvd_trans) simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   259
  ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   260
    by (auto intro!: gcd_greatest)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   261
  from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   262
    by (rule associated_eqI) simp_all
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   263
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   264
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   265
sublocale gcd: bounded_quasi_semilattice gcd 0 1 normalize
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   266
proof
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   267
  show "gcd a a = normalize a" for a
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   268
  proof -
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   269
    have "a dvd gcd a a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   270
      by (rule gcd_greatest) simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   271
    then show ?thesis
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   272
      by (auto intro: associated_eqI)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   273
  qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   274
  show "gcd (normalize a) b = gcd a b" for a b
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   275
    using gcd_dvd1 [of "normalize a" b]
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   276
    by (auto intro: associated_eqI)
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
   277
  show "gcd 1 a = 1" for a
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   278
    by (rule associated_eqI) simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   279
qed simp_all
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
   280
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   281
lemma gcd_self: "gcd a a = normalize a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   282
  by (fact gcd.idem_normalize)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   283
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   284
lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   285
  by (fact gcd.left_idem)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   286
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   287
lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   288
  by (fact gcd.right_idem)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   289
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   290
lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize c * gcd a b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   291
proof (cases "c = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   292
  case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   293
  then show ?thesis by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   294
next
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   295
  case False
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   296
  then have *: "c * gcd a b dvd gcd (c * a) (c * b)"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   297
    by (auto intro: gcd_greatest)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   298
  moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   299
    by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   300
  ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   301
    by (auto intro: associated_eqI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   302
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   303
    by (simp add: normalize_mult)
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   304
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   305
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   306
lemma gcd_mult_right: "gcd (a * c) (b * c) = gcd b a * normalize c"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   307
  using gcd_mult_left [of c a b] by (simp add: ac_simps)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   308
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   309
lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   310
  by (simp add: gcd_mult_left mult.assoc [symmetric])
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   311
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   312
lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   313
  using mult_gcd_left [of c a b] by (simp add: ac_simps)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   314
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   315
lemma dvd_lcm1 [iff]: "a dvd lcm a b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   316
proof -
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   317
  have "normalize (a * b) div gcd a b = normalize a * (normalize b div gcd a b)"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   318
    by (simp add: lcm_gcd normalize_mult div_mult_swap)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   319
  then show ?thesis
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   320
    by (simp add: lcm_gcd)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   321
qed
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   322
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   323
lemma dvd_lcm2 [iff]: "b dvd lcm a b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   324
proof -
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   325
  have "normalize (a * b) div gcd a b = normalize b * (normalize a div gcd a b)"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   326
    by (simp add: lcm_gcd normalize_mult div_mult_swap ac_simps)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   327
  then show ?thesis
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   328
    by (simp add: lcm_gcd)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   329
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   330
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   331
lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   332
  by (rule dvd_trans) (assumption, blast)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   333
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   334
lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c"
60689
8a2d7c04d8c0 more cautious use of [iff] declarations
haftmann
parents: 60688
diff changeset
   335
  by (rule dvd_trans) (assumption, blast)
8a2d7c04d8c0 more cautious use of [iff] declarations
haftmann
parents: 60688
diff changeset
   336
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   337
lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   338
  using dvd_lcm1 [of a b] by (blast intro: dvd_trans)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   339
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   340
lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   341
  using dvd_lcm2 [of a b] by (blast intro: dvd_trans)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   342
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   343
lemma lcm_least:
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   344
  assumes "a dvd c" and "b dvd c"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   345
  shows "lcm a b dvd c"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   346
proof (cases "c = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   347
  case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   348
  then show ?thesis by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   349
next
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   350
  case False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   351
  then have *: "is_unit (unit_factor c)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   352
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   353
  show ?thesis
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   354
  proof (cases "gcd a b = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   355
    case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   356
    with assms show ?thesis by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   357
  next
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   358
    case False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   359
    then have "a \<noteq> 0 \<or> b \<noteq> 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   360
      by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   361
    with \<open>c \<noteq> 0\<close> assms have "a * b dvd a * c" "a * b dvd c * b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   362
      by (simp_all add: mult_dvd_mono)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   363
    then have "normalize (a * b) dvd gcd (a * c) (b * c)"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   364
      by (auto intro: gcd_greatest simp add: ac_simps)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   365
    then have "normalize (a * b) dvd gcd (a * c) (b * c) * unit_factor c"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   366
      using * by (simp add: dvd_mult_unit_iff)
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   367
    then have "normalize (a * b) dvd gcd a b * c"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   368
      by (simp add: mult_gcd_right [of a b c])
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   369
    then have "normalize (a * b) div gcd a b dvd c"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   370
      using False by (simp add: div_dvd_iff_mult ac_simps)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   371
    then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   372
      by (simp add: lcm_gcd)
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   373
  qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   374
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   375
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   376
lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   377
  by (blast intro!: lcm_least intro: dvd_trans)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   378
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   379
lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   380
  by (simp add: lcm_gcd dvd_normalize_div)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   381
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   382
lemma lcm_0_left [simp]: "lcm 0 a = 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   383
  by (simp add: lcm_gcd)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   384
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   385
lemma lcm_0_right [simp]: "lcm a 0 = 0"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   386
  by (simp add: lcm_gcd)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   387
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   388
lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   389
  (is "?P \<longleftrightarrow> ?Q")
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   390
proof
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   391
  assume ?P
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   392
  then have "0 dvd lcm a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   393
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   394
  then have "0 dvd normalize (a * b) div gcd a b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   395
    by (simp add: lcm_gcd)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   396
  then have "0 * gcd a b dvd normalize (a * b)"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   397
    using dvd_div_iff_mult [of "gcd a b" _ 0] by (cases "gcd a b = 0") simp_all
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   398
  then have "normalize (a * b) = 0"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   399
    by simp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   400
  then show ?Q
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   401
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   402
next
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   403
  assume ?Q
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   404
  then show ?P
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   405
    by auto
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   406
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   407
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   408
lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b"
61913
58b153bfa737 tuned proofs and augmented some lemmas
haftmann
parents: 61856
diff changeset
   409
  by (auto intro: associated_eqI)
58b153bfa737 tuned proofs and augmented some lemmas
haftmann
parents: 61856
diff changeset
   410
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   411
lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   412
  by (simp add: unit_factor_gcd dvd_unit_factor_div lcm_gcd)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   413
61605
1bf7b186542e qualifier is mandatory by default;
wenzelm
parents: 61566
diff changeset
   414
sublocale lcm: abel_semigroup lcm
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   415
proof
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   416
  fix a b c
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   417
  show "lcm a b = lcm b a"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   418
    by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div)
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   419
  have "lcm (lcm a b) c dvd lcm a (lcm b c)"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   420
    and "lcm a (lcm b c) dvd lcm (lcm a b) c"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   421
    by (auto intro: lcm_least
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   422
      dvd_trans [of b "lcm b c" "lcm a (lcm b c)"]
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   423
      dvd_trans [of c "lcm b c" "lcm a (lcm b c)"]
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   424
      dvd_trans [of a "lcm a b" "lcm (lcm a b) c"]
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   425
      dvd_trans [of b "lcm a b" "lcm (lcm a b) c"])
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   426
  then show "lcm (lcm a b) c = lcm a (lcm b c)"
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   427
    by (rule associated_eqI) simp_all
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   428
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   429
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   430
sublocale lcm: bounded_quasi_semilattice lcm 1 0 normalize
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   431
proof
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   432
  show "lcm a a = normalize a" for a
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   433
  proof -
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   434
    have "lcm a a dvd a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   435
      by (rule lcm_least) simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   436
    then show ?thesis
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   437
      by (auto intro: associated_eqI)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   438
  qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   439
  show "lcm (normalize a) b = lcm a b" for a b
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   440
    using dvd_lcm1 [of "normalize a" b] unfolding normalize_dvd_iff
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60687
diff changeset
   441
    by (auto intro: associated_eqI)
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   442
  show "lcm 1 a = normalize a" for a
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   443
    by (rule associated_eqI) simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   444
qed simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   445
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   446
lemma lcm_self: "lcm a a = normalize a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   447
  by (fact lcm.idem_normalize)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   448
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   449
lemma lcm_left_idem: "lcm a (lcm a b) = lcm a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   450
  by (fact lcm.left_idem)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   451
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   452
lemma lcm_right_idem: "lcm (lcm a b) b = lcm a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   453
  by (fact lcm.right_idem)
61913
58b153bfa737 tuned proofs and augmented some lemmas
haftmann
parents: 61856
diff changeset
   454
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   455
lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   456
  by (simp add: lcm_gcd normalize_mult)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   457
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   458
lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   459
  using gcd_mult_lcm [of a b] by (simp add: ac_simps)
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   460
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   461
lemma gcd_lcm:
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   462
  assumes "a \<noteq> 0" and "b \<noteq> 0"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   463
  shows "gcd a b = normalize (a * b) div lcm a b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   464
proof -
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   465
  from assms have "lcm a b \<noteq> 0"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   466
    by (simp add: lcm_eq_0_iff)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   467
  have "gcd a b * lcm a b = normalize a * normalize b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   468
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   469
  then have "gcd a b * lcm a b div lcm a b = normalize (a * b) div lcm a b"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   470
    by (simp_all add: normalize_mult)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   471
  with \<open>lcm a b \<noteq> 0\<close> show ?thesis
64240
eabf80376aab more standardized names
haftmann
parents: 63924
diff changeset
   472
    using nonzero_mult_div_cancel_right [of "lcm a b" "gcd a b"] by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   473
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   474
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   475
lemma lcm_1_left: "lcm 1 a = normalize a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   476
  by (fact lcm.top_left_normalize)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   477
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   478
lemma lcm_1_right: "lcm a 1 = normalize a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   479
  by (fact lcm.top_right_normalize)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   480
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   481
lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize c * lcm a b"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   482
  by (cases "c = 0")
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   483
    (simp_all add: gcd_mult_right lcm_gcd div_mult_swap normalize_mult ac_simps,
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   484
      simp add: dvd_div_mult2_eq mult.left_commute [of "normalize c", symmetric])
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   485
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   486
lemma lcm_mult_right: "lcm (a * c) (b * c) = lcm b a * normalize c"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   487
  using lcm_mult_left [of c a b] by (simp add: ac_simps)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   488
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   489
lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   490
  by (simp add: lcm_mult_left mult.assoc [symmetric])
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   491
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   492
lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   493
  using mult_lcm_left [of c a b] by (simp add: ac_simps)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   494
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   495
lemma gcdI:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   496
  assumes "c dvd a" and "c dvd b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   497
    and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   498
    and "normalize c = c"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   499
  shows "c = gcd a b"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   500
  by (rule associated_eqI) (auto simp: assms intro: gcd_greatest)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   501
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   502
lemma gcd_unique:
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   503
  "d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   504
  by rule (auto intro: gcdI simp: gcd_greatest)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   505
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   506
lemma gcd_dvd_prod: "gcd a b dvd k * b"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   507
  using mult_dvd_mono [of 1] by auto
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   508
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   509
lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   510
  by (rule gcdI [symmetric]) simp_all
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   511
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   512
lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   513
  by (rule gcdI [symmetric]) simp_all
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   514
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   515
lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   516
proof
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   517
  assume *: "gcd m n = normalize m"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   518
  show "m dvd n"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   519
  proof (cases "m = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   520
    case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   521
    with * show ?thesis by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   522
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   523
    case [simp]: False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   524
    from * have **: "m = gcd m n * unit_factor m"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   525
      by (simp add: unit_eq_div2)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   526
    show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   527
      by (subst **) (simp add: mult_unit_dvd_iff)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   528
  qed
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   529
next
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   530
  assume "m dvd n"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   531
  then show "gcd m n = normalize m"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   532
    by (rule gcd_proj1_if_dvd)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   533
qed
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   534
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   535
lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   536
  using gcd_proj1_iff [of n m] by (simp add: ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   537
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   538
lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   539
  by (rule gcdI) (auto simp: normalize_mult gcd_greatest mult_dvd_mono gcd_mult_left[symmetric])
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   540
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   541
lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   542
proof-
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   543
  have "normalize k * gcd a b = gcd (k * a) (k * b)"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   544
    by (simp add: gcd_mult_distrib')
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   545
  then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   546
    by simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   547
  then have "normalize k * unit_factor k * gcd a b  = gcd (k * a) (k * b) * unit_factor k"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   548
    by (simp only: ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   549
  then show ?thesis
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   550
    by simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   551
qed
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   552
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   553
lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   554
  by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   555
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   556
lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   557
  using lcm_mult_unit1 [of a c b] by (simp add: ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   558
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   559
lemma lcm_div_unit1:
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   560
  "is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   561
  by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   562
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   563
lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   564
  by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   565
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   566
lemma normalize_lcm_left: "lcm (normalize a) b = lcm a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   567
  by (fact lcm.normalize_left_idem)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   568
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   569
lemma normalize_lcm_right: "lcm a (normalize b) = lcm a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   570
  by (fact lcm.normalize_right_idem)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   571
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   572
lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   573
  apply (rule gcdI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   574
     apply simp_all
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   575
  apply (rule dvd_trans)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   576
   apply (rule gcd_dvd1)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   577
  apply (simp add: unit_simps)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   578
  done
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   579
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   580
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   581
  apply (subst gcd.commute)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   582
  apply (subst gcd_mult_unit1)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   583
   apply assumption
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   584
  apply (rule gcd.commute)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   585
  done
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   586
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   587
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   588
  by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   589
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   590
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   591
  by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   592
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   593
lemma normalize_gcd_left: "gcd (normalize a) b = gcd a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   594
  by (fact gcd.normalize_left_idem)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   595
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   596
lemma normalize_gcd_right: "gcd a (normalize b) = gcd a b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   597
  by (fact gcd.normalize_right_idem)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   598
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   599
lemma comp_fun_idem_gcd: "comp_fun_idem gcd"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   600
  by standard (simp_all add: fun_eq_iff ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   601
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   602
lemma comp_fun_idem_lcm: "comp_fun_idem lcm"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   603
  by standard (simp_all add: fun_eq_iff ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   604
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   605
lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   606
proof (rule gcdI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   607
  assume *: "gcd a b dvd gcd c d"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   608
    and **: "gcd c d dvd gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   609
  have "gcd c d dvd c"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   610
    by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   611
  with * show "gcd a b dvd c"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   612
    by (rule dvd_trans)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   613
  have "gcd c d dvd d"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   614
    by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   615
  with * show "gcd a b dvd d"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   616
    by (rule dvd_trans)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   617
  show "normalize (gcd a b) = gcd a b"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   618
    by simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   619
  fix l assume "l dvd c" and "l dvd d"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   620
  then have "l dvd gcd c d"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   621
    by (rule gcd_greatest)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   622
  from this and ** show "l dvd gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   623
    by (rule dvd_trans)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   624
qed
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   625
