| 
17456
 | 
     1  | 
(*  Title:      CCL/Hered.thy
  | 
| 
0
 | 
     2  | 
    ID:         $Id$
  | 
| 
1474
 | 
     3  | 
    Author:     Martin Coen
  | 
| 
0
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
17456
 | 
     7  | 
header {* Hereditary Termination -- cf. Martin Lo\"f *}
 | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory Hered
  | 
| 
 | 
    10  | 
imports Type
  | 
| 
 | 
    11  | 
begin
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
text {*
 | 
| 
 | 
    14  | 
  Note that this is based on an untyped equality and so @{text "lam
 | 
| 
 | 
    15  | 
  x. b(x)"} is only hereditarily terminating if @{text "ALL x. b(x)"}
 | 
| 
 | 
    16  | 
  is.  Not so useful for functions!
  | 
| 
 | 
    17  | 
*}
  | 
| 
0
 | 
    18  | 
  | 
| 
 | 
    19  | 
consts
  | 
| 
 | 
    20  | 
      (*** Predicates ***)
  | 
| 
 | 
    21  | 
  HTTgen     ::       "i set => i set"
  | 
| 
 | 
    22  | 
  HTT        ::       "i set"
  | 
| 
 | 
    23  | 
  | 
| 
17456
 | 
    24  | 
axioms
  | 
| 
0
 | 
    25  | 
  (*** Definitions of Hereditary Termination ***)
  | 
| 
 | 
    26  | 
  | 
| 
17456
 | 
    27  | 
  HTTgen_def:
  | 
| 
 | 
    28  | 
  "HTTgen(R) == {t. t=true | t=false | (EX a b. t=<a,b>      & a : R & b : R) |
 | 
| 
3837
 | 
    29  | 
                                      (EX f.  t=lam x. f(x) & (ALL x. f(x) : R))}"
  | 
| 
17456
 | 
    30  | 
  HTT_def:       "HTT == gfp(HTTgen)"
  | 
| 
 | 
    31  | 
  | 
| 
20140
 | 
    32  | 
  | 
| 
 | 
    33  | 
subsection {* Hereditary Termination *}
 | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma HTTgen_mono: "mono(%X. HTTgen(X))"
  | 
| 
 | 
    36  | 
  apply (unfold HTTgen_def)
  | 
| 
 | 
    37  | 
  apply (rule monoI)
  | 
| 
 | 
    38  | 
  apply blast
  | 
| 
 | 
    39  | 
  done
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
lemma HTTgenXH: 
  | 
| 
 | 
    42  | 
  "t : HTTgen(A) <-> t=true | t=false | (EX a b. t=<a,b> & a : A & b : A) |  
  | 
| 
 | 
    43  | 
                                        (EX f. t=lam x. f(x) & (ALL x. f(x) : A))"
  | 
| 
 | 
    44  | 
  apply (unfold HTTgen_def)
  | 
| 
 | 
    45  | 
  apply blast
  | 
| 
 | 
    46  | 
  done
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma HTTXH: 
  | 
| 
 | 
    49  | 
  "t : HTT <-> t=true | t=false | (EX a b. t=<a,b> & a : HTT & b : HTT) |  
  | 
| 
 | 
    50  | 
                                   (EX f. t=lam x. f(x) & (ALL x. f(x) : HTT))"
  | 
| 
 | 
    51  | 
  apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def])
  | 
| 
 | 
    52  | 
  apply blast
  | 
| 
 | 
    53  | 
  done
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
subsection {* Introduction Rules for HTT *}
 | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma HTT_bot: "~ bot : HTT"
  | 
| 
 | 
    59  | 
  by (blast dest: HTTXH [THEN iffD1])
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma HTT_true: "true : HTT"
  | 
| 
 | 
    62  | 
  by (blast intro: HTTXH [THEN iffD2])
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
lemma HTT_false: "false : HTT"
  | 
| 
 | 
    65  | 
  by (blast intro: HTTXH [THEN iffD2])
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
lemma HTT_pair: "<a,b> : HTT <->  a : HTT  & b : HTT"
  | 
| 
 | 
    68  | 
