author | haftmann |
Fri, 20 Oct 2017 20:57:55 +0200 | |
changeset 66888 | 930abfdf8727 |
parent 66815 | 93c6632ddf44 |
child 67399 | eab6ce8368fa |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/StarDef.thy |
2 |
Author: Jacques D. Fleuriot and Brian Huffman |
|
27468 | 3 |
*) |
4 |
||
61975 | 5 |
section \<open>Construction of Star Types Using Ultrafilters\<close> |
27468 | 6 |
|
7 |
theory StarDef |
|
64435 | 8 |
imports Free_Ultrafilter |
27468 | 9 |
begin |
10 |
||
61975 | 11 |
subsection \<open>A Free Ultrafilter over the Naturals\<close> |
27468 | 12 |
|
64435 | 13 |
definition FreeUltrafilterNat :: "nat filter" ("\<U>") |
14 |
where "\<U> = (SOME U. freeultrafilter U)" |
|
27468 | 15 |
|
16 |
lemma freeultrafilter_FreeUltrafilterNat: "freeultrafilter \<U>" |
|
64435 | 17 |
apply (unfold FreeUltrafilterNat_def) |
18 |
apply (rule someI_ex) |
|
19 |
apply (rule freeultrafilter_Ex) |
|
20 |
apply (rule infinite_UNIV_nat) |
|
21 |
done |
|
27468 | 22 |
|
64438 | 23 |
interpretation FreeUltrafilterNat: freeultrafilter \<U> |
64435 | 24 |
by (rule freeultrafilter_FreeUltrafilterNat) |
25 |
||
27468 | 26 |
|
61975 | 27 |
subsection \<open>Definition of \<open>star\<close> type constructor\<close> |
27468 | 28 |
|
64435 | 29 |
definition starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set" |
30 |
where "starrel = {(X, Y). eventually (\<lambda>n. X n = Y n) \<U>}" |
|
27468 | 31 |
|
45694
4a8743618257
prefer typedef without extra definition and alternative name;
wenzelm
parents:
45605
diff
changeset
|
32 |
definition "star = (UNIV :: (nat \<Rightarrow> 'a) set) // starrel" |
4a8743618257
prefer typedef without extra definition and alternative name;
wenzelm
parents:
45605
diff
changeset
|
33 |
|
49834 | 34 |
typedef 'a star = "star :: (nat \<Rightarrow> 'a) set set" |
64435 | 35 |
by (auto simp: star_def intro: quotientI) |
27468 | 36 |
|
64435 | 37 |
definition star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star" |
38 |
where "star_n X = Abs_star (starrel `` {X})" |
|
27468 | 39 |
|
40 |
theorem star_cases [case_names star_n, cases type: star]: |
|
64435 | 41 |
obtains X where "x = star_n X" |
42 |
by (cases x) (auto simp: star_n_def star_def elim: quotientE) |
|
27468 | 43 |
|
64435 | 44 |
lemma all_star_eq: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>X. P (star_n X))" |
45 |
apply auto |
|
46 |
apply (rule_tac x = x in star_cases) |
|
47 |
apply simp |
|
48 |
done |
|
27468 | 49 |
|
64435 | 50 |
lemma ex_star_eq: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>X. P (star_n X))" |
51 |
apply auto |
|
52 |
apply (rule_tac x=x in star_cases) |
|
53 |
apply auto |
|
54 |
done |
|
27468 | 55 |
|
64435 | 56 |
text \<open>Proving that @{term starrel} is an equivalence relation.\<close> |
27468 | 57 |
|
64435 | 58 |
lemma starrel_iff [iff]: "(X, Y) \<in> starrel \<longleftrightarrow> eventually (\<lambda>n. X n = Y n) \<U>" |
59 |
by (simp add: starrel_def) |
|
27468 | 60 |
|
61 |
lemma equiv_starrel: "equiv UNIV starrel" |
|
40815 | 62 |
proof (rule equivI) |
30198 | 63 |
show "refl starrel" by (simp add: refl_on_def) |
27468 | 64 |
show "sym starrel" by (simp add: sym_def eq_commute) |
60041 | 65 |
show "trans starrel" by (intro transI) (auto elim: eventually_elim2) |
27468 | 66 |
qed |
67 |
||
64435 | 68 |
lemmas equiv_starrel_iff = eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I] |
27468 | 69 |
|
70 |
lemma starrel_in_star: "starrel``{x} \<in> star" |
|
64435 | 71 |
by (simp add: star_def quotientI) |
27468 | 72 |
|
64435 | 73 |
lemma star_n_eq_iff: "star_n X = star_n Y \<longleftrightarrow> eventually (\<lambda>n. X n = Y n) \<U>" |
74 |
by (simp add: star_n_def Abs_star_inject starrel_in_star equiv_starrel_iff) |
|
27468 | 75 |
|
76 |
||
61975 | 77 |
subsection \<open>Transfer principle\<close> |
27468 | 78 |
|
61975 | 79 |
text \<open>This introduction rule starts each transfer proof.\<close> |
64435 | 80 |
lemma transfer_start: "P \<equiv> eventually (\<lambda>n. Q) \<U> \<Longrightarrow> Trueprop P \<equiv> Trueprop Q" |
60041 | 81 |
by (simp add: FreeUltrafilterNat.proper) |
27468 | 82 |
|
64270
bf474d719011
Modified transfer principle in HOL/NSA to cause less ho-unficiation
Simon Wimmer <wimmers@in.tum.de>
parents:
64242
diff
changeset
|
83 |