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   626
lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   627
  by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   628
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   629
lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   630
  using gcd_add1 [of n m] by (simp add: ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   631
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   632
lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   633
  by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   634
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   635
lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   636
  by (simp add: lcm_gcd)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   637
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   638
declare unit_factor_lcm [simp]
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   639
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   640
lemma lcmI:
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   641
  assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   642
    and "normalize c = c"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   643
  shows "c = lcm a b"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   644
  by (rule associated_eqI) (auto simp: assms intro: lcm_least)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   645
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   646
lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   647
  using gcd_dvd2 by (rule dvd_lcmI2)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   648
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   649
lemmas lcm_0 = lcm_0_right
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   650
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   651
lemma lcm_unique:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   652
  "a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   653
  by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   654
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   655
lemma lcm_proj1_if_dvd: "b dvd a \<Longrightarrow> lcm a b = normalize a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   656
  apply (cases "a = 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   657
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   658
  apply (rule sym)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   659
  apply (rule lcmI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   660
     apply simp_all
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   661
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   662
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   663
lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   664
  using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   665
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   666
lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   667
proof
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   668
  assume *: "lcm m n = normalize m"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   669
  show "n dvd m"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   670
  proof (cases "m = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   671
    case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   672
    then show ?thesis by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   673
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   674
    case [simp]: False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   675
    from * have **: "m = lcm m n * unit_factor m"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   676
      by (simp add: unit_eq_div2)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   677
    show ?thesis by (subst **) simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   678
  qed
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   679
next
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   680
  assume "n dvd m"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   681
  then show "lcm m n = normalize m"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   682
    by (rule lcm_proj1_if_dvd)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   683
qed
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   684
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   685
lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   686
  using lcm_proj1_iff [of n m] by (simp add: ac_simps)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   687
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   688
lemma lcm_mult_distrib': "normalize c * lcm a b = lcm (c * a) (c * b)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   689
  by (rule lcmI) (auto simp: normalize_mult lcm_least mult_dvd_mono lcm_mult_left [symmetric])
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   690
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   691
lemma lcm_mult_distrib: "k * lcm a b = lcm (k * a) (k * b) * unit_factor k"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   692
proof-
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   693
  have "normalize k * lcm a b = lcm (k * a) (k * b)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   694
    by (simp add: lcm_mult_distrib')
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   695
  then have "normalize k * lcm a b * unit_factor k = lcm (k * a) (k * b) * unit_factor k"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   696
    by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   697
  then have "normalize k * unit_factor k * lcm a b  = lcm (k * a) (k * b) * unit_factor k"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   698
    by (simp only: ac_simps)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   699
  then show ?thesis
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   700
    by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   701
qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
   702
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   703
lemma dvd_productE:
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
   704
  assumes "p dvd a * b"
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   705
  obtains x y where "p = x * y" "x dvd a" "y dvd b"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   706
proof (cases "a = 0")
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   707
  case True
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   708
  thus ?thesis by (intro that[of p 1]) simp_all
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   709
next
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   710
  case False
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   711
  define x y where "x = gcd a p" and "y = p div x"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   712
  have "p = x * y" by (simp add: x_def y_def)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   713
  moreover have "x dvd a" by (simp add: x_def)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   714
  moreover from assms have "p dvd gcd (b * a) (b * p)"
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   715
    by (intro gcd_greatest) (simp_all add: mult.commute)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   716
  hence "p dvd b * gcd a p" by (simp add: gcd_mult_distrib)
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
   717
  with False have "y dvd b"
63924
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   718
    by (simp add: x_def y_def div_dvd_iff_mult assms)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   719
  ultimately show ?thesis by (rule that)
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   720
qed
f91766530e13 more generic algebraic lemmas
haftmann
parents: 63915
diff changeset
   721
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   722
end
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   723
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   724
class ring_gcd = comm_ring_1 + semiring_gcd
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   725
begin
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   726
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   727
lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   728
  by (rule sym, rule gcdI) (simp_all add: gcd_greatest)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   729
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   730
lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   731
  by (rule sym, rule gcdI) (simp_all add: gcd_greatest)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   732
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   733
lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   734
  by (fact gcd_neg1)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   735
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   736
lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   737
  by (fact gcd_neg2)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   738
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   739
lemma gcd_diff1: "gcd (m - n) n = gcd m n"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   740
  by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   741
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   742
lemma gcd_diff2: "gcd (n - m) n = gcd m n"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   743
  by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   744
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   745
lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   746
  by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   747
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   748
lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   749
  by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   750
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   751
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   752
  by (fact lcm_neg1)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   753
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   754
lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   755
  by (fact lcm_neg2)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   756
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   757
end
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   758
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   759
class semiring_Gcd = semiring_gcd + Gcd +
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   760
  assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   761
    and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   762
    and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   763
  assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   764
    and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   765
    and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   766
begin
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   767
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   768
lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   769
  by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   770
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   771
lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   772
  by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   773
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   774
lemma Gcd_empty [simp]: "Gcd {} = 0"
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   775
  by (rule dvd_0_left, rule Gcd_greatest) simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   776
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   777
lemma Lcm_empty [simp]: "Lcm {} = 1"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   778
  by (auto intro: associated_eqI Lcm_least)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   779
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   780
lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   781
proof -
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   782
  have "Gcd (insert a A) dvd gcd a (Gcd A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   783
    by (auto intro: Gcd_dvd Gcd_greatest)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   784
  moreover have "gcd a (Gcd A) dvd Gcd (insert a A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   785
  proof (rule Gcd_greatest)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   786
    fix b
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   787
    assume "b \<in> insert a A"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   788
    then show "gcd a (Gcd A) dvd b"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   789
    proof
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   790
      assume "b = a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   791
      then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   792
        by simp
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   793
    next
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   794
      assume "b \<in> A"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   795
      then have "Gcd A dvd b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   796
        by (rule Gcd_dvd)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   797
      moreover have "gcd a (Gcd A) dvd Gcd A"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   798
        by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   799
      ultimately show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   800
        by (blast intro: dvd_trans)
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   801
    qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   802
  qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   803
  ultimately show ?thesis
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   804
    by (auto intro: associated_eqI)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   805
qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   806
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   807
lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   808
proof (rule sym)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   809
  have "lcm a (Lcm A) dvd Lcm (insert a A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   810
    by (auto intro: dvd_Lcm Lcm_least)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   811
  moreover have "Lcm (insert a A) dvd lcm a (Lcm A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   812
  proof (rule Lcm_least)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   813
    fix b
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   814
    assume "b \<in> insert a A"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   815
    then show "b dvd lcm a (Lcm A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   816
    proof
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   817
      assume "b = a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   818
      then show ?thesis by simp
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   819
    next
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   820
      assume "b \<in> A"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   821
      then have "b dvd Lcm A"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   822
        by (rule dvd_Lcm)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   823
      moreover have "Lcm A dvd lcm a (Lcm A)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   824
        by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   825
      ultimately show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   826
        by (blast intro: dvd_trans)
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   827
    qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   828
  qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   829
  ultimately show "lcm a (Lcm A) = Lcm (insert a A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   830
    by (rule associated_eqI) (simp_all add: lcm_eq_0_iff)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   831
qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   832
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   833
lemma LcmI:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   834
  assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   835
    and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   836
    and "normalize b = b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   837
  shows "b = Lcm A"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   838
  by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   839
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   840
lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   841
  by (blast intro: Lcm_least dvd_Lcm)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   842
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   843
lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   844
  apply (rule lcmI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   845
     apply (blast intro: Lcm_subset)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   846
    apply (blast intro: Lcm_subset)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   847
   apply (intro Lcm_least ballI, elim UnE)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   848
    apply (rule dvd_trans, erule dvd_Lcm, assumption)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   849
   apply (rule dvd_trans, erule dvd_Lcm, assumption)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   850
  apply simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   851
  done
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   852
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   853
lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   854
  (is "?P \<longleftrightarrow> ?Q")
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   855
proof
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   856
  assume ?P
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   857
  show ?Q
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   858
  proof
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   859
    fix a
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   860
    assume "a \<in> A"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   861
    then have "Gcd A dvd a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   862
      by (rule Gcd_dvd)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   863
    with \<open>?P\<close> have "a = 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   864
      by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   865
    then show "a \<in> {0}"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   866
      by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   867
  qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   868
next
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   869
  assume ?Q
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   870
  have "0 dvd Gcd A"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   871
  proof (rule Gcd_greatest)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   872
    fix a
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   873
    assume "a \<in> A"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   874
    with \<open>?Q\<close> have "a = 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   875
      by auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   876
    then show "0 dvd a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   877
      by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   878
  qed
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   879
  then show ?P
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   880
    by simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   881
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   882
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   883
lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   884
  (is "?P \<longleftrightarrow> ?Q")
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   885
proof
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   886
  assume ?P
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   887
  show ?Q
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   888
  proof
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   889
    fix a
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   890
    assume "a \<in> A"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   891
    then have "a dvd Lcm A"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   892
      by (rule dvd_Lcm)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   893
    with \<open>?P\<close> show "is_unit a"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   894
      by simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   895
  qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   896
next
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   897
  assume ?Q
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   898
  then have "is_unit (Lcm A)"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   899
    by (blast intro: Lcm_least)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   900
  then have "normalize (Lcm A) = 1"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   901
    by (rule is_unit_normalize)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   902
  then show ?P
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   903
    by simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   904
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   905
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   906
lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   907
proof (cases "Lcm A = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   908
  case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   909
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   910
    by simp
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   911
next
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   912
  case False
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   913
  with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   914
    by blast
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   915
  with False show ?thesis
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   916
    by simp
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   917
qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   918
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   919
lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   920
  by (simp add: Gcd_Lcm unit_factor_Lcm)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   921
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   922
lemma GcdI:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   923
  assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   924
    and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   925
    and "normalize b = b"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   926
  shows "b = Gcd A"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   927
  by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
   928
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   929
lemma Gcd_eq_1_I:
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   930
  assumes "is_unit a" and "a \<in> A"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   931
  shows "Gcd A = 1"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   932
proof -
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   933
  from assms have "is_unit (Gcd A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   934
    by (blast intro: Gcd_dvd dvd_unit_imp_unit)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   935
  then have "normalize (Gcd A) = 1"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   936
    by (rule is_unit_normalize)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   937
  then show ?thesis
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   938
    by simp
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   939
qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   940
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   941
lemma Lcm_eq_0_I:
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   942
  assumes "0 \<in> A"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   943
  shows "Lcm A = 0"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   944
proof -
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   945
  from assms have "0 dvd Lcm A"
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   946
    by (rule dvd_Lcm)
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   947
  then show ?thesis
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   948
    by simp
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   949
qed
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   950
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   951
lemma Gcd_UNIV [simp]: "Gcd UNIV = 1"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   952
  using dvd_refl by (rule Gcd_eq_1_I) simp
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   953
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   954
lemma Lcm_UNIV [simp]: "Lcm UNIV = 0"
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
   955
  by (rule Lcm_eq_0_I) simp
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   956
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
   957
lemma Lcm_0_iff:
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
   958
  assumes "finite A"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
   959
  shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
   960
proof (cases "A = {}")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   961
  case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   962
  then show ?thesis by simp
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
   963
next
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   964
  case False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   965
  with assms show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   966
    by (induct A rule: finite_ne_induct) (auto simp add: lcm_eq_0_iff)
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
   967
qed
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
   968
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   969
lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   970
proof -
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   971
  have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   972
  proof -
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   973
    from that obtain B where "A = insert a B"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   974
      by blast
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
   975
    moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   976
      by (rule gcd_dvd1)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   977
    ultimately show "Gcd (normalize ` A) dvd a"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   978
      by simp
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   979
  qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   980
  then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   981
    by (auto intro!: Gcd_greatest intro: Gcd_dvd)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   982
  then show ?thesis
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   983
    by (auto intro: associated_eqI)
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   984
qed
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
   985
62346
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
   986
lemma Gcd_eqI:
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
   987
  assumes "normalize a = a"
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
   988
  assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b"
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
   989
    and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a"
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
   990
  shows "Gcd A = a"
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
   991
  using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd)
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
   992
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   993
lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   994
  using Gcd_dvd dvd_trans by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   995
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
   996
lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
   997
  by (blast dest: dvd_GcdD intro: Gcd_greatest)
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
   998
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
   999
lemma Gcd_mult: "Gcd (( * ) c ` A) = normalize c * Gcd A"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1000
proof (cases "c = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1001
  case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1002
  then show ?thesis by auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1003
next
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1004
  case [simp]: False
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1005
  have "Gcd (( * ) c ` A) div c dvd Gcd A"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1006
    by (intro Gcd_greatest, subst div_dvd_iff_mult)
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1007
       (auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c])
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1008
  then have "Gcd (( * ) c ` A) dvd c * Gcd A"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1009
    by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac)
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1010
  also have "c * Gcd A = (normalize c * Gcd A) * unit_factor c"
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1011
    by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1012
  also have "Gcd (( * ) c ` A) dvd \<dots> \<longleftrightarrow> Gcd (( * ) c ` A) dvd normalize c * Gcd A"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1013
    by (simp add: dvd_mult_unit_iff)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1014
  finally have "Gcd (( * ) c ` A) dvd normalize c * Gcd A" .