  apply (rule HTTXH [THEN iff_trans])
  | 
| 
 | 
    69  | 
  apply blast
  | 
| 
 | 
    70  | 
  done
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma HTT_lam: "lam x. f(x) : HTT <-> (ALL x. f(x) : HTT)"
  | 
| 
 | 
    73  | 
  apply (rule HTTXH [THEN iff_trans])
  | 
| 
 | 
    74  | 
  apply auto
  | 
| 
 | 
    75  | 
  done
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
lemma HTT_rews2:
  | 
| 
 | 
    80  | 
  "one : HTT"
  | 
| 
 | 
    81  | 
  "inl(a) : HTT <-> a : HTT"
  | 
| 
 | 
    82  | 
  "inr(b) : HTT <-> b : HTT"
  | 
| 
 | 
    83  | 
  "zero : HTT"
  | 
| 
 | 
    84  | 
  "succ(n) : HTT <-> n : HTT"
  | 
| 
 | 
    85  | 
  "[] : HTT"
  | 
| 
 | 
    86  | 
  "x$xs : HTT <-> x : HTT & xs : HTT"
  | 
| 
 | 
    87  | 
  by (simp_all add: data_defs HTT_rews1)
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
lemmas HTT_rews = HTT_rews1 HTT_rews2
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
subsection {* Coinduction for HTT *}
 | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma HTT_coinduct: "[|  t : R;  R <= HTTgen(R) |] ==> t : HTT"
  | 
| 
 | 
    95  | 
  apply (erule HTT_def [THEN def_coinduct])
  | 
| 
 | 
    96  | 
  apply assumption
  | 
| 
 | 
    97  | 
  done
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
ML {*
 | 
| 
 | 
   100  | 
  local val HTT_coinduct = thm "HTT_coinduct"
  | 
| 
 | 
   101  | 
  in fun HTT_coinduct_tac s i = res_inst_tac [("R", s)] HTT_coinduct i end
 | 
| 
 | 
   102  | 
*}
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
lemma HTT_coinduct3:
  | 
| 
 | 
   105  | 
  "[|  t : R;   R <= HTTgen(lfp(%x. HTTgen(x) Un R Un HTT)) |] ==> t : HTT"
  | 
| 
 | 
   106  | 
  apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]])
  | 
| 
 | 
   107  | 
  apply assumption
  | 
| 
 | 
   108  | 
  done
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
ML {*
 | 
| 
 | 
   111  | 
local
  | 
| 
 | 
   112  | 
  val HTT_coinduct3 = thm "HTT_coinduct3"
  | 
| 
 | 
   113  | 
  val HTTgen_def = thm "HTTgen_def"
  | 
| 
 | 
   114  | 
in
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
val HTT_coinduct3_raw = rewrite_rule [HTTgen_def] HTT_coinduct3
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
fun HTT_coinduct3_tac s i = res_inst_tac [("R",s)] HTT_coinduct3 i
 | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
val HTTgenIs =
  | 
| 
 | 
   121  | 
  map (mk_genIs (the_context ()) (thms "data_defs") (thm "HTTgenXH") (thm "HTTgen_mono"))
  | 
| 
 | 
   122  | 
  ["true : HTTgen(R)",
  | 
| 
 | 
   123  | 
   "false : HTTgen(R)",
  | 
| 
 | 
   124  | 
   "[| a : R;  b : R |] ==> <a,b> : HTTgen(R)",
  | 
| 
 | 
   125  | 
   "[| !!x. b(x) : R |] ==> lam x. b(x) : HTTgen(R)",
  | 
| 
 | 
   126  | 
   "one : HTTgen(R)",
  | 
| 
 | 
   127  | 
   "a : lfp(%x. HTTgen(x) Un R Un HTT) ==> inl(a) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
  | 
| 
 | 
   128  | 
   "b : lfp(%x. HTTgen(x) Un R Un HTT) ==> inr(b) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
  | 
| 
 | 
   129  | 
   "zero : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
  | 
| 
 | 
   130  | 
   "n : lfp(%x. HTTgen(x) Un R Un HTT) ==> succ(n) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
  | 
| 
 | 
   131  | 
   "[] : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