text \<open>Standard principles that play a central role in the transfer tactic.\<close> |
64600 | 84 |
definition Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" ("(_ \<star>/ _)" [300, 301] 300) |
64435 | 85 |
where "Ifun f \<equiv> |
86 |
\<lambda>x. Abs_star (\<Union>F\<in>Rep_star f. \<Union>X\<in>Rep_star x. starrel``{\<lambda>n. F n (X n)})" |
|
64270
bf474d719011
Modified transfer principle in HOL/NSA to cause less ho-unficiation
Simon Wimmer <wimmers@in.tum.de>
parents:
64242
diff
changeset
|
87 |
|
64435 | 88 |
lemma Ifun_congruent2: "congruent2 starrel starrel (\<lambda>F X. starrel``{\<lambda>n. F n (X n)})" |
89 |
by (auto simp add: congruent2_def equiv_starrel_iff elim!: eventually_rev_mp) |
|
64270
bf474d719011
Modified transfer principle in HOL/NSA to cause less ho-unficiation
Simon Wimmer <wimmers@in.tum.de>
parents:
64242
diff
changeset
|
90 |
|
bf474d719011
Modified transfer principle in HOL/NSA to cause less ho-unficiation
Simon Wimmer <wimmers@in.tum.de>
parents:
64242
diff
changeset
|
91 |
lemma Ifun_star_n: "star_n F \<star> star_n X = star_n (\<lambda>n. F n (X n))" |
64435 | 92 |
by (simp add: Ifun_def star_n_def Abs_star_inverse starrel_in_star |
93 |
UN_equiv_class2 [OF equiv_starrel equiv_starrel Ifun_congruent2]) |
|
64270
bf474d719011
Modified transfer principle in HOL/NSA to cause less ho-unficiation
Simon Wimmer <wimmers@in.tum.de>
parents:
64242
diff
changeset
|
94 |
|
64435 | 95 |
lemma transfer_Ifun: "f \<equiv> star_n F \<Longrightarrow> x \<equiv> star_n X \<Longrightarrow> f \<star> x \<equiv> star_n (\<lambda>n. F n (X n))" |
96 |
by (simp only: Ifun_star_n) |
|
64270
bf474d719011
Modified transfer principle in HOL/NSA to cause less ho-unficiation
Simon Wimmer <wimmers@in.tum.de>
parents:
64242
diff
changeset
|
97 |
|
64435 | 98 |
definition star_of :: "'a \<Rightarrow> 'a star" |
99 |
where "star_of x \<equiv> star_n (\<lambda>n. x)" |
|
64270
bf474d719011
Modified transfer principle in HOL/NSA to cause less ho-unficiation
Simon Wimmer <wimmers@in.tum.de>
parents:
64242
diff
changeset
|
100 |
|
61975 | 101 |
text \<open>Initialize transfer tactic.\<close> |
48891 | 102 |
ML_file "transfer.ML" |
27468 | 103 |
|
64435 | 104 |
method_setup transfer = |
105 |
\<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (Transfer_Principle.transfer_tac ctxt ths))\<close> |
|
106 |
"transfer principle" |
|
47432 | 107 |
|
108 |
||
61975 | 109 |
text \<open>Transfer introduction rules.\<close> |
27468 | 110 |
|
111 |
lemma transfer_ex [transfer_intro]: |
|
64435 | 112 |
"(\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow> |
113 |
\<exists>x::'a star. p x \<equiv> eventually (\<lambda>n. \<exists>x. P n x) \<U>" |
|
114 |
by (simp only: ex_star_eq eventually_ex) |
|
27468 | 115 |
|
116 |
lemma transfer_all [transfer_intro]: |
|
64435 | 117 |
"(\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow> |
118 |
\<forall>x::'a star. p x \<equiv> eventually (\<lambda>n. \<forall>x. P n x) \<U>" |
|
119 |
by (simp only: all_star_eq FreeUltrafilterNat.eventually_all_iff) |
|
27468 | 120 |
|
64435 | 121 |
lemma transfer_not [transfer_intro]: "p \<equiv> eventually P \<U> \<Longrightarrow> \<not> p \<equiv> eventually (\<lambda>n. \<not> P n) \<U>" |
122 |
by (simp only: FreeUltrafilterNat.eventually_not_iff) |
|
27468 | 123 |
|
124 |
lemma transfer_conj [transfer_intro]: |
|
64435 | 125 |
"p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p \<and> q \<equiv> eventually (\<lambda>n. P n \<and> Q n) \<U>" |
126 |
by (simp only: eventually_conj_iff) |
|
27468 | 127 |
|
128 |
lemma transfer_disj [transfer_intro]: |
|
64435 | 129 |
"p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p \<or> q \<equiv> eventually (\<lambda>n. P n \<or> Q n) \<U>" |
130 |
by (simp only: FreeUltrafilterNat.eventually_disj_iff) |
|
27468 | 131 |
|
132 |
lemma transfer_imp [transfer_intro]: |
|
64435 | 133 |
"p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p \<longrightarrow> q \<equiv> eventually (\<lambda>n. P n \<longrightarrow> Q n) \<U>" |
134 |
by (simp only: FreeUltrafilterNat.eventually_imp_iff) |
|
27468 | 135 |
|
136 |
lemma transfer_iff [transfer_intro]: |
|
64435 | 137 |
"p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p = q \<equiv> eventually (\<lambda>n. P n = Q n) \<U>" |
138 |
by (simp only: FreeUltrafilterNat.eventually_iff_iff) |