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1015
  moreover have "normalize c * Gcd A dvd Gcd (( * ) c ` A)"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1016
    by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1017
  ultimately have "normalize (Gcd (( * ) c ` A)) = normalize (normalize c * Gcd A)"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1018
    by (rule associatedI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1019
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1020
    by (simp add: normalize_mult)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1021
qed
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1022
62346
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  1023
lemma Lcm_eqI:
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  1024
  assumes "normalize a = a"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1025
    and "\<And>b. b \<in> A \<Longrightarrow> b dvd a"
62346
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  1026
    and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c"
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  1027
  shows "Lcm A = a"
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  1028
  using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm)
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  1029
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1030
lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1031
  using dvd_Lcm dvd_trans by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1032
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1033
lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1034
  by (blast dest: Lcm_dvdD intro: Lcm_least)
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1035
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1036
lemma Lcm_mult:
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1037
  assumes "A \<noteq> {}"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1038
  shows "Lcm (( * ) c ` A) = normalize c * Lcm A"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1039
proof (cases "c = 0")
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1040
  case True
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1041
  with assms have "( * ) c ` A = {0}"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1042
    by auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1043
  with True show ?thesis by auto
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1044
next
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1045
  case [simp]: False
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1046
  from assms obtain x where x: "x \<in> A"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1047
    by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1048
  have "c dvd c * x"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1049
    by simp
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1050
  also from x have "c * x dvd Lcm (( * ) c ` A)"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1051
    by (intro dvd_Lcm) auto
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1052
  finally have dvd: "c dvd Lcm (( * ) c ` A)" .
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1053
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1054
  have "Lcm A dvd Lcm (( * ) c ` A) div c"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1055
    by (intro Lcm_least dvd_mult_imp_div)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1056
      (auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c])
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1057
  then have "c * Lcm A dvd Lcm (( * ) c ` A)"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1058
    by (subst (asm) dvd_div_iff_mult) (auto intro!: Lcm_least simp: mult_ac dvd)
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1059
  also have "c * Lcm A = (normalize c * Lcm A) * unit_factor c"
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1060
    by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1061
  also have "\<dots> dvd Lcm (( * ) c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (( * ) c ` A)"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1062
    by (simp add: mult_unit_dvd_iff)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1063
  finally have "normalize c * Lcm A dvd Lcm (( * ) c ` A)" .
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1064
  moreover have "Lcm (( * ) c ` A) dvd normalize c * Lcm A"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1065
    by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67118
diff changeset
  1066
  ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (( * ) c ` A))"
63359
99b51ba8da1c More lemmas on Gcd/Lcm
Manuel Eberl <eberlm@in.tum.de>
parents: 63145
diff changeset
  1067
    by (rule associatedI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1068
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1069
    by (simp add: normalize_mult)
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1070
qed
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1071
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1072
lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1073
proof -
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1074
  have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1075
    by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1076
  then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1077
    by (simp add: Lcm_Un [symmetric])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1078
  also have "Lcm {a\<in>A. is_unit a} = 1"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1079
    by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1080
  finally show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1081
    by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1082
qed
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1083
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1084
lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1085
  by (metis Lcm_least dvd_0_left dvd_Lcm)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1086
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1087
lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1088
  by (auto simp: Lcm_0_iff')
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1089
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1090
lemma Lcm_singleton [simp]: "Lcm {a} = normalize a"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1091
  by simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1092
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1093
lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1094
  by simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1095
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1096
lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1097
  by (auto intro!: Gcd_eq_1_I)
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1098
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1099
lemma Gcd_singleton [simp]: "Gcd {a} = normalize a"
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1100
  by simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1101
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1102
lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b"
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1103
  by simp
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  1104
62350
66a381d3f88f more sophisticated GCD syntax
haftmann
parents: 62349
diff changeset
  1105
end
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1106
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
  1107
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1108
subsection \<open>An aside: GCD and LCM on finite sets for incomplete gcd rings\<close>
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1109
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1110
context semiring_gcd
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1111
begin
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1112
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1113
sublocale Gcd_fin: bounded_quasi_semilattice_set gcd 0 1 normalize
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1114
defines
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1115
  Gcd_fin ("Gcd\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = "Gcd_fin.F :: 'a set \<Rightarrow> 'a" ..
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1116
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1117
abbreviation gcd_list :: "'a list \<Rightarrow> 'a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1118
  where "gcd_list xs \<equiv> Gcd\<^sub>f\<^sub>i\<^sub>n (set xs)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1119
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1120
sublocale Lcm_fin: bounded_quasi_semilattice_set lcm 1 0 normalize
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1121
defines
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1122
  Lcm_fin ("Lcm\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = Lcm_fin.F ..
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1123
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1124
abbreviation lcm_list :: "'a list \<Rightarrow> 'a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1125
  where "lcm_list xs \<equiv> Lcm\<^sub>f\<^sub>i\<^sub>n (set xs)"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
  1126
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1127
lemma Gcd_fin_dvd:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1128
  "a \<in> A \<Longrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A dvd a"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
  1129
  by (induct A rule: infinite_finite_induct)
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1130
    (auto intro: dvd_trans)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1131
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1132
lemma dvd_Lcm_fin:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1133
  "a \<in> A \<Longrightarrow> a dvd Lcm\<^sub>f\<^sub>i\<^sub>n A"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
  1134
  by (induct A rule: infinite_finite_induct)
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1135
    (auto intro: dvd_trans)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1136
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1137
lemma Gcd_fin_greatest:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1138
  "a dvd Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> a dvd b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1139
  using that by (induct A) simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1140
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1141
lemma Lcm_fin_least:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1142
  "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd a" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> b dvd a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1143
  using that by (induct A) simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1144
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1145
lemma gcd_list_greatest:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1146
  "a dvd gcd_list bs" if "\<And>b. b \<in> set bs \<Longrightarrow> a dvd b"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1147
  by (rule Gcd_fin_greatest) (simp_all add: that)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1148
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1149
lemma lcm_list_least:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1150
  "lcm_list bs dvd a" if "\<And>b. b \<in> set bs \<Longrightarrow> b dvd a"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1151
  by (rule Lcm_fin_least) (simp_all add: that)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1152
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1153
lemma dvd_Gcd_fin_iff:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1154
  "b dvd Gcd\<^sub>f\<^sub>i\<^sub>n A \<longleftrightarrow> (\<forall>a\<in>A. b dvd a)" if "finite A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1155
  using that by (auto intro: Gcd_fin_greatest Gcd_fin_dvd dvd_trans [of b "Gcd\<^sub>f\<^sub>i\<^sub>n A"])
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1156
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1157
lemma dvd_gcd_list_iff:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1158
  "b dvd gcd_list xs \<longleftrightarrow> (\<forall>a\<in>set xs. b dvd a)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1159
  by (simp add: dvd_Gcd_fin_iff)
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 64850
diff changeset
  1160
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1161
lemma Lcm_fin_dvd_iff:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1162
  "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd b  \<longleftrightarrow> (\<forall>a\<in>A. a dvd b)" if "finite A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1163
  using that by (auto intro: Lcm_fin_least dvd_Lcm_fin dvd_trans [of _ "Lcm\<^sub>f\<^sub>i\<^sub>n A" b])
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1164
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1165
lemma lcm_list_dvd_iff:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1166
  "lcm_list xs dvd b  \<longleftrightarrow> (\<forall>a\<in>set xs. a dvd b)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1167
  by (simp add: Lcm_fin_dvd_iff)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1168
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1169
lemma Gcd_fin_mult:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1170
  "Gcd\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1171
using that proof induct
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1172
  case empty
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1173
  then show ?case
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1174
    by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1175
next
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1176
  case (insert a A)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1177
  have "gcd (b * a) (b * Gcd\<^sub>f\<^sub>i\<^sub>n A) = gcd (b * a) (normalize (b * Gcd\<^sub>f\<^sub>i\<^sub>n A))"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1178
    by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1179
  also have "\<dots> = gcd (b * a) (normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1180
    by (simp add: normalize_mult)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1181
  finally show ?case
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1182
    using insert by (simp add: gcd_mult_distrib')
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1183
qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1184
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1185
lemma Lcm_fin_mult:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1186
  "Lcm\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A" if "A \<noteq> {}"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1187
proof (cases "b = 0")
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1188
  case True
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1189
  moreover from that have "times 0 ` A = {0}"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1190
    by auto
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1191
  ultimately show ?thesis
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1192
    by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1193
next
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1194
  case False
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1195
  show ?thesis proof (cases "finite A")
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1196
    case False
66936
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66836
diff changeset
  1197
    moreover have "inj_on (times b) A"
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66836
diff changeset
  1198
      using \<open>b \<noteq> 0\<close> by (rule inj_on_mult)
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1199
    ultimately have "infinite (times b ` A)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1200
      by (simp add: finite_image_iff)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1201
    with False show ?thesis
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1202
      by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1203
  next
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1204
    case True
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1205
    then show ?thesis using that proof (induct A rule: finite_ne_induct)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1206
      case (singleton a)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1207
      then show ?case
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1208
        by (simp add: normalize_mult)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1209
    next
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1210
      case (insert a A)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1211
      have "lcm (b * a) (b * Lcm\<^sub>f\<^sub>i\<^sub>n A) = lcm (b * a) (normalize (b * Lcm\<^sub>f\<^sub>i\<^sub>n A))"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1212
        by simp
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1213
      also have "\<dots> = lcm (b * a) (normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A)"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1214
        by (simp add: normalize_mult)
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1215
      finally show ?case
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1216
        using insert by (simp add: lcm_mult_distrib')
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1217
    qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1218
  qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1219
qed
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1220
65811
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1221
lemma unit_factor_Gcd_fin:
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1222
  "unit_factor (Gcd\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Gcd\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)"
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1223
  by (rule normalize_idem_imp_unit_factor_eq) simp
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1224
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1225
lemma unit_factor_Lcm_fin:
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1226
  "unit_factor (Lcm\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Lcm\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)"
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1227
  by (rule normalize_idem_imp_unit_factor_eq) simp
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1228
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1229
lemma is_unit_Gcd_fin_iff [simp]:
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1230
  "is_unit (Gcd\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A = 1"
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1231
  by (rule normalize_idem_imp_is_unit_iff) simp
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1232
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1233
lemma is_unit_Lcm_fin_iff [simp]:
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1234
  "is_unit (Lcm\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Lcm\<^sub>f\<^sub>i\<^sub>n A = 1"
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1235
  by (rule normalize_idem_imp_is_unit_iff) simp
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1236
 
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1237
lemma Gcd_fin_0_iff:
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1238
  "Gcd\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> A \<subseteq> {0} \<and> finite A"
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1239
  by (induct A rule: infinite_finite_induct) simp_all
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1240
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1241
lemma Lcm_fin_0_iff:
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1242
  "Lcm\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> 0 \<in> A" if "finite A"
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1243
  using that by (induct A) (auto simp add: lcm_eq_0_iff)
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1244
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1245
lemma Lcm_fin_1_iff:
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1246
  "Lcm\<^sub>f\<^sub>i\<^sub>n A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a) \<and> finite A"
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1247
  by (induct A rule: infinite_finite_induct) simp_all
2653f1cd8775 more lemmas
haftmann
parents: 65555
diff changeset
  1248
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1249
end
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1250
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1251
context semiring_Gcd
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1252
begin
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1253
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1254
lemma Gcd_fin_eq_Gcd [simp]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1255
  "Gcd\<^sub>f\<^sub>i\<^sub>n A = Gcd A" if "finite A" for A :: "'a set"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1256
  using that by induct simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1257
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1258
lemma Gcd_set_eq_fold [code_unfold]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1259
  "Gcd (set xs) = fold gcd xs 0"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1260
  by (simp add: Gcd_fin.set_eq_fold [symmetric])
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1261
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1262
lemma Lcm_fin_eq_Lcm [simp]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1263
  "Lcm\<^sub>f\<^sub>i\<^sub>n A = Lcm A" if "finite A" for A :: "'a set"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1264
  using that by induct simp_all
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1265
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1266
lemma Lcm_set_eq_fold [code_unfold]:
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1267
  "Lcm (set xs) = fold lcm xs 1"
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1268
  by (simp add: Lcm_fin.set_eq_fold [symmetric])
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1269
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  1270
end
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1271
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1272
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1273
subsection \<open>Coprimality\<close>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1274
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1275
context semiring_gcd
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1276
begin
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1277
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1278
lemma coprime_imp_gcd_eq_1 [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1279
  "gcd a b = 1" if "coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1280
proof -
