author | lcp |
Thu, 06 Apr 1995 10:51:42 +0200 | |
changeset 998 | 91d09e262799 |
parent 972 | e61b058d58d2 |
child 1068 | e0f2dffab506 |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/Univ.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
Move LEAST to Nat.thy??? Could it be defined for all types 'a::ord? |
|
7 |
||
8 |
Declares the type 'a node, a subtype of (nat=>nat) * ('a+nat) |
|
9 |
||
10 |
Defines "Cartesian Product" and "Disjoint Sum" as set operations. |
|
11 |
Could <*> be generalized to a general summation (Sigma)? |
|
12 |
*) |
|
13 |
||
14 |
Univ = Arith + Sum + |
|
15 |
||
16 |
(** lists, trees will be sets of nodes **) |
|
17 |
||
18 |
subtype (Node) |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
19 |
'a node = "{p. EX f x k. p = (f::nat=>nat, x::'a+nat) & f(k)=0}" |
923 | 20 |
|
21 |
types |
|
22 |
'a item = "'a node set" |
|
23 |
||
24 |
consts |
|
25 |
Least :: "(nat=>bool) => nat" (binder "LEAST " 10) |
|
26 |
||
27 |
apfst :: "['a=>'c, 'a*'b] => 'c*'b" |
|
28 |
Push :: "[nat, nat=>nat] => (nat=>nat)" |
|
29 |
||
30 |
Push_Node :: "[nat, 'a node] => 'a node" |
|
31 |
ndepth :: "'a node => nat" |
|
32 |
||
33 |
Atom :: "('a+nat) => 'a item" |
|
34 |
Leaf :: "'a => 'a item" |
|
35 |
Numb :: "nat => 'a item" |
|
36 |
"$" :: "['a item, 'a item]=> 'a item" (infixr 60) |
|
37 |
In0,In1 :: "'a item => 'a item" |
|
38 |
||
39 |
ntrunc :: "[nat, 'a item] => 'a item" |
|
40 |
||
41 |
"<*>" :: "['a item set, 'a item set]=> 'a item set" (infixr 80) |
|
42 |
"<+>" :: "['a item set, 'a item set]=> 'a item set" (infixr 70) |
|
43 |
||
44 |
Split :: "[['a item, 'a item]=>'b, 'a item] => 'b" |
|
45 |
Case :: "[['a item]=>'b, ['a item]=>'b, 'a item] => 'b" |
|
46 |
||
47 |
diag :: "'a set => ('a * 'a)set" |
|
48 |
"<**>" :: "[('a item * 'a item)set, ('a item * 'a item)set] \ |
|
49 |
\ => ('a item * 'a item)set" (infixr 80) |
|
50 |
"<++>" :: "[('a item * 'a item)set, ('a item * 'a item)set] \ |
|
51 |
\ => ('a item * 'a item)set" (infixr 70) |
|
52 |
||
53 |
defs |
|
54 |
||
55 |
(*least number operator*) |
|
56 |
Least_def "Least(P) == @k. P(k) & (ALL j. j<k --> ~P(j))" |
|
57 |
||
58 |
Push_Node_def "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" |
|
59 |
||
60 |
(*crude "lists" of nats -- needed for the constructions*) |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
61 |
apfst_def "apfst == (%f. split(%x y. (f(x),y)))" |
923 | 62 |
Push_def "Push == (%b h. nat_case (Suc b) h)" |
63 |
||
64 |
(** operations on S-expressions -- sets of nodes **) |
|
65 |
||
66 |
(*S-expression constructors*) |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
67 |
Atom_def "Atom == (%x. {Abs_Node((%k.0, x))})" |
923 | 68 |
Scons_def "M$N == (Push_Node(0) `` M) Un (Push_Node(Suc(0)) `` N)" |
69 |
||
70 |
(*Leaf nodes, with arbitrary or nat labels*) |
|
71 |
Leaf_def "Leaf == Atom o Inl" |
|
72 |
Numb_def "Numb == Atom o Inr" |
|
73 |
||
74 |
(*Injections of the "disjoint sum"*) |
|
75 |
In0_def "In0(M) == Numb(0) $ M" |
|
76 |
In1_def "In1(M) == Numb(Suc(0)) $ M" |
|
77 |
||
78 |
(*the set of nodes with depth less than k*) |
|
79 |
ndepth_def "ndepth(n) == split (%f x. LEAST k. f(k)=0) (Rep_Node n)" |
|
80 |
ntrunc_def "ntrunc k N == {n. n:N & ndepth(n)<k}" |
|
81 |
||
82 |
(*products and sums for the "universe"*) |
|
83 |
uprod_def "A<*>B == UN x:A. UN y:B. { (x$y) }" |
|
84 |
usum_def "A<+>B == In0``A Un In1``B" |
|
85 |
||
86 |
(*the corresponding eliminators*) |
|
87 |
Split_def "Split c M == @u. ? x y. M = x$y & u = c x y" |
|
88 |
||
89 |
Case_def "Case c d M == @u. (? x . M = In0(x) & u = c(x)) \ |
|
90 |
\ | (? y . M = In1(y) & u = d(y))" |
|
91 |
||
92 |
||
93 |
(** diagonal sets and equality for the "universe" **) |
|
94 |
||
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
95 |
diag_def "diag(A) == UN x:A. {(x,x)}" |
923 | 96 |
|
97 |
dprod_def "r<**>s == UN u:r. split (%x x'. \ |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
98 |
\ UN v:s. split (%y y'. {(x$y,x'$y')}) v) u" |
923 | 99 |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
100 |
dsum_def "r<++>s == (UN u:r. split (%x x'. {(In0(x),In0(x'))}) u) Un \ |
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
101 |
\ (UN v:s. split (%y y'. {(In1(y),In1(y'))}) v)" |
923 | 102 |
|
103 |
end |