|
27468 | 139 |
|
140 |
lemma transfer_if_bool [transfer_intro]: |
|
64435 | 141 |
"p \<equiv> eventually P \<U> \<Longrightarrow> x \<equiv> eventually X \<U> \<Longrightarrow> y \<equiv> eventually Y \<U> \<Longrightarrow> |
142 |
(if p then x else y) \<equiv> eventually (\<lambda>n. if P n then X n else Y n) \<U>" |
|
143 |
by (simp only: if_bool_eq_conj transfer_conj transfer_imp transfer_not) |
|
27468 | 144 |
|
145 |
lemma transfer_eq [transfer_intro]: |
|
64435 | 146 |
"x \<equiv> star_n X \<Longrightarrow> y \<equiv> star_n Y \<Longrightarrow> x = y \<equiv> eventually (\<lambda>n. X n = Y n) \<U>" |
147 |
by (simp only: star_n_eq_iff) |
|
27468 | 148 |
|
149 |
lemma transfer_if [transfer_intro]: |
|
64435 | 150 |
"p \<equiv> eventually (\<lambda>n. P n) \<U> \<Longrightarrow> x \<equiv> star_n X \<Longrightarrow> y \<equiv> star_n Y \<Longrightarrow> |
151 |
(if p then x else y) \<equiv> star_n (\<lambda>n. if P n then X n else Y n)" |
|
152 |
by (rule eq_reflection) (auto simp: star_n_eq_iff transfer_not elim!: eventually_mono) |
|
27468 | 153 |
|
154 |
lemma transfer_fun_eq [transfer_intro]: |
|
64435 | 155 |
"(\<And>X. f (star_n X) = g (star_n X) \<equiv> eventually (\<lambda>n. F n (X n) = G n (X n)) \<U>) \<Longrightarrow> |
156 |
f = g \<equiv> eventually (\<lambda>n. F n = G n) \<U>" |
|
157 |
by (simp only: fun_eq_iff transfer_all) |
|
27468 | 158 |
|
159 |
lemma transfer_star_n [transfer_intro]: "star_n X \<equiv> star_n (\<lambda>n. X n)" |
|
64435 | 160 |
by (rule reflexive) |
27468 | 161 |
|
60041 | 162 |
lemma transfer_bool [transfer_intro]: "p \<equiv> eventually (\<lambda>n. p) \<U>" |
64435 | 163 |
by (simp add: FreeUltrafilterNat.proper) |
27468 | 164 |
|
165 |
||
61975 | 166 |
subsection \<open>Standard elements\<close> |
27468 | 167 |
|
64435 | 168 |
definition Standard :: "'a star set" |
169 |
where "Standard = range star_of" |
|
27468 | 170 |
|
64435 | 171 |
text \<open>Transfer tactic should remove occurrences of @{term star_of}.\<close> |
61975 | 172 |
setup \<open>Transfer_Principle.add_const @{const_name star_of}\<close> |
27468 | 173 |
|
64435 | 174 |
lemma star_of_inject: "star_of x = star_of y \<longleftrightarrow> x = y" |
175 |
by transfer (rule refl) |
|
27468 | 176 |
|
177 |
lemma Standard_star_of [simp]: "star_of x \<in> Standard" |
|
64435 | 178 |
by (simp add: Standard_def) |
179 |
||
27468 | 180 |
|
61975 | 181 |
subsection \<open>Internal functions\<close> |
27468 | 182 |
|
64435 | 183 |
text \<open>Transfer tactic should remove occurrences of @{term Ifun}.\<close> |
61975 | 184 |
setup \<open>Transfer_Principle.add_const @{const_name Ifun}\<close> |
27468 | 185 |
|
186 |
lemma Ifun_star_of [simp]: "star_of f \<star> star_of x = star_of (f x)" |
|
64435 | 187 |
by transfer (rule refl) |
27468 | 188 |
|
64435 | 189 |
lemma Standard_Ifun [simp]: "f \<in> Standard \<Longrightarrow> x \<in> Standard \<Longrightarrow> f \<star> x \<in> Standard" |
190 |
by (auto simp add: Standard_def) |
|
27468 | 191 |
|
192 |
||
64435 | 193 |
text \<open>Nonstandard extensions of functions.\<close> |
27468 | 194 |
|
64435 | 195 |
definition starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a star \<Rightarrow> 'b star" ("*f* _" [80] 80) |
196 |
where "starfun f \<equiv> \<lambda>x. star_of f \<star> x" |
|
197 |
||
198 |
definition starfun2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> 'c star" ("*f2* _" [80] 80) |
|
199 |
where "starfun2 f \<equiv> \<lambda>x y. star_of f \<star> x \<star> y" |
|
27468 | 200 |
|
201 |
declare starfun_def [transfer_unfold] |
|
202 |
declare starfun2_def [transfer_unfold] |
|
203 |
||
204 |
lemma starfun_star_n: "( *f* f) (star_n X) = star_n (\<lambda>n. f (X n))" |
|
64435 | 205 |
by (simp only: starfun_def star_of_def Ifun_star_n) |
27468 | 206 |
|
64435 | 207 |
lemma starfun2_star_n: "( *f2* f) (star_n X) (star_n Y) = star_n (\<lambda>n. f (X n) (Y n))" |
208 |
by (simp only: starfun2_def star_of_def Ifun_star_n) |
|
27468 | 209 |
|
210 |
lemma starfun_star_of [simp]: "( *f* f) (star_of x) = star_of (f x)" |
|
64435 | 211 |
by transfer (rule refl) |
27468 | 212 |
|
213 |
lemma starfun2_star_of [simp]: "( *f2* f) (star_of x) = *f* f x" |
|
64435 | 214 |
by transfer (rule refl) |
27468 | 215 |
|
216 |
lemma Standard_starfun [simp]: "x \<in> Standard \<Longrightarrow> starfun f x \<in> Standard" |