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1281
  define t r s where "t = gcd a b" and "r = a div t" and "s = b div t"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1282
  then have "a = t * r" and "b = t * s"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1283
    by simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1284
  with that have "coprime (t * r) (t * s)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1285
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1286
  then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1287
    by (simp add: t_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1288
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1289
68270
2bc921b2159b treat gcd_eq_1_imp_coprime analogously to mod_0_imp_dvd
haftmann
parents: 67399
diff changeset
  1290
lemma gcd_eq_1_imp_coprime [dest!]:
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1291
  "coprime a b" if "gcd a b = 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1292
proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1293
  fix c
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1294
  assume "c dvd a" and "c dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1295
  then have "c dvd gcd a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1296
    by (rule gcd_greatest)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1297
  with that show "is_unit c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1298
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1299
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1300
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1301
lemma coprime_iff_gcd_eq_1 [presburger, code]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1302
  "coprime a b \<longleftrightarrow> gcd a b = 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1303
  by rule (simp_all add: gcd_eq_1_imp_coprime)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1304
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1305
lemma is_unit_gcd [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1306
  "is_unit (gcd a b) \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1307
  by (simp add: coprime_iff_gcd_eq_1)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1308
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1309
lemma coprime_add_one_left [simp]: "coprime (a + 1) a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1310
  by (simp add: gcd_eq_1_imp_coprime ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1311
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1312
lemma coprime_add_one_right [simp]: "coprime a (a + 1)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1313
  using coprime_add_one_left [of a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1314
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1315
lemma coprime_mult_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1316
  "coprime (a * b) c \<longleftrightarrow> coprime a c \<and> coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1317
proof
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1318
  assume "coprime (a * b) c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1319
  with coprime_common_divisor [of "a * b" c]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1320
  have *: "is_unit d" if "d dvd a * b" and "d dvd c" for d
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1321
    using that by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1322
  have "coprime a c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1323
    by (rule coprimeI, rule *) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1324
  moreover have "coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1325
    by (rule coprimeI, rule *) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1326
  ultimately show "coprime a c \<and> coprime b c" ..
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1327
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1328
  assume "coprime a c \<and> coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1329
  then have "coprime a c" "coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1330
    by simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1331
  show "coprime (a * b) c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1332
  proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1333
    fix d
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1334
    assume "d dvd a * b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1335
    then obtain r s where d: "d = r * s" "r dvd a" "s dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1336
      by (rule dvd_productE)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1337
    assume "d dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1338
    with d have "r * s dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1339
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1340
    then have "r dvd c" "s dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1341
      by (auto intro: dvd_mult_left dvd_mult_right)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1342
    from \<open>coprime a c\<close> \<open>r dvd a\<close> \<open>r dvd c\<close>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1343
    have "is_unit r"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1344
      by (rule coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1345
    moreover from \<open>coprime b c\<close> \<open>s dvd b\<close> \<open>s dvd c\<close>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1346
    have "is_unit s"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1347
      by (rule coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1348
    ultimately show "is_unit d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1349
      by (simp add: d is_unit_mult_iff)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1350
  qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1351
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1352
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1353
lemma coprime_mult_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1354
  "coprime c (a * b) \<longleftrightarrow> coprime c a \<and> coprime c b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1355
  using coprime_mult_left_iff [of a b c] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1356
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1357
lemma coprime_power_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1358
  "coprime (a ^ n) b \<longleftrightarrow> coprime a b \<or> n = 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1359
proof (cases "n = 0")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1360
  case True
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1361
  then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1362
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1363
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1364
  case False
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1365
  then have "n > 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1366
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1367
  then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1368
    by (induction n rule: nat_induct_non_zero) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1369
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1370
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1371
lemma coprime_power_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1372
  "coprime a (b ^ n) \<longleftrightarrow> coprime a b \<or> n = 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1373
  using coprime_power_left_iff [of b n a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1374
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1375
lemma prod_coprime_left:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1376
  "coprime (\<Prod>i\<in>A. f i) a" if "\<And>i. i \<in> A \<Longrightarrow> coprime (f i) a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1377
  using that by (induct A rule: infinite_finite_induct) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1378
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1379
lemma prod_coprime_right:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1380
  "coprime a (\<Prod>i\<in>A. f i)" if "\<And>i. i \<in> A \<Longrightarrow> coprime a (f i)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1381
  using that prod_coprime_left [of A f a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1382
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1383
lemma prod_list_coprime_left:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1384
  "coprime (prod_list xs) a" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime x a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1385
  using that by (induct xs) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1386
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1387
lemma prod_list_coprime_right:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1388
  "coprime a (prod_list xs)" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime a x"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1389
  using that prod_list_coprime_left [of xs a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1390
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1391
lemma coprime_dvd_mult_left_iff:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1392
  "a dvd b * c \<longleftrightarrow> a dvd b" if "coprime a c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1393
proof
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1394
  assume "a dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1395
  then show "a dvd b * c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1396
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1397
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1398
  assume "a dvd b * c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1399
  show "a dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1400
  proof (cases "b = 0")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1401
    case True
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1402
    then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1403
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1404
  next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1405
    case False
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1406
    then have unit: "is_unit (unit_factor b)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1407
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1408
    from \<open>coprime a c\<close> mult_gcd_left [of b a c]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1409
    have "gcd (b * a) (b * c) * unit_factor b = b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1410
      by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1411
    moreover from \<open>a dvd b * c\<close>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1412
    have "a dvd gcd (b * a) (b * c) * unit_factor b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1413
      by (simp add: dvd_mult_unit_iff unit)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1414
    ultimately show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1415
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1416
  qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1417
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1418
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1419
lemma coprime_dvd_mult_right_iff:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1420
  "a dvd c * b \<longleftrightarrow> a dvd b" if "coprime a c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1421
  using that coprime_dvd_mult_left_iff [of a c b] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1422
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1423
lemma divides_mult:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1424
  "a * b dvd c" if "a dvd c" and "b dvd c" and "coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1425
proof -
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1426
  from \<open>b dvd c\<close> obtain b' where "c = b * b'" ..
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1427
  with \<open>a dvd c\<close> have "a dvd b' * b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1428
    by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1429
  with \<open>coprime a b\<close> have "a dvd b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1430
    by (simp add: coprime_dvd_mult_left_iff)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1431
  then obtain a' where "b' = a * a'" ..
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1432
  with \<open>c = b * b'\<close> have "c = (a * b) * a'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1433
    by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1434
  then show ?thesis ..
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1435
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1436
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1437
lemma div_gcd_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1438
  assumes "a \<noteq> 0 \<or> b \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1439
  shows "coprime (a div gcd a b) (b div gcd a b)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1440
proof -
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1441
  let ?g = "gcd a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1442
  let ?a' = "a div ?g"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1443
  let ?b' = "b div ?g"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1444
  let ?g' = "gcd ?a' ?b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1445
  have dvdg: "?g dvd a" "?g dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1446
    by simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1447
  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1448
    by simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1449
  from dvdg dvdg' obtain ka kb ka' kb' where
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1450
    kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1451
    unfolding dvd_def by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1452
  from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1453
    by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1454
  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1455
    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1456
  have "?g \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1457
    using assms by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1458
  moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1459
  ultimately show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1460
    using dvd_times_left_cancel_iff [of "gcd a b" _ 1]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1461
    by simp (simp only: coprime_iff_gcd_eq_1)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1462
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1463
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1464
lemma gcd_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1465
  assumes c: "gcd a b \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1466
    and a: "a = a' * gcd a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1467
    and b: "b = b' * gcd a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1468
  shows "coprime a' b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1469
proof -
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1470
  from c have "a \<noteq> 0 \<or> b \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1471
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1472
  with div_gcd_coprime have "coprime (a div gcd a b) (b div gcd a b)" .
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1473
  also from assms have "a div gcd a b = a'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1474
    using dvd_div_eq_mult local.gcd_dvd1 by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1475
  also from assms have "b div gcd a b = b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1476
    using dvd_div_eq_mult local.gcd_dvd1 by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1477
  finally show ?thesis .
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1478
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1479
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1480
lemma gcd_coprime_exists:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1481
  assumes "gcd a b \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1482
  shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1483
  apply (rule_tac x = "a div gcd a b" in exI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1484
  apply (rule_tac x = "b div gcd a b" in exI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1485
  using assms
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1486
  apply (auto intro: div_gcd_coprime)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1487
  done
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1488
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1489
lemma pow_divides_pow_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1490
  "a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" if "n > 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1491
proof (cases "gcd a b = 0")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1492
  case True
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1493
  then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1494
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1495
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1496
  case False
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1497
  show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1498
  proof
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1499
    let ?d = "gcd a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1500
    from \<open>n > 0\<close> obtain m where m: "n = Suc m"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1501
      by (cases n) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1502
    from False have zn: "?d ^ n \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1503
      by (rule power_not_zero)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1504
    from gcd_coprime_exists [OF False]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1505
    obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1506
      by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1507
    assume "a ^ n dvd b ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1508
    then have "(a' * ?d) ^ n dvd (b' * ?d) ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1509
      by (simp add: ab'(1,2)[symmetric])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1510
    then have "?d^n * a'^n dvd ?d^n * b'^n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1511
      by (simp only: power_mult_distrib ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1512
    with zn have "a' ^ n dvd b' ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1513
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1514
    then have "a' dvd b' ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1515
      using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1516
    then have "a' dvd b' ^ m * b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1517
      by (simp add: m ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1518
    moreover have "coprime a' (b' ^ n)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1519
      using \<open>coprime a' b'\<close> by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1520
    then have "a' dvd b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1521
      using \<open>a' dvd b' ^ n\<close> coprime_dvd_mult_left_iff dvd_mult by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1522
    then have "a' * ?d dvd b' * ?d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1523
      by (rule mult_dvd_mono) simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1524
    with ab'(1,2) show "a dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1525
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1526
  next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1527
    assume "a dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1528
    with \<open>n > 0\<close> show "a ^ n dvd b ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1529
      by (induction rule: nat_induct_non_zero)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1530
        (simp_all add: mult_dvd_mono)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1531
  qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1532
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1533
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1534
lemma coprime_crossproduct:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1535
  fixes a b c d :: 'a
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1536
  assumes "coprime a d" and "coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1537
  shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1538
    normalize a = normalize b \<and> normalize c = normalize d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1539
    (is "?lhs \<longleftrightarrow> ?rhs")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1540
proof
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1541
  assume ?rhs
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1542
  then show ?lhs by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1543
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1544
  assume ?lhs
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1545
  from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1546
    by (auto intro: dvdI dest: sym)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1547
  with \<open>coprime a d\<close> have "a dvd b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1548
    by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1549
  from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1550
    by (auto intro: dvdI dest: sym)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1551
  with \<open>coprime b c\<close> have "b dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1552
    by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1553
  from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1554
    by (auto intro: dvdI dest: sym simp add: mult.commute)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1555
  with \<open>coprime b c\<close> have "c dvd d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1556
    by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1557
  from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1558
    by (auto intro: dvdI dest: sym simp add: mult.commute)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1559
  with \<open>coprime a d\<close> have "d dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1560
    by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric])
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1561
  from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1562
    by (rule associatedI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1563
  moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1564
    by (rule associatedI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1565
  ultimately show ?rhs ..