  | 
| 
 | 
   132  | 
   "[| h : lfp(%x. HTTgen(x) Un R Un HTT); t : lfp(%x. HTTgen(x) Un R Un HTT) |] ==> h$t : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"]
  | 
| 
0
 | 
   133  | 
  | 
| 
 | 
   134  | 
end
  | 
| 
20140
 | 
   135  | 
*}
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
ML {* bind_thms ("HTTgenIs", HTTgenIs) *}
 | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
subsection {* Formation Rules for Types *}
 | 
| 
 | 
   141  | 
  | 
| 
 | 
   142  | 
lemma UnitF: "Unit <= HTT"
  | 
| 
 | 
   143  | 
  by (simp add: subsetXH UnitXH HTT_rews)
  | 
| 
 | 
   144  | 
  | 
| 
 | 
   145  | 
lemma BoolF: "Bool <= HTT"
  | 
| 
 | 
   146  | 
  by (fastsimp simp: subsetXH BoolXH iff: HTT_rews)
  | 
| 
 | 
   147  | 
  | 
| 
 | 
   148  | 
lemma PlusF: "[| A <= HTT;  B <= HTT |] ==> A + B  <= HTT"
  | 
| 
 | 
   149  | 
  by (fastsimp simp: subsetXH PlusXH iff: HTT_rews)
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
lemma SigmaF: "[| A <= HTT;  !!x. x:A ==> B(x) <= HTT |] ==> SUM x:A. B(x) <= HTT"
  | 
| 
 | 
   152  | 
  by (fastsimp simp: subsetXH SgXH HTT_rews)
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
(*** Formation Rules for Recursive types - using coinduction these only need ***)
  | 
| 
 | 
   156  | 
(***                                          exhaution rule for type-former ***)
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
(*Proof by induction - needs induction rule for type*)
  | 
| 
 | 
   159  | 
lemma "Nat <= HTT"
  | 
| 
 | 
   160  | 
  apply (simp add: subsetXH)
  | 
| 
 | 
   161  | 
  apply clarify
  | 
| 
 | 
   162  | 
  apply (erule Nat_ind)
  | 
| 
 | 
   163  | 
   apply (fastsimp iff: HTT_rews)+
  | 
| 
 | 
   164  | 
  done
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
lemma NatF: "Nat <= HTT"
  | 
| 
 | 
   167  | 
  apply clarify
  | 
| 
 | 
   168  | 
  apply (erule HTT_coinduct3)
  | 
| 
 | 
   169  | 
  apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1])
  | 
| 
 | 
   170  | 
  done
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
lemma ListF: "A <= HTT ==> List(A) <= HTT"
  | 
| 
 | 
   173  | 
  apply clarify
  | 
| 
 | 
   174  | 
  apply (erule HTT_coinduct3)
  | 
| 
 | 
   175  | 
  apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
  | 
| 
 | 
   176  | 
    subsetD [THEN HTTgen_mono [THEN ci3_AI]]
  | 
| 
 | 
   177  | 
    dest: ListXH [THEN iffD1])
  | 
| 
 | 
   178  | 
  done
  | 
| 
 | 
   179  | 
  | 
| 
 | 
   180  | 
lemma ListsF: "A <= HTT ==> Lists(A) <= HTT"
  | 
| 
 | 
   181  | 
  apply clarify
  | 
| 
 | 
   182  | 
  apply (erule HTT_coinduct3)
  | 
| 
 | 
   183  | 
  apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
  | 
| 
 | 
   184  | 
    subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1])
  | 
| 
 | 
   185  | 
  done
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
lemma IListsF: "A <= HTT ==> ILists(A) <= HTT"
  | 
| 
 | 
   188  | 
  apply clarify
  | 
| 
 | 
   189  | 
  apply (erule HTT_coinduct3)
  | 
| 
 | 
   190  | 
  apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
  | 
| 
 | 
   191  | 
    subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1])
  | 
| 
 | 
   192  | 
  done
  | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
end
  |