|
64435 | 217 |
by (simp add: starfun_def) |
27468 | 218 |
|
64435 | 219 |
lemma Standard_starfun2 [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> starfun2 f x y \<in> Standard" |
220 |
by (simp add: starfun2_def) |
|
27468 | 221 |
|
222 |
lemma Standard_starfun_iff: |
|
223 |
assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y" |
|
64435 | 224 |
shows "starfun f x \<in> Standard \<longleftrightarrow> x \<in> Standard" |
27468 | 225 |
proof |
226 |
assume "x \<in> Standard" |
|
64435 | 227 |
then show "starfun f x \<in> Standard" by simp |
27468 | 228 |
next |
64435 | 229 |
from inj have inj': "\<And>x y. starfun f x = starfun f y \<Longrightarrow> x = y" |
230 |
by transfer |
|
27468 | 231 |
assume "starfun f x \<in> Standard" |
232 |
then obtain b where b: "starfun f x = star_of b" |
|
233 |
unfolding Standard_def .. |
|
64435 | 234 |
then have "\<exists>x. starfun f x = star_of b" .. |
235 |
then have "\<exists>a. f a = b" by transfer |
|
27468 | 236 |
then obtain a where "f a = b" .. |
64435 | 237 |
then have "starfun f (star_of a) = star_of b" by transfer |
27468 | 238 |
with b have "starfun f x = starfun f (star_of a)" by simp |
64435 | 239 |
then have "x = star_of a" by (rule inj') |
240 |
then show "x \<in> Standard" by (simp add: Standard_def) |
|
27468 | 241 |
qed |
242 |
||
243 |
lemma Standard_starfun2_iff: |
|
244 |
assumes inj: "\<And>a b a' b'. f a b = f a' b' \<Longrightarrow> a = a' \<and> b = b'" |
|
64435 | 245 |
shows "starfun2 f x y \<in> Standard \<longleftrightarrow> x \<in> Standard \<and> y \<in> Standard" |
27468 | 246 |
proof |
247 |
assume "x \<in> Standard \<and> y \<in> Standard" |
|
64435 | 248 |
then show "starfun2 f x y \<in> Standard" by simp |
27468 | 249 |
next |
250 |
have inj': "\<And>x y z w. starfun2 f x y = starfun2 f z w \<Longrightarrow> x = z \<and> y = w" |
|
251 |
using inj by transfer |
|
252 |
assume "starfun2 f x y \<in> Standard" |
|
253 |
then obtain c where c: "starfun2 f x y = star_of c" |
|
254 |
unfolding Standard_def .. |
|
64435 | 255 |
then have "\<exists>x y. starfun2 f x y = star_of c" by auto |
256 |
then have "\<exists>a b. f a b = c" by transfer |
|
27468 | 257 |
then obtain a b where "f a b = c" by auto |
64435 | 258 |
then have "starfun2 f (star_of a) (star_of b) = star_of c" by transfer |
259 |
with c have "starfun2 f x y = starfun2 f (star_of a) (star_of b)" by simp |
|
260 |
then have "x = star_of a \<and> y = star_of b" by (rule inj') |
|
261 |
then show "x \<in> Standard \<and> y \<in> Standard" by (simp add: Standard_def) |
|
27468 | 262 |
qed |
263 |
||
264 |
||
61975 | 265 |
subsection \<open>Internal predicates\<close> |
27468 | 266 |
|
64435 | 267 |
definition unstar :: "bool star \<Rightarrow> bool" |
268 |
where "unstar b \<longleftrightarrow> b = star_of True" |
|
27468 | 269 |
|
64435 | 270 |
lemma unstar_star_n: "unstar (star_n P) \<longleftrightarrow> eventually P \<U>" |
271 |
by (simp add: unstar_def star_of_def star_n_eq_iff) |
|
27468 | 272 |
|
273 |
lemma unstar_star_of [simp]: "unstar (star_of p) = p" |
|
64435 | 274 |
by (simp add: unstar_def star_of_inject) |
27468 | 275 |
|
64435 | 276 |
text \<open>Transfer tactic should remove occurrences of @{term unstar}.\<close> |
61975 | 277 |
setup \<open>Transfer_Principle.add_const @{const_name unstar}\<close> |
27468 | 278 |
|
64435 | 279 |
lemma transfer_unstar [transfer_intro]: "p \<equiv> star_n P \<Longrightarrow> unstar p \<equiv> eventually P \<U>" |
280 |
by (simp only: unstar_star_n) |
|
27468 | 281 |
|
64435 | 282 |
definition starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool" ("*p* _" [80] 80) |
283 |
where "*p* P = (\<lambda>x. unstar (star_of P \<star> x))" |
|
27468 | 284 |
|
64435 | 285 |
definition starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool" ("*p2* _" [80] 80) |
286 |
where "*p2* P = (\<lambda>x y. unstar (star_of P \<star> x \<star> y))" |
|
27468 | 287 |
|
288 |
declare starP_def [transfer_unfold] |
|
289 |
declare starP2_def [transfer_unfold] |
|
290 |
||
64435 | 291 |
lemma starP_star_n: "( *p* P) (star_n X) = eventually (\<lambda>n. P (X n)) \<U>" |
292 |
by (simp only: starP_def star_of_def Ifun_star_n unstar_star_n) |
|
27468 | 293 |
|
64435 | 294 |