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1566
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1567
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1568
lemma coprime_crossproduct':
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1569
  fixes a b c d
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1570
  assumes "b \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1571
  assumes unit_factors: "unit_factor b = unit_factor d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1572
  assumes coprime: "coprime a b" "coprime c d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1573
  shows "a * d = b * c \<longleftrightarrow> a = c \<and> b = d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1574
proof safe
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1575
  assume eq: "a * d = b * c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1576
  hence "normalize a * normalize d = normalize c * normalize b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1577
    by (simp only: normalize_mult [symmetric] mult_ac)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1578
  with coprime have "normalize b = normalize d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1579
    by (subst (asm) coprime_crossproduct) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1580
  from this and unit_factors show "b = d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1581
    by (rule normalize_unit_factor_eqI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1582
  from eq have "a * d = c * d" by (simp only: \<open>b = d\<close> mult_ac)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1583
  with \<open>b \<noteq> 0\<close> \<open>b = d\<close> show "a = c" by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1584
qed (simp_all add: mult_ac)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1585
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1586
lemma gcd_mult_left_left_cancel:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1587
  "gcd (c * a) b = gcd a b" if "coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1588
proof -
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1589
  have "coprime (gcd b (a * c)) c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1590
    by (rule coprimeI) (auto intro: that coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1591
  then have "gcd b (a * c) dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1592
    using coprime_dvd_mult_left_iff [of "gcd b (a * c)" c a]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1593
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1594
  then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1595
    by (auto intro: associated_eqI simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1596
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1597
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1598
lemma gcd_mult_left_right_cancel:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1599
  "gcd (a * c) b = gcd a b" if "coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1600
  using that gcd_mult_left_left_cancel [of b c a]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1601
  by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1602
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1603
lemma gcd_mult_right_left_cancel:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1604
  "gcd a (c * b) = gcd a b" if "coprime a c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1605
  using that gcd_mult_left_left_cancel [of a c b]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1606
  by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1607
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1608
lemma gcd_mult_right_right_cancel:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1609
  "gcd a (b * c) = gcd a b" if "coprime a c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1610
  using that gcd_mult_right_left_cancel [of a c b]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1611
  by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1612
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1613
lemma gcd_exp [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1614
  "gcd (a ^ n) (b ^ n) = gcd a b ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1615
proof (cases "a = 0 \<and> b = 0 \<or> n = 0")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1616
  case True
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1617
  then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1618
    by (cases n) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1619
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1620
  case False
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1621
  then have "coprime (a div gcd a b) (b div gcd a b)" and "n > 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1622
    by (auto intro: div_gcd_coprime)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1623
  then have "coprime ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1624
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1625
  then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1626
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1627
  then have "gcd a b ^ n = gcd a b ^ n * \<dots>"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1628
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1629
  also note gcd_mult_distrib
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1630
  also have "unit_factor (gcd a b ^ n) = 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1631
    using False by (auto simp add: unit_factor_power unit_factor_gcd)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1632
  also have "(gcd a b) ^ n * (a div gcd a b) ^ n = a ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1633
    by (simp add: ac_simps div_power dvd_power_same)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1634
  also have "(gcd a b) ^ n * (b div gcd a b) ^ n = b ^ n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1635
    by (simp add: ac_simps div_power dvd_power_same)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1636
  finally show ?thesis by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1637
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1638
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1639
lemma division_decomp:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1640
  assumes "a dvd b * c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1641
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1642
proof (cases "gcd a b = 0")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1643
  case True
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1644
  then have "a = 0 \<and> b = 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1645
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1646
  then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1647
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1648
  then show ?thesis by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1649
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1650
  case False
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1651
  let ?d = "gcd a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1652
  from gcd_coprime_exists [OF False]
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1653
    obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1654
    by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1655
  from ab'(1) have "a' dvd a" ..
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1656
  with assms have "a' dvd b * c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1657
    using dvd_trans [of a' a "b * c"] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1658
  from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1659
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1660
  then have "?d * a' dvd ?d * (b' * c)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1661
    by (simp add: mult_ac)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1662
  with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1663
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1664
  then have "a' dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1665
    using \<open>coprime a' b'\<close> by (simp add: coprime_dvd_mult_right_iff)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1666
  with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1667
    by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1668
  then show ?thesis by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1669
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1670
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1671
lemma lcm_coprime: "coprime a b \<Longrightarrow> lcm a b = normalize (a * b)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1672
  by (subst lcm_gcd) simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1673
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1674
end
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1675
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1676
context ring_gcd
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1677
begin
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1678
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1679
lemma coprime_minus_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1680
  "coprime (- a) b \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1681
  by (rule; rule coprimeI) (auto intro: coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1682
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1683
lemma coprime_minus_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1684
  "coprime a (- b) \<longleftrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1685
  using coprime_minus_left_iff [of b a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1686
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1687
lemma coprime_diff_one_left [simp]: "coprime (a - 1) a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1688
  using coprime_add_one_right [of "a - 1"] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1689
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1690
lemma coprime_doff_one_right [simp]: "coprime a (a - 1)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1691
  using coprime_diff_one_left [of a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1692
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1693
end
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1694
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1695
context semiring_Gcd
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1696
begin
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1697
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1698
lemma Lcm_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1699
  assumes "finite A"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1700
    and "A \<noteq> {}"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1701
    and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1702
  shows "Lcm A = normalize (\<Prod>A)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1703
  using assms
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1704
proof (induct rule: finite_ne_induct)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1705
  case singleton
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1706
  then show ?case by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1707
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1708
  case (insert a A)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1709
  have "Lcm (insert a A) = lcm a (Lcm A)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1710
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1711
  also from insert have "Lcm A = normalize (\<Prod>A)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1712
    by blast
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1713
  also have "lcm a \<dots> = lcm a (\<Prod>A)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1714
    by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1715
  also from insert have "coprime a (\<Prod>A)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1716
    by (subst coprime_commute, intro prod_coprime_left) auto
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1717
  with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1718
    by (simp add: lcm_coprime)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1719
  finally show ?case .
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1720
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1721
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1722
lemma Lcm_coprime':
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1723
  "card A \<noteq> 0 \<Longrightarrow>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1724
    (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b) \<Longrightarrow>
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1725
    Lcm A = normalize (\<Prod>A)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1726
  by (rule Lcm_coprime) (simp_all add: card_eq_0_iff)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1727
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1728
end
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1729
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  1730
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1731
subsection \<open>GCD and LCM on @{typ nat} and @{typ int}\<close>
59008
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1732
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1733
instantiation nat :: gcd
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1734
begin
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  1735
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1736
fun gcd_nat  :: "nat \<Rightarrow> nat \<Rightarrow> nat"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1737
  where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1738
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1739
definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1740
  where "lcm_nat x y = x * y div (gcd x y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1741
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1742
instance ..
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1743
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1744
end
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1745
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1746
instantiation int :: gcd
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1747
begin
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  1748
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1749
definition gcd_int  :: "int \<Rightarrow> int \<Rightarrow> int"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1750
  where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))"
23687
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1751
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1752
definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int"
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  1753
  where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))"
23687
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1754
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61929
diff changeset
  1755
instance ..
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1756
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1757
end
23687
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1758
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1759
lemma gcd_int_int_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1760
  "gcd (int m) (int n) = int (gcd m n)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1761
  by (simp add: gcd_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1762
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1763
lemma gcd_nat_abs_left_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1764
  "gcd (nat \<bar>k\<bar>) n = nat (gcd k (int n))"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1765
  by (simp add: gcd_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1766
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1767
lemma gcd_nat_abs_right_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1768
  "gcd n (nat \<bar>k\<bar>) = nat (gcd (int n) k)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1769
  by (simp add: gcd_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1770
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1771
lemma abs_gcd_int [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1772
  "\<bar>gcd x y\<bar> = gcd x y"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1773
  for x y :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1774
  by (simp only: gcd_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1775
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1776
lemma gcd_abs1_int [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1777
  "gcd \<bar>x\<bar> y = gcd x y"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1778
  for x y :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1779
  by (simp only: gcd_int_def) simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1780
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1781
lemma gcd_abs2_int [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1782
  "gcd x \<bar>y\<bar> = gcd x y"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1783
  for x y :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1784
  by (simp only: gcd_int_def) simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1785
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1786
lemma lcm_int_int_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1787
  "lcm (int m) (int n) = int (lcm m n)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1788
  by (simp add: lcm_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1789
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1790
lemma lcm_nat_abs_left_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1791
  "lcm (nat \<bar>k\<bar>) n = nat (lcm k (int n))"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1792
  by (simp add: lcm_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1793
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1794
lemma lcm_nat_abs_right_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1795
  "lcm n (nat \<bar>k\<bar>) = nat (lcm (int n) k)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1796
  by (simp add: lcm_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1797
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1798
lemma lcm_abs1_int [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1799
  "lcm \<bar>x\<bar> y = lcm x y"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1800
  for x y :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1801
  by (simp only: lcm_int_def) simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1802
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1803
lemma lcm_abs2_int [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1804
  "lcm x \<bar>y\<bar> = lcm x y"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1805
  for x y :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1806
  by (simp only: lcm_int_def) simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1807
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1808
lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1809
  for i j :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1810
  by (simp only: lcm_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1811
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  1812
lemma gcd_nat_induct:
23687
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1813
  fixes m n :: nat
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1814
  assumes "\<And>m. P m 0"
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1815
    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1816
  shows "P m n"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1817
  apply (rule gcd_nat.induct)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1818
  apply (case_tac "y = 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1819
  using assms
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1820
   apply simp_all
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1821
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1822
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1823
lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1824
  for x y :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1825
  by (simp only: gcd_int_def) simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1826
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1827
lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1828
  for x y :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1829
  by (simp only: gcd_int_def) simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1830
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  1831
lemma gcd_cases_int:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1832
  fixes x y :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1833
  assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1834
    and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1835
    and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1836
    and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1837
  shows "P (gcd x y)"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1838
  using assms by auto arith
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  1839
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  1840
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1841
  for x y :: int
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1842
  by (simp add: gcd_int_def)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1843
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1844
lemma lcm_neg1_int: "lcm (- x) y = lcm x y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1845
  for x y :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1846
  by (simp only: lcm_int_def) simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1847
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1848
lemma lcm_neg2_int: "lcm x (- y) = lcm x y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1849
  for x y :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1850
  by (simp only: lcm_int_def) simp
31814
7c122634da81 lcm abs lemmas
nipkow
parents: 31813
diff changeset
  1851
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  1852
lemma lcm_cases_int:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1853
  fixes x y :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1854
  assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1855
    and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1856
    and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1857
    and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1858
  shows "P (lcm x y)"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 37770
diff changeset
  1859
  using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1860
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1861
lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1862
  for x y :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1863
  by (simp only: lcm_int_def)
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1864
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1865
lemma gcd_0_nat: "gcd x 0 = x"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1866
  for x :: nat
23687
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1867
  by simp
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1868
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1869
lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1870
  for x :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1871
  by (auto simp: gcd_int_def)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1872
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1873
lemma gcd_0_left_nat: "gcd 0 x = x"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1874
  for x :: nat
23687
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1875
  by simp
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  1876
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1877
lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1878
  for x :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1879
  by (auto simp: gcd_int_def)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1880
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1881
lemma gcd_red_nat: "gcd x y = gcd y (x mod y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1882
  for x y :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1883
  by (cases "y = 0") auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1884
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1885
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1886
text \<open>Weaker, but useful for the simplifier.\<close>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1887
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1888
lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1889
  for x y :: nat
21263
wenzelm
parents: 21256
diff changeset
  1890
  by simp
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  1891
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1892
lemma gcd_1_nat [simp]: "gcd m 1 = 1"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1893
  for m :: nat
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60689
diff changeset
  1894
  by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1895
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1896
lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1897
  for m :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1898
  by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1899
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1900
lemma gcd_1_int [simp]: "gcd m 1 = 1"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1901
  for m :: int
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1902
  by (simp add: gcd_int_def)
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 30042
diff changeset
  1903
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1904
lemma gcd_idem_nat: "gcd x x = x"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1905
  for x :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1906
  by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1907
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1908
lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1909
  for x :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1910
  by (auto simp add: gcd_int_def)
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1911
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1912
declare gcd_nat.simps [simp del]
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  1913
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1914
text \<open>
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1915
  \<^medskip> @{term "gcd m n"} divides \<open>m\<close> and \<open>n\<close>.