lemma starP2_star_n: "( *p2* P) (star_n X) (star_n Y) = (eventually (\<lambda>n. P (X n) (Y n)) \<U>)" |
295 |
by (simp only: starP2_def star_of_def Ifun_star_n unstar_star_n) |
|
27468 | 296 |
|
297 |
lemma starP_star_of [simp]: "( *p* P) (star_of x) = P x" |
|
64435 | 298 |
by transfer (rule refl) |
27468 | 299 |
|
300 |
lemma starP2_star_of [simp]: "( *p2* P) (star_of x) = *p* P x" |
|
64435 | 301 |
by transfer (rule refl) |
27468 | 302 |
|
303 |
||
61975 | 304 |
subsection \<open>Internal sets\<close> |
27468 | 305 |
|
64435 | 306 |
definition Iset :: "'a set star \<Rightarrow> 'a star set" |
307 |
where "Iset A = {x. ( *p2* op \<in>) x A}" |
|
27468 | 308 |
|
64435 | 309 |
lemma Iset_star_n: "(star_n X \<in> Iset (star_n A)) = (eventually (\<lambda>n. X n \<in> A n) \<U>)" |
310 |
by (simp add: Iset_def starP2_star_n) |
|
27468 | 311 |
|
64435 | 312 |
text \<open>Transfer tactic should remove occurrences of @{term Iset}.\<close> |
61975 | 313 |
setup \<open>Transfer_Principle.add_const @{const_name Iset}\<close> |
27468 | 314 |
|
315 |
lemma transfer_mem [transfer_intro]: |
|
64435 | 316 |
"x \<equiv> star_n X \<Longrightarrow> a \<equiv> Iset (star_n A) \<Longrightarrow> x \<in> a \<equiv> eventually (\<lambda>n. X n \<in> A n) \<U>" |
317 |
by (simp only: Iset_star_n) |
|
27468 | 318 |
|
319 |
lemma transfer_Collect [transfer_intro]: |
|
64435 | 320 |
"(\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow> |
321 |
Collect p \<equiv> Iset (star_n (\<lambda>n. Collect (P n)))" |
|
322 |
by (simp add: atomize_eq set_eq_iff all_star_eq Iset_star_n) |
|
27468 | 323 |
|
324 |
lemma transfer_set_eq [transfer_intro]: |
|
64435 | 325 |
"a \<equiv> Iset (star_n A) \<Longrightarrow> b \<equiv> Iset (star_n B) \<Longrightarrow> a = b \<equiv> eventually (\<lambda>n. A n = B n) \<U>" |
326 |
by (simp only: set_eq_iff transfer_all transfer_iff transfer_mem) |
|
27468 | 327 |
|
328 |
lemma transfer_ball [transfer_intro]: |
|
64435 | 329 |
"a \<equiv> Iset (star_n A) \<Longrightarrow> (\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow> |
330 |
\<forall>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<forall>x\<in>A n. P n x) \<U>" |
|
331 |
by (simp only: Ball_def transfer_all transfer_imp transfer_mem) |
|
27468 | 332 |
|
333 |
lemma transfer_bex [transfer_intro]: |
|
64435 | 334 |
"a \<equiv> Iset (star_n A) \<Longrightarrow> (\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow> |
335 |
\<exists>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<exists>x\<in>A n. P n x) \<U>" |
|
336 |
by (simp only: Bex_def transfer_ex transfer_conj transfer_mem) |
|
27468 | 337 |
|
64435 | 338 |
lemma transfer_Iset [transfer_intro]: "a \<equiv> star_n A \<Longrightarrow> Iset a \<equiv> Iset (star_n (\<lambda>n. A n))" |
339 |
by simp |
|
340 |
||
27468 | 341 |
|
61975 | 342 |
text \<open>Nonstandard extensions of sets.\<close> |
27468 | 343 |
|
64435 | 344 |
definition starset :: "'a set \<Rightarrow> 'a star set" ("*s* _" [80] 80) |
345 |
where "starset A = Iset (star_of A)" |
|
27468 | 346 |
|
347 |
declare starset_def [transfer_unfold] |
|
348 |
||
64435 | 349 |
lemma starset_mem: "star_of x \<in> *s* A \<longleftrightarrow> x \<in> A" |
350 |
by transfer (rule refl) |
|
27468 | 351 |
|
352 |
lemma starset_UNIV: "*s* (UNIV::'a set) = (UNIV::'a star set)" |
|
64435 | 353 |
by (transfer UNIV_def) (rule refl) |
27468 | 354 |
|
355 |
lemma starset_empty: "*s* {} = {}" |
|
64435 | 356 |
by (transfer empty_def) (rule refl) |
27468 | 357 |
|
358 |
lemma starset_insert: "*s* (insert x A) = insert (star_of x) ( *s* A)" |
|
64435 | 359 |
by (transfer insert_def Un_def) (rule refl) |
27468 | 360 |
|
361 |
lemma starset_Un: "*s* (A \<union> B) = *s* A \<union> *s* B" |
|
64435 | 362 |
by (transfer Un_def) (rule refl) |
27468 | 363 |
|
364 |
lemma starset_Int: "*s* (A \<inter> B) = *s* A \<inter> *s* B" |
|
64435 | 365 |
by (transfer Int_def) (rule refl) |
27468 | 366 |
|
367 |
lemma starset_Compl: "*s* -A = -( *s* A)" |
|
64435 | 368 |
by (transfer Compl_eq) (rule refl) |
27468 | 369 |
|
370 |
lemma starset_diff: "*s* (A - B) = *s* A - *s* B" |
|
64435 | 371 |
by (transfer set_diff_eq) (rule refl) |
27468 | 372 |
|
373 |
lemma starset_image: "*s* (f ` A) = ( *f* f) ` ( *s* A)" |
|
64435 | 374 |
by (transfer image_def) (rule refl) |
27468 | 375 |
|
376 |
lemma starset_vimage: "*s* (f -` A) = ( *f* f) -` ( *s* A)" |
|
64435 | 377 |
by (transfer vimage_def) (rule refl) |
27468 | 378 |
|
64435 | 379 |
lemma starset_subset: "( *s* A \<subseteq> *s* B) \<longleftrightarrow> A \<subseteq> B" |
380 |
by (transfer subset_eq) (rule refl) |
|
27468 | 381 |
|
64435 | 382 |
lemma starset_eq: "( *s* A = *s* B) \<longleftrightarrow> A = B" |
383 |
by transfer (rule refl) |
|
27468 | 384 |
|
385 |
lemmas starset_simps [simp] = |
|
386 |
starset_mem starset_UNIV |
|
387 |
starset_empty starset_insert |
|
388 |
starset_Un starset_Int |
|
389 |
starset_Compl starset_diff |
|
390 |
starset_image starset_vimage |
|
391 |
starset_subset starset_eq |
|
392 |
||
393 |
||
61975 | 394 |
subsection \<open>Syntactic classes\<close> |
27468 | 395 |
|
396 |
instantiation star :: (zero) zero |
|
397 |
begin |
|
64435 | 398 |
definition star_zero_def: "0 \<equiv> star_of 0" |
399 |
instance .. |
|
27468 | 400 |
end |
401 |
||
402 |
instantiation star :: (one) one |
|
403 |
begin |
|
64435 | 404 |
definition star_one_def: "1 \<equiv> star_of 1" |
405 |
instance .. |
|
27468 | 406 |
end |
407 |
||
408 |
instantiation star :: (plus) plus |
|
409 |
begin |
|
64435 | 410 |
definition star_add_def: "(op +) \<equiv> *f2* (op +)" |
411 |
instance .. |
|
27468 | 412 |
end |
413 |
||
414 |
instantiation star :: (times) times |
|
415 |
begin |
|
64435 | 416 |
definition star_mult_def: "(op *) \<equiv> *f2* (op *)" |
417 |
instance .. |
|
27468 | 418 |
end |
419 |
||
420 |
instantiation star :: (uminus) uminus |
|
421 |
begin |
|
64435 | 422 |
definition star_minus_def: "uminus \<equiv> *f* uminus" |
423 |
instance .. |
|
27468 | 424 |
end |
425 |
||
426 |
instantiation star :: (minus) minus |
|
427 |
begin |
|
64435 | 428 |
definition star_diff_def: "(op -) \<equiv> *f2* (op -)" |
429 |
instance .. |
|
27468 | 430 |
end |
431 |
||
432 |
instantiation star :: (abs) abs |
|
433 |
begin |
|
64435 | 434 |
definition star_abs_def: "abs \<equiv> *f* abs" |
435 |
instance .. |
|
27468 | 436 |
end |
437 |
||
438 |
instantiation star :: (sgn) sgn |
|
439 |
begin |
|
64435 | 440 |
definition star_sgn_def: "sgn \<equiv> *f* sgn" |
441 |
instance .. |
|
27468 | 442 |
end |
443 |
||
60352
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
444 |
instantiation star :: (divide) divide |
27468 | 445 |
begin |
64435 | 446 |
definition star_divide_def: "divide \<equiv> *f2* divide" |
447 |
instance .. |
|
60352
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
448 |
end |
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
449 |
|
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
450 |
instantiation star :: (inverse) inverse |
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
451 |
begin |
64435 | 452 |
definition star_inverse_def: "inverse \<equiv> *f* inverse" |
453 |
instance .. |
|
27468 | 454 |
end |
455 |
||
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
35043
diff
changeset
|
456 |
instance star :: (Rings.dvd) Rings.dvd .. |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
27468
diff
changeset
|
457 |
|
63950
cdc1e59aa513
syntactic type class for operation mod named after mod;
haftmann
parents:
63456
diff
changeset
|
458 |
instantiation star :: (modulo) modulo |
27468 | 459 |
begin |
64435 | 460 |
definition star_mod_def: "(op mod) \<equiv> *f2* (op mod)" |
461 |
instance .. |
|
27468 | 462 |
end |
463 |
||
464 |
instantiation star :: (ord) ord |
|
465 |
begin |
|
64435 | 466 |
definition star_le_def: "(op \<le>) \<equiv> *p2* (op \<le>)" |
467 |
definition star_less_def: "(op <) \<equiv> *p2* (op <)" |
|
468 |
instance .. |
|
27468 | 469 |
end |
470 |
||
471 |
lemmas star_class_defs [transfer_unfold] = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
472 |
star_zero_def star_one_def |
27468 | 473 |
star_add_def star_diff_def star_minus_def |
474 |
star_mult_def star_divide_def star_inverse_def |
|
475 |
star_le_def star_less_def star_abs_def star_sgn_def |
|
60352
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
476 |
star_mod_def |
27468 | 477 |
|
64435 | 478 |
|
479 |
text \<open>Class operations preserve standard elements.\<close> |
|
27468 | 480 |
|
481 |
lemma Standard_zero: "0 \<in> Standard" |
|
64435 | 482 |
by (simp add: star_zero_def) |
27468 | 483 |
|
484 |
lemma Standard_one: "1 \<in> Standard" |
|
64435 | 485 |