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1916
  The conjunctions don't seem provable separately.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1917
\<close>
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  1918
59008
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1919
instance nat :: semiring_gcd
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1920
proof
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1921
  fix m n :: nat
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1922
  show "gcd m n dvd m" and "gcd m n dvd n"
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1923
  proof (induct m n rule: gcd_nat_induct)
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1924
    fix m n :: nat
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1925
    assume "gcd n (m mod n) dvd m mod n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1926
      and "gcd n (m mod n) dvd n"
59008
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1927
    then have "gcd n (m mod n) dvd m"
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1928
      by (rule dvd_mod_imp_dvd)
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1929
    moreover assume "0 < n"
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1930
    ultimately show "gcd m n dvd m"
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1931
      by (simp add: gcd_non_0_nat)
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1932
  qed (simp_all add: gcd_0_nat gcd_non_0_nat)
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1933
next
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1934
  fix m n k :: nat
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1935
  assume "k dvd m" and "k dvd n"
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1936
  then show "k dvd gcd m n"
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1937
    by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat)
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
  1938
qed (simp_all add: lcm_nat_def)
59667
651ea265d568 Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents: 59545
diff changeset
  1939
59008
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  1940
instance int :: ring_gcd
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1941
proof
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1942
  fix k l r :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1943
  show "gcd k l dvd k" "gcd k l dvd l"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1944
    using gcd_dvd1 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"]
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1945
      gcd_dvd2 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"]
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1946
    by simp_all
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1947
  show "lcm k l = normalize (k * l) div gcd k l"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1948
    using lcm_gcd [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"]
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1949
    by (simp add: nat_eq_iff of_nat_div abs_mult)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1950
  assume "r dvd k" "r dvd l"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1951
  then show "r dvd gcd k l"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1952
    using gcd_greatest [of "nat \<bar>r\<bar>" "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"]
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1953
    by simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  1954
qed simp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1955
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1956
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1957
  for a b :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1958
  by (rule dvd_imp_le) auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1959
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1960
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1961
  for a b :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1962
  by (rule dvd_imp_le) auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1963
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1964
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1965
  for a b :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1966
  by (rule zdvd_imp_le) auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1967
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1968
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1969
  for a b :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1970
  by (rule zdvd_imp_le) auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1971
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1972
lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1973
  for m n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1974
  using gcd_eq_0_iff [of m n] by arith
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1975
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1976
lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1977
  for m n :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1978
  using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1979
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1980
lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1981
  for d a :: nat
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1982
  apply auto
33657
a4179bf442d1 renamed lemmas "anti_sym" -> "antisym"
nipkow
parents: 33318
diff changeset
  1983
  apply (rule dvd_antisym)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1984
   apply (erule (1) gcd_greatest)
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  1985
  apply auto
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1986
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1987
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1988
lemma gcd_unique_int:
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1989
  "d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1990
  for d a :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1991
  apply (cases "d = 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1992
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1993
  apply (rule iffI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1994
   apply (rule zdvd_antisym_nonneg)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1995
      apply (auto intro: gcd_greatest)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  1996
  done
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 30042
diff changeset
  1997
61913
58b153bfa737 tuned proofs and augmented some lemmas
haftmann
parents: 61856
diff changeset
  1998
interpretation gcd_nat:
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  1999
  semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n"
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2000
  by standard (auto simp add: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans)
31798
fe9a3043d36c Cleaned up GCD
nipkow
parents: 31766
diff changeset
  2001
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2002
lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2003
  for x y :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2004
  by (metis abs_dvd_iff gcd_0_left_int gcd_unique_int)
31798
fe9a3043d36c Cleaned up GCD
nipkow
parents: 31766
diff changeset
  2005
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2006
lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2007
  for x y :: int
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2008
  by (metis gcd_proj1_if_dvd_int gcd.commute)
31798
fe9a3043d36c Cleaned up GCD
nipkow
parents: 31766
diff changeset
  2009
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2010
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2011
text \<open>\<^medskip> Multiplication laws.\<close>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2012
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2013
lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2014
  for k m n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2015
  \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close>
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2016
  apply (induct m n rule: gcd_nat_induct)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2017
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2018
  apply (cases "k = 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2019
   apply (simp_all add: gcd_non_0_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2020
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2021
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2022
lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2023
  for k m n :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2024
  using gcd_mult_distrib' [of k m n] by simp
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  2025
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2026
text \<open>\medskip Addition laws.\<close>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2027
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2028
(* TODO: add the other variations? *)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2029
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2030
lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2031
  for m n :: nat
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  2032
  by (subst gcd_add1 [symmetric]) auto
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2033
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2034
lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2035
  for m n :: nat
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2036
  apply (subst gcd.commute)
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2037
  apply (subst gcd_diff1_nat [symmetric])
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2038
   apply auto
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2039
  apply (subst gcd.commute)
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2040
  apply (subst gcd_diff1_nat)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2041
   apply assumption
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2042
  apply (rule gcd.commute)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2043
  done
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2044
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2045
lemma gcd_non_0_int: "y > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2046
  for x y :: int
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2047
  apply (frule_tac b = y and a = x in pos_mod_sign)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66803
diff changeset
  2048
  apply (simp del: Euclidean_Division.pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2049
  apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] zmod_zminus1_eq_if)
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2050
  apply (frule_tac a = x in pos_mod_bound)
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2051
  apply (subst (1 2) gcd.commute)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66803
diff changeset
  2052
  apply (simp del: Euclidean_Division.pos_mod_bound add: nat_diff_distrib gcd_diff2_nat nat_le_eq_zle)
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2053
  done
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  2054
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2055
lemma gcd_red_int: "gcd x y = gcd y (x mod y)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2056
  for x y :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2057
  apply (cases "y = 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2058
   apply force
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2059
  apply (cases "y > 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2060
   apply (subst gcd_non_0_int, auto)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2061
  apply (insert gcd_non_0_int [of "- y" "- x"])
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35028
diff changeset
  2062
  apply auto
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2063
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2064
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2065
(* TODO: differences, and all variations of addition rules
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2066
    as simplification rules for nat and int *)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2067
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2068
(* TODO: add the three variations of these, and for ints? *)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2069
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2070
lemma finite_divisors_nat [simp]: (* FIXME move *)
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2071
  fixes m :: nat
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2072
  assumes "m > 0"
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2073
  shows "finite {d. d dvd m}"
31734
a4a79836d07b new lemmas
nipkow
parents: 31730
diff changeset
  2074
proof-
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2075
  from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2076
    by (auto dest: dvd_imp_le)
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2077
  then show ?thesis
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2078
    using finite_Collect_le_nat by (rule finite_subset)
31734
a4a79836d07b new lemmas
nipkow
parents: 31730
diff changeset
  2079
qed
a4a79836d07b new lemmas
nipkow
parents: 31730
diff changeset
  2080
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2081
lemma finite_divisors_int [simp]:
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2082
  fixes i :: int
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2083
  assumes "i \<noteq> 0"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2084
  shows "finite {d. d dvd i}"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2085
proof -
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2086
  have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2087
    by (auto simp: abs_if)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2088
  then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}"
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2089
    by simp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2090
  from finite_subset [OF _ this] show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2091
    using assms by (simp add: dvd_imp_le_int subset_iff)
31734
a4a79836d07b new lemmas
nipkow
parents: 31730
diff changeset
  2092
qed
a4a79836d07b new lemmas
nipkow
parents: 31730
diff changeset
  2093
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2094
lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2095
  apply (rule antisym)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2096
   apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2097
  apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2098
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2099
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2100
lemma Max_divisors_self_int [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::int. d dvd n} = \<bar>n\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2101
  apply (rule antisym)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2102
   apply (rule Max_le_iff [THEN iffD2])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2103
     apply (auto intro: abs_le_D1 dvd_imp_le_int)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2104
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2105
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2106
lemma gcd_is_Max_divisors_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2107
  for m n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2108
  apply (rule Max_eqI[THEN sym])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2109
    apply (metis finite_Collect_conjI finite_divisors_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2110
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2111
   apply (metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff gcd_pos_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2112
  apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2113
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2114
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2115
lemma gcd_is_Max_divisors_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2116
  for m n :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2117
  apply (rule Max_eqI[THEN sym])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2118
    apply (metis finite_Collect_conjI finite_divisors_int)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2119
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2120
   apply (metis gcd_greatest_iff gcd_pos_int zdvd_imp_le)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2121
  apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2122
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2123
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2124
lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2125
  for k l :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2126
  using gcd_red_int [of "\<bar>k\<bar>" "\<bar>l\<bar>"] by simp
34030
829eb528b226 resorted code equations from "old" number theory version
haftmann
parents: 33946
diff changeset
  2127
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2128
lemma coprime_Suc_left_nat [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2129
  "coprime (Suc n) n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2130
  using coprime_add_one_left [of n] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2131
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2132
lemma coprime_Suc_right_nat [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2133
  "coprime n (Suc n)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2134
  using coprime_Suc_left_nat [of n] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2135
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2136
lemma coprime_diff_one_left_nat [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2137
  "coprime (n - 1) n" if "n > 0" for n :: nat
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2138
  using that coprime_Suc_right_nat [of "n - 1"] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2139
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2140
lemma coprime_diff_one_right_nat [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2141
  "coprime n (n - 1)" if "n > 0" for n :: nat
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2142
  using that coprime_diff_one_left_nat [of n] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2143
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2144
lemma coprime_crossproduct_nat:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2145
  fixes a b c d :: nat
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2146
  assumes "coprime a d" and "coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2147
  shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2148
  using assms coprime_crossproduct [of a d b c] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2149
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2150
lemma coprime_crossproduct_int:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2151
  fixes a b c d :: int
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2152
  assumes "coprime a d" and "coprime b c"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2153
  shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66936
diff changeset
  2154
  using assms coprime_crossproduct [of a d b c] by simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2155
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2156
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2157
subsection \<open>Bezout's theorem\<close>
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2158
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2159
text \<open>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2160
  Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem --
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2161
  see the theorems that follow the definition.
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2162
\<close>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2163
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2164
fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2165
  where "bezw x y =
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2166
    (if y = 0 then (1, 0)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2167
     else
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2168
      (snd (bezw y (x mod y)),
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2169
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))"
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2170
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2171
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2172
  by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2173
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2174
lemma bezw_non_0:
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2175
  "y > 0 \<Longrightarrow> bezw x y =
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2176
    (snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2177
  by simp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2178
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2179
declare bezw.simps [simp del]
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2180
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2181
lemma bezw_aux: "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)"
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2182
proof (induct x y rule: gcd_nat_induct)
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2183
  fix m :: nat
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2184
  show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)"
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2185
    by auto
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2186
next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2187
  fix m n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2188
  assume ngt0: "n > 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2189
    and ih: "fst (bezw n (m mod n)) * int n + snd (bezw n (m mod n)) * int (m mod n) =
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2190
      int (gcd n (m mod n))"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2191
  then show "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2192
    apply (simp add: bezw_non_0 gcd_non_0_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2193
    apply (erule subst)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2194
    apply (simp add: field_simps)
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  2195
    apply (subst div_mult_mod_eq [of m n, symmetric])
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2196
      (* applying simp here undoes the last substitution! what is procedure cancel_div_mod? *)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2197
    apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2198
    done
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2199
qed
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2200
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2201
lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2202
  for x y :: int
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2203
proof -
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2204
  have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2205
    apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2206
    apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2207
    apply (unfold gcd_int_def)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2208
    apply simp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2209
    apply (subst bezw_aux [symmetric])
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2210
    apply auto
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2211
    done
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2212
  consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2213
    by atomize_elim auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2214
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2215
  proof cases
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2216
    case 1
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2217
    then show ?thesis by (rule aux)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2218
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2219
    case 2
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2220
    then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2221
      apply -
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2222
      apply (insert aux [of x "-y"])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2223
      apply auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2224
      apply (rule_tac x = u in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2225
      apply (rule_tac x = "-v" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2226
      apply (subst gcd_neg2_int [symmetric])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2227
      apply auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2228
      done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2229
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2230
    case 3
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2231
    then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2232
      apply -
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2233
      apply (insert aux [of "-x" y])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2234
      apply auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2235
      apply (rule_tac x = "-u" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2236
      apply (rule_tac x = v in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2237
      apply (subst gcd_neg1_int [symmetric])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2238
      apply auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2239
      done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2240
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2241
    case 4
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2242
    then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2243
      apply -
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2244
      apply (insert aux [of "-x" "-y"])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2245
      apply auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2246
      apply (rule_tac x = "-u" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2247
      apply (rule_tac x = "-v" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2248
      apply (subst gcd_neg1_int [symmetric])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2249
      apply (subst gcd_neg2_int [symmetric])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2250
      apply auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2251
      done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2252
  qed
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2253
qed
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2254
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2255
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2256
text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close>
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2257
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2258
lemma ind_euclid:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2259
  fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2260
  assumes c: " \<forall>a b. P a b \<longleftrightarrow> P b a"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2261
    and z: "\<forall>a. P a 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2262
    and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2263
  shows "P a b"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2264
proof (induct "a + b" arbitrary: a b rule: less_induct)
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 34223
diff changeset
  2265
  case less
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2266
  consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2267
    by arith
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2268
  show ?case
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2269
  proof (cases a b rule: linorder_cases)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2270
    case equal
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2271
    with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2272
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2273
    case lt: less
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2274
    then consider "a = 0" | "a + b - a < a + b" by arith
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2275
    then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2276
    proof cases
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2277
      case 1
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2278
      with z c show ?thesis by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2279
    next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2280
      case 2
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2281
      also have *: "a + b - a = a + (b - a)" using lt by arith
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 34223
diff changeset
  2282
      finally have "a + (b - a) < a + b" .
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2283
      then have "P a (a + (b - a))" by (rule add [rule_format, OF less])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2284
      then show ?thesis by (simp add: *[symmetric])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2285
    qed
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2286
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2287
    case gt: greater
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2288
    then consider "b = 0" | "b + a - b < a + b" by arith
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2289
    then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2290
    proof cases
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2291
      case 1
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2292
      with z c show ?thesis by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2293
    next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2294
      case 2
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2295
      also have *: "b + a - b = b + (a - b)" using gt by arith
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 34223
diff changeset
  2296
      finally have "b + (a - b) < a + b" .
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2297
      then have "P b (b + (a - b))" by (rule add [rule_format, OF less])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2298
      then have "P b a" by (simp add: *[symmetric])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2299
      with c show ?thesis by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2300
    qed
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2301
  qed
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2302
qed
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2303
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2304
lemma bezout_lemma_nat:
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2305
  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2306
    (a * x = b * y + d \<or> b * x = a * y + d)"
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2307
  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and>
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2308
    (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2309
  using ex
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2310
  apply clarsimp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2311
  apply (rule_tac x="d" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2312
  apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2313
  apply (case_tac "a * x = b * y + d")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2314
   apply simp_all
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2315
   apply (rule_tac x="x + y" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2316
   apply (rule_tac x="y" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2317
   apply algebra
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2318
  apply (rule_tac x="x" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2319
  apply (rule_tac x="x + y" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2320
  apply algebra
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2321
  done
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2322
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2323
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2324
    (a * x = b * y + d \<or> b * x = a * y + d)"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2325
  apply (induct a b rule: ind_euclid)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2326
    apply blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2327
   apply clarify
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2328
   apply (rule_tac x="a" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2329
   apply simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2330
  apply clarsimp
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2331
  apply (rule_tac x="d" in exI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2332
  apply (case_tac "a * x = b * y + d")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2333
   apply simp_all
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2334
   apply (rule_tac x="x+y" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2335
   apply (rule_tac x="y" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2336
   apply algebra
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2337
  apply (rule_tac x="x" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2338
  apply (rule_tac x="x+y" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2339
  apply algebra
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2340
  done
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2341
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2342
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2343
    (a * x - b * y = d \<or> b * x - a * y = d)"
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2344
  using bezout_add_nat[of a b]
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2345
  apply clarsimp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2346
  apply (rule_tac x="d" in exI)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2347
  apply simp
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2348
  apply (rule_tac x="x" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2349
  apply (rule_tac x="y" in exI)
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2350
  apply auto
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2351
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2352
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2353
lemma bezout_add_strong_nat:
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2354
  fixes a b :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2355
  assumes a: "a \<noteq> 0"
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2356
  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2357
proof -
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2358
  consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2359
    | d x y where "d dvd a" "d dvd b" "b * x = a * y + d"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2360
    using bezout_add_nat [of a b] by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2361
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2362
  proof cases
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2363
    case 1
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2364
    then show ?thesis by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2365
  next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2366
    case H: 2
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2367
    show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2368
    proof (cases "b = 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2369
      case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2370
      with H show ?thesis by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2371
    next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2372
      case False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2373
      then have bp: "b > 0" by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2374
      with dvd_imp_le [OF H(2)] consider "d = b" | "d < b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2375
        by atomize_elim auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2376
      then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2377
      proof cases
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2378
        case 1
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2379
        with a H show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2380
          apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2381
          apply (rule exI[where x = b])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2382
          apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2383
          apply (rule exI[where x = b])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2384
          apply (rule exI[where x = "a - 1"])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2385
          apply (simp add: diff_mult_distrib2)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2386
          done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2387
      next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2388
        case 2
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2389
        show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2390
        proof (cases "x = 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2391
          case True
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2392
          with a H show ?thesis by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2393
        next
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2394
          case x0: False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2395
          then have xp: "x > 0" by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2396
          from \<open>d < b\<close> have "d \<le> b - 1" by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2397
          then have "d * b \<le> b * (b - 1)" by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2398
          with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"]
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2399
          have dble: "d * b \<le> x * b * (b - 1)" using bp by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2400
          from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2401
            by simp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2402
          then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 56218
diff changeset
  2403
            by (simp only: mult.assoc distrib_left)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2404
          then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)"
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2405
            by algebra
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2406
          then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2407
            using bp by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2408
          then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32879
diff changeset
  2409
            by (simp only: diff_add_assoc[OF dble, of d, symmetric])
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2410
          then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d"
59008
f61482b0f240 formally self-contained gcd type classes
haftmann
parents: 58889
diff changeset
  2411
            by (simp only: diff_mult_distrib2 ac_simps)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2412
          with H(1,2) show ?thesis
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32879
diff changeset
  2413
            apply -
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2414
            apply (rule exI [where x = d])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2415
            apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2416
            apply (rule exI [where x = "(b - 1) * y"])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2417
            apply (rule exI [where x = "x * (b - 1) - d"])
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2418
            apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2419
            done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2420
        qed
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2421
      qed
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2422
    qed
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2423
  qed
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2424
qed
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2425
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2426
lemma bezout_nat:
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2427
  fixes a :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2428
  assumes a: "a \<noteq> 0"
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2429
  shows "\<exists>x y. a * x = b * y + gcd a b"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2430
proof -
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2431
  obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2432
    using bezout_add_strong_nat [OF a, of b] by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2433
  from d have "d dvd gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2434
    by simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2435
  then obtain k where k: "gcd a b = d * k"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2436
    unfolding dvd_def by blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2437
  from eq have "a * x * k = (b * y + d) * k"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2438
    by auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2439
  then have "a * (x * k) = b * (y * k) + gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2440
    by (algebra add: k)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2441
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2442
    by blast
27669
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2443
qed
4b1642284dd7 Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents: 27651
diff changeset
  2444
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2445
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2446
subsection \<open>LCM properties on @{typ nat} and @{typ int}\<close>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2447
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2448
lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2449
  for a b :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2450
  by (simp add: abs_mult lcm_gcd)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2451
  
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2452
lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2453
  for m n :: nat
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2454
  unfolding lcm_nat_def
62429
25271ff79171 Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents: 62353
diff changeset
  2455
  by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod])
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2456
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2457
lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2458
  for m n :: int
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2459
  unfolding lcm_int_def gcd_int_def
62348
9a5f43dac883 dropped various legacy fact bindings
haftmann
parents: 62347
diff changeset
  2460
  apply (subst of_nat_mult [symmetric])
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2461
  apply (subst prod_gcd_lcm_nat [symmetric])
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2462
  apply (subst nat_abs_mult_distrib [symmetric])
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2463
  apply (simp add: abs_mult)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2464
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2465
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2466
lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2467
  for m n :: nat
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2468
  using lcm_eq_0_iff [of m n] by auto
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2469
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2470
lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2471
  for m n :: int
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2472
  by (simp add: less_le lcm_eq_0_iff)
23687
06884f7ffb18 extended - convers now basic lcm properties also
haftmann
parents: 23431
diff changeset
  2473
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2474
lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0"  (* FIXME move *)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2475
  for m n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2476
  by (cases m) auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2477
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2478
lemma lcm_unique_nat:
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2479
  "a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2480
  for a b d :: nat
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2481
  by (auto intro: dvd_antisym lcm_least)
27568
9949dc7a24de Theorem names as in IntPrimes.thy, also several theorems moved from there
chaieb
parents: 27556
diff changeset
  2482
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2483
lemma lcm_unique_int:
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2484
  "d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2485
  for a b d :: int
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2486
  using lcm_least zdvd_antisym_nonneg by auto
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34915
diff changeset
  2487
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2488
lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2489
  for x y :: nat
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2490
  apply (rule sym)
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2491
  apply (subst lcm_unique_nat [symmetric])
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2492
  apply auto
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2493
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2494
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2495
lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2496
  for x y :: int
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2497
  apply (rule sym)
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31814
diff changeset
  2498
  apply (subst lcm_unique_int [symmetric])
31706
1db0c8f235fb new GCD library, courtesy of Jeremy Avigad
huffman
parents: 30738
diff changeset
  2499
  apply auto
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2500
  done
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2501
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2502
lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2503
  for x y :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2504
  by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2505
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2506
lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2507
  for x y :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2508
  by (subst lcm.commute) (erule lcm_proj2_if_dvd_int)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2509
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2510
lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2511
  for m n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2512
  by (metis lcm_proj1_if_dvd_nat lcm_unique_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2513
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2514
lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2515
  for m n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2516
  by (metis lcm_proj2_if_dvd_nat lcm_unique_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2517
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2518
lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2519
  for m n :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2520
  by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2521
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2522
lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2523
  for m n :: int
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2524
  by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2525
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2526
lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2527
  for m n :: nat
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2528
  using lcm_eq_1_iff [of m n] by simp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2529
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2530
lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2531
  for m n :: int
61913
58b153bfa737 tuned proofs and augmented some lemmas
haftmann
parents: 61856
diff changeset
  2532
  by auto
31995
8f37cf60b885 more gcd/lcm lemmas
nipkow
parents: 31992
diff changeset
  2533
34030
829eb528b226 resorted code equations from "old" number theory version
haftmann
parents: 33946
diff changeset
  2534
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2535
subsection \<open>The complete divisibility lattice on @{typ nat} and @{typ int}\<close>
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2536
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2537
text \<open>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2538
  Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>).