by (simp add: star_one_def) |
27468 | 486 |
|
64435 | 487 |
lemma Standard_add: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x + y \<in> Standard" |
488 |
by (simp add: star_add_def) |
|
27468 | 489 |
|
64435 | 490 |
lemma Standard_diff: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x - y \<in> Standard" |
491 |
by (simp add: star_diff_def) |
|
27468 | 492 |
|
493 |
lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard" |
|
64435 | 494 |
by (simp add: star_minus_def) |
27468 | 495 |
|
64435 | 496 |
lemma Standard_mult: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x * y \<in> Standard" |
497 |
by (simp add: star_mult_def) |
|
27468 | 498 |
|
64435 | 499 |
lemma Standard_divide: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x / y \<in> Standard" |
500 |
by (simp add: star_divide_def) |
|
27468 | 501 |
|
502 |
lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard" |
|
64435 | 503 |
by (simp add: star_inverse_def) |
27468 | 504 |
|
61945 | 505 |
lemma Standard_abs: "x \<in> Standard \<Longrightarrow> \<bar>x\<bar> \<in> Standard" |
64435 | 506 |
by (simp add: star_abs_def) |
27468 | 507 |
|
64435 | 508 |
lemma Standard_mod: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x mod y \<in> Standard" |
509 |
by (simp add: star_mod_def) |
|
27468 | 510 |
|
511 |
lemmas Standard_simps [simp] = |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
512 |
Standard_zero Standard_one |
60352
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
513 |
Standard_add Standard_diff Standard_minus |
27468 | 514 |
Standard_mult Standard_divide Standard_inverse |
60352
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
515 |
Standard_abs Standard_mod |
27468 | 516 |
|
64435 | 517 |
|
518 |
text \<open>@{term star_of} preserves class operations.\<close> |
|
27468 | 519 |
|
520 |
lemma star_of_add: "star_of (x + y) = star_of x + star_of y" |
|
64435 | 521 |
by transfer (rule refl) |
27468 | 522 |
|
523 |
lemma star_of_diff: "star_of (x - y) = star_of x - star_of y" |
|
64435 | 524 |
by transfer (rule refl) |
27468 | 525 |
|
526 |
lemma star_of_minus: "star_of (-x) = - star_of x" |
|
64435 | 527 |
by transfer (rule refl) |
27468 | 528 |
|
529 |
lemma star_of_mult: "star_of (x * y) = star_of x * star_of y" |
|
64435 | 530 |
by transfer (rule refl) |
27468 | 531 |
|
532 |
lemma star_of_divide: "star_of (x / y) = star_of x / star_of y" |
|
64435 | 533 |
by transfer (rule refl) |
27468 | 534 |
|
535 |
lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)" |
|
64435 | 536 |
by transfer (rule refl) |
27468 | 537 |
|
538 |
lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y" |
|
64435 | 539 |
by transfer (rule refl) |
27468 | 540 |
|
61945 | 541 |
lemma star_of_abs: "star_of \<bar>x\<bar> = \<bar>star_of x\<bar>" |
64435 | 542 |
by transfer (rule refl) |
27468 | 543 |
|
64435 | 544 |
|
545 |
text \<open>@{term star_of} preserves numerals.\<close> |
|
27468 | 546 |
|
547 |
lemma star_of_zero: "star_of 0 = 0" |
|
64435 | 548 |
by transfer (rule refl) |
27468 | 549 |
|
550 |
lemma star_of_one: "star_of 1 = 1" |
|
64435 | 551 |
by transfer (rule refl) |
27468 | 552 |
|
64435 | 553 |
|
554 |
text \<open>@{term star_of} preserves orderings.\<close> |
|
27468 | 555 |
|
556 |
lemma star_of_less: "(star_of x < star_of y) = (x < y)" |
|
557 |
by transfer (rule refl) |
|
558 |
||
559 |
lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)" |
|
560 |
by transfer (rule refl) |
|
561 |
||
562 |
lemma star_of_eq: "(star_of x = star_of y) = (x = y)" |
|
563 |
by transfer (rule refl) |
|
564 |
||
64435 | 565 |
|
566 |
text \<open>As above, for \<open>0\<close>.\<close> |
|
27468 | 567 |
|
568 |
lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero] |
|
569 |
lemmas star_of_0_le = star_of_le [of 0, simplified star_of_zero] |
|
570 |
lemmas star_of_0_eq = star_of_eq [of 0, simplified star_of_zero] |
|
571 |
||
572 |
lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero] |
|
573 |
lemmas star_of_le_0 = star_of_le [of _ 0, simplified star_of_zero] |
|
574 |
lemmas star_of_eq_0 = star_of_eq [of _ 0, simplified star_of_zero] |
|
575 |
||
64435 | 576 |
|
577 |
text \<open>As above, for \<open>1\<close>.\<close> |
|
27468 | 578 |
|
579 |
lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one] |
|
580 |
lemmas star_of_1_le = star_of_le [of 1, simplified star_of_one] |