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2539
  \<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2540
\<close>
45264
3b2c770f6631 merge Gcd/GCD and Lcm/LCM
huffman
parents: 44890
diff changeset
  2541
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2542
instantiation nat :: semiring_Gcd
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2543
begin
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2544
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2545
interpretation semilattice_neutr_set lcm "1::nat"
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2546
  by standard simp_all
54867
c21a2465cac1 prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents: 54489
diff changeset
  2547
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2548
definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2549
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2550
lemma Lcm_nat_empty: "Lcm {} = (1::nat)"
60690
a9e45c9588c3 tuned facts
haftmann
parents: 60689
diff changeset
  2551
  by (simp add: Lcm_nat_def del: One_nat_def)
51489
f738e6dbd844 fundamental revision of big operators on sets
haftmann
parents: 49962
diff changeset
  2552
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2553
lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2554
  by (cases "finite M") (auto simp add: Lcm_nat_def simp del: One_nat_def)
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2555
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2556
lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set"
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2557
  by (simp add: Lcm_nat_def)
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2558
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2559
lemma dvd_Lcm_nat [simp]:
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2560
  fixes M :: "nat set"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2561
  assumes "m \<in> M"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2562
  shows "m dvd Lcm M"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2563
proof -
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2564
  from assms have "insert m M = M"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2565
    by auto
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2566
  moreover have "m dvd Lcm (insert m M)"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2567
    by (simp add: Lcm_nat_insert)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2568
  ultimately show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2569
    by simp
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2570
qed
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2571
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2572
lemma Lcm_dvd_nat [simp]:
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2573
  fixes M :: "nat set"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2574
  assumes "\<forall>m\<in>M. m dvd n"
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2575
  shows "Lcm M dvd n"
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2576
proof (cases "n > 0")
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2577
  case False
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2578
  then show ?thesis by simp
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2579
next
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2580
  case True
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2581
  then have "finite {d. d dvd n}"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2582
    by (rule finite_divisors_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2583
  moreover have "M \<subseteq> {d. d dvd n}"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2584
    using assms by fast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2585
  ultimately have "finite M"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2586
    by (rule rev_finite_subset)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2587
  then show ?thesis
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2588
    using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert)
61929
b8e242e52c97 tuned proofs and augmented lemmas
haftmann
parents: 61913
diff changeset
  2589
qed
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2590
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2591
definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2592
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2593
instance
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2594
proof
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2595
  fix N :: "nat set"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2596
  fix n :: nat
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2597
  show "Gcd N dvd n" if "n \<in> N"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2598
    using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2599
  show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2600
    using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2601
  show "n dvd Lcm N" if "n \<in> N"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2602
    using that by (induct N rule: infinite_finite_induct) auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2603
  show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2604
    using that by (induct N rule: infinite_finite_induct) auto
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2605
  show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2606
    by simp_all
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2607
qed
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2608
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2609
end
61913
58b153bfa737 tuned proofs and augmented some lemmas
haftmann
parents: 61856
diff changeset
  2610
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2611
lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2612
  for N :: "nat set"
62346
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  2613
  by (rule Gcd_eq_1_I) auto
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  2614
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2615
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2616
text \<open>Alternative characterizations of Gcd:\<close>
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2617
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2618
lemma Gcd_eq_Max:
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2619
  fixes M :: "nat set"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2620
  assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2621
  shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2622
proof (rule antisym)
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2623
  from assms obtain m where "m \<in> M" and "m > 0"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2624
    by auto
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2625
  from \<open>m > 0\<close> have "finite {d. d dvd m}"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2626
    by (blast intro: finite_divisors_nat)
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2627
  with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2628
    by blast
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2629
  from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2630
    by (auto intro: Max_ge Gcd_dvd)
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2631
  from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M"
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2632
    apply (rule Max.boundedI)
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2633
     apply auto
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2634
    apply (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat)
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2635
    done
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2636
qed
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2637
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2638
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2639
  for M :: "nat set"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2640
  apply (induct pred: finite)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2641
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2642
  apply (case_tac "x = 0")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2643
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2644
  apply (subgoal_tac "insert x F - {0} = insert x (F - {0})")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2645
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2646
  apply blast
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2647
  done
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2648
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2649
lemma Lcm_in_lcm_closed_set_nat:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2650
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M \<in> M"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2651
  for M :: "nat set"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2652
  apply (induct rule: finite_linorder_min_induct)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2653
   apply simp
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2654
  apply simp
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2655
  apply (subgoal_tac "\<forall>m n. m \<in> A \<longrightarrow> n \<in> A \<longrightarrow> lcm m n \<in> A")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2656
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2657
   apply(case_tac "A = {}")
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2658
    apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2659
   apply simp
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2660
  apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2661
  done
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2662
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2663
lemma Lcm_eq_Max_nat:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2664
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M = Max M"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2665
  for M :: "nat set"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2666
  apply (rule antisym)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2667
   apply (rule Max_ge)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2668
    apply assumption
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2669
   apply (erule (2) Lcm_in_lcm_closed_set_nat)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2670
  apply (auto simp add: not_le Lcm_0_iff dvd_imp_le leD le_neq_trans)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2671
  done
32112
6da9c2a49fed Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents: 32111
diff changeset
  2672
34222
e33ee7369ecb added lemma
nipkow
parents: 34221
diff changeset
  2673
lemma mult_inj_if_coprime_nat:
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2674
  "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> \<forall>a\<in>A. \<forall>b\<in>B. coprime (f a) (g b) \<Longrightarrow>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2675
    inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2676
  for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat"
61913
58b153bfa737 tuned proofs and augmented some lemmas
haftmann
parents: 61856
diff changeset
  2677
  by (auto simp add: inj_on_def coprime_crossproduct_nat simp del: One_nat_def)
34222
e33ee7369ecb added lemma
nipkow
parents: 34221
diff changeset
  2678
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2679
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2680
subsubsection \<open>Setwise GCD and LCM for integers\<close>
45264
3b2c770f6631 merge Gcd/GCD and Lcm/LCM
huffman
parents: 44890
diff changeset
  2681
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2682
instantiation int :: Gcd
45264
3b2c770f6631 merge Gcd/GCD and Lcm/LCM
huffman
parents: 44890
diff changeset
  2683
begin
3b2c770f6631 merge Gcd/GCD and Lcm/LCM
huffman
parents: 44890
diff changeset
  2684
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2685
definition Gcd_int :: "int set \<Rightarrow> int"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2686
  where "Gcd K = int (GCD k\<in>K. (nat \<circ> abs) k)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2687
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2688
definition Lcm_int :: "int set \<Rightarrow> int"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2689
  where "Lcm K = int (LCM k\<in>K. (nat \<circ> abs) k)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2690
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2691
instance ..
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2692
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2693
end
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2694
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2695
lemma Gcd_int_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2696
  "(GCD n\<in>N. int n) = int (Gcd N)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2697
  by (simp add: Gcd_int_def image_image)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2698
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2699
lemma Gcd_nat_abs_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2700
  "(GCD k\<in>K. nat \<bar>k\<bar>) = nat (Gcd K)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2701
  by (simp add: Gcd_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2702
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2703
lemma abs_Gcd_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2704
  "\<bar>Gcd K\<bar> = Gcd K" for K :: "int set"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2705
  by (simp only: Gcd_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2706
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2707
lemma Gcd_int_greater_eq_0 [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2708
  "Gcd K \<ge> 0"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2709
  for K :: "int set"
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2710
  using abs_ge_zero [of "Gcd K"] by simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2711
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2712
lemma Gcd_abs_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2713
  "(GCD k\<in>K. \<bar>k\<bar>) = Gcd K"
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2714
  for K :: "int set"
67118
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2715
  by (simp only: Gcd_int_def image_image) simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2716
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2717
lemma Lcm_int_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2718
  "(LCM n\<in>N. int n) = int (Lcm N)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2719
  by (simp add: Lcm_int_def image_image)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2720
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2721
lemma Lcm_nat_abs_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2722
  "(LCM k\<in>K. nat \<bar>k\<bar>) = nat (Lcm K)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2723
  by (simp add: Lcm_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2724
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2725
lemma abs_Lcm_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2726
  "\<bar>Lcm K\<bar> = Lcm K" for K :: "int set"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2727
  by (simp only: Lcm_int_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2728
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2729
lemma Lcm_int_greater_eq_0 [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2730
  "Lcm K \<ge> 0"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2731
  for K :: "int set"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2732
  using abs_ge_zero [of "Lcm K"] by simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2733
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2734
lemma Lcm_abs_eq [simp]:
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2735
  "(LCM k\<in>K. \<bar>k\<bar>) = Lcm K"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2736
  for K :: "int set"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2737
  by (simp only: Lcm_int_def image_image) simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2738
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2739
instance int :: semiring_Gcd
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2740
proof
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2741
  fix K :: "int set" and k :: int
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2742
  show "Gcd K dvd k" and "k dvd Lcm K" if "k \<in> K"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2743
    using that Gcd_dvd [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"]
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2744
      dvd_Lcm [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"]
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2745
    by (simp_all add: comp_def)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2746
  show "k dvd Gcd K" if "\<And>l. l \<in> K \<Longrightarrow> k dvd l"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2747
  proof -
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2748
    have "nat \<bar>k\<bar> dvd (GCD k\<in>K. nat \<bar>k\<bar>)"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2749
      by (rule Gcd_greatest) (use that in auto)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2750
    then show ?thesis by simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2751
  qed
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2752
  show "Lcm K dvd k" if "\<And>l. l \<in> K \<Longrightarrow> l dvd k"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2753
  proof -
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2754
    have "(LCM k\<in>K. nat \<bar>k\<bar>) dvd nat \<bar>k\<bar>"
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2755
      by (rule Lcm_least) (use that in auto)
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2756
    then show ?thesis by simp
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2757
  qed
ccab07d1196c more simplification rules
haftmann
parents: 67051
diff changeset
  2758
qed simp_all
62346
97f2ed240431 more theorems concerning gcd/lcm/Gcd/Lcm
haftmann
parents: 62345
diff changeset
  2759
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2760
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2761
subsection \<open>GCD and LCM on @{typ integer}\<close>
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2762
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2763
instantiation integer :: gcd
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2764
begin
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2765
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2766
context
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2767
  includes integer.lifting
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2768
begin
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2769
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2770
lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd .
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2771
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2772
lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm .
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2773
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2774
end
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2775
45264
3b2c770f6631 merge Gcd/GCD and Lcm/LCM
huffman
parents: 44890
diff changeset
  2776
instance ..
60686
ea5bc46c11e6 more algebraic properties for gcd/lcm
haftmann
parents: 60597
diff changeset
  2777
21256
47195501ecf7 moved theories Parity, GCD, Binomial to Library;
wenzelm
parents:
diff changeset
  2778
end
45264
3b2c770f6631 merge Gcd/GCD and Lcm/LCM
huffman
parents: 44890
diff changeset
  2779
61856
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2780
lifting_update integer.lifting
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2781
lifting_forget integer.lifting
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2782
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2783
context
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2784
  includes integer.lifting
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2785
begin
61856
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2786
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2787
lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2788
  by transfer (fact gcd_code_int)
61856
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2789
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2790
lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2791
  for a b :: integer
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2792
  by transfer (fact lcm_altdef_int)
61856
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2793
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2794
end
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2795
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2796
code_printing
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2797
  constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2798
    (OCaml) "Big'_int.gcd'_big'_int"
61856
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2799
  and (Haskell) "Prelude.gcd"
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2800
  and (Scala) "_.gcd'((_)')"
61975
b4b11391c676 isabelle update_cartouches -c -t;
wenzelm
parents: 61954
diff changeset
  2801
  \<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close>
61856
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2802
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2803
text \<open>Some code equations\<close>
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2804
64850
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  2805
lemmas Gcd_nat_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = nat]
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  2806
lemmas Lcm_nat_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = nat]
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  2807
lemmas Gcd_int_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = int]
fc9265882329 gcd/lcm on finite sets
haftmann
parents: 64591
diff changeset
  2808
lemmas Lcm_int_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = int]
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2809
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2810
text \<open>Fact aliases.\<close>
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2811
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2812
lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2813
  for m n :: nat
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2814
  by (fact lcm_eq_0_iff)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2815
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2816
lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2817
  for m n :: int
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2818
  by (fact lcm_eq_0_iff)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2819
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2820
lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2821
  for k m n :: nat
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2822
  by (fact dvd_lcmI1)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2823
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2824
lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2825
  for k m n :: nat
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2826
  by (fact dvd_lcmI2)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2827
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2828
lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2829
  for i m n :: int
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2830
  by (fact dvd_lcmI1)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2831
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2832
lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2833
  for i m n :: int
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2834
  by (fact dvd_lcmI2)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2835
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2836
lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat]
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2837
lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int]
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2838
lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat]
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2839
lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int]
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2840
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2841
lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2842
  for M :: "int set"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2843
  by (fact dvd_Lcm)
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2844
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2845
lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x"
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2846
  by (fact gcd_neg1_int)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2847
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2848
lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)"
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2849
  by (fact gcd_neg2_int)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2850
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2851
lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2852
  for x y :: nat
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2853
  by (fact gcd_nat.absorb1)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2854
63489
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2855
lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y"
cd540c8031a4 misc tuning and modernization;
wenzelm
parents: 63359
diff changeset
  2856
  for x y :: nat
62344
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2857
  by (fact gcd_nat.absorb2)
759d684c0e60 pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents: 62343
diff changeset
  2858
62353
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2859
lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat]
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2860
lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat]
7f927120b5a2 dropped various legacy fact bindings and tuned proofs
haftmann
parents: 62350
diff changeset
  2861
lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int]
62345
e66d7841d5a2 further generalization and polishing
haftmann
parents: 62344
diff changeset
  2862
61856
4b1b85f38944 add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents: 61799
diff changeset
  2863
end