|
581 |
lemmas star_of_1_eq = star_of_eq [of 1, simplified star_of_one] |
|
582 |
||
583 |
lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one] |
|
584 |
lemmas star_of_le_1 = star_of_le [of _ 1, simplified star_of_one] |
|
585 |
lemmas star_of_eq_1 = star_of_eq [of _ 1, simplified star_of_one] |
|
586 |
||
587 |
lemmas star_of_simps [simp] = |
|
588 |
star_of_add star_of_diff star_of_minus |
|
589 |
star_of_mult star_of_divide star_of_inverse |
|
60352
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
haftmann
parents:
60041
diff
changeset
|
590 |
star_of_mod star_of_abs |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
591 |
star_of_zero star_of_one |
27468 | 592 |
star_of_less star_of_le star_of_eq |
593 |
star_of_0_less star_of_0_le star_of_0_eq |
|
594 |
star_of_less_0 star_of_le_0 star_of_eq_0 |
|
595 |
star_of_1_less star_of_1_le star_of_1_eq |
|
596 |
star_of_less_1 star_of_le_1 star_of_eq_1 |
|
597 |
||
64435 | 598 |
|
61975 | 599 |
subsection \<open>Ordering and lattice classes\<close> |
27468 | 600 |
|
601 |
instance star :: (order) order |
|
64435 | 602 |
apply intro_classes |
603 |
apply (transfer, rule less_le_not_le) |
|
604 |
apply (transfer, rule order_refl) |
|
605 |
apply (transfer, erule (1) order_trans) |
|
606 |
apply (transfer, erule (1) order_antisym) |
|
607 |
done |
|
27468 | 608 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
609 |
instantiation star :: (semilattice_inf) semilattice_inf |
27468 | 610 |
begin |
64435 | 611 |
definition star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf" |
612 |
instance by (standard; transfer) auto |
|
27468 | 613 |
end |
614 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
615 |
instantiation star :: (semilattice_sup) semilattice_sup |
27468 | 616 |
begin |
64435 | 617 |
definition star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup" |
618 |
instance by (standard; transfer) auto |
|
27468 | 619 |
end |
620 |
||
621 |
instance star :: (lattice) lattice .. |
|
622 |
||
623 |
instance star :: (distrib_lattice) distrib_lattice |
|
60867 | 624 |
by (standard; transfer) (auto simp add: sup_inf_distrib1) |
27468 | 625 |
|
64435 | 626 |
lemma Standard_inf [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> inf x y \<in> Standard" |
627 |
by (simp add: star_inf_def) |
|
27468 | 628 |
|
64435 | 629 |
lemma Standard_sup [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> sup x y \<in> Standard" |
630 |
by (simp add: star_sup_def) |
|
27468 | 631 |
|
632 |
lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)" |
|
64435 | 633 |
by transfer (rule refl) |
27468 | 634 |
|
635 |
lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)" |
|
64435 | 636 |
by transfer (rule refl) |
27468 | 637 |
|
638 |
instance star :: (linorder) linorder |
|
64435 | 639 |
by (intro_classes, transfer, rule linorder_linear) |
27468 | 640 |
|
641 |
lemma star_max_def [transfer_unfold]: "max = *f2* max" |
|
64435 | 642 |
apply (rule ext, rule ext) |
643 |
apply (unfold max_def, transfer, fold max_def) |
|
644 |
apply (rule refl) |
|
645 |
done |
|
27468 | 646 |
|
647 |
lemma star_min_def [transfer_unfold]: "min = *f2* min" |
|
64435 | 648 |
apply (rule ext, rule ext) |
649 |
apply (unfold min_def, transfer, fold min_def) |
|
650 |
apply (rule refl) |
|
651 |
done |
|
27468 | 652 |
|
64435 | 653 |
lemma Standard_max [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> max x y \<in> Standard" |
654 |
by (simp add: star_max_def) |
|
27468 | 655 |
|
64435 | 656 |
lemma Standard_min [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> min x y \<in> Standard" |
657 |
by (simp add: star_min_def) |
|
27468 | 658 |
|
659 |
lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)" |
|
64435 | 660 |
by transfer (rule refl) |
27468 | 661 |
|
662 |
lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)" |
|
64435 | 663 |
by transfer (rule refl) |
27468 | 664 |
|
665 |
||
61975 | 666 |
subsection \<open>Ordered group classes\<close> |
27468 | 667 |
|
668 |
instance star :: (semigroup_add) semigroup_add |
|
64435 | 669 |
by (intro_classes, transfer, rule add.assoc) |
27468 | 670 |
|
671 |
instance star :: (ab_semigroup_add) ab_semigroup_add |
|
64435 | 672 |
by (intro_classes, transfer, rule add.commute) |
27468 | 673 |
|
674 |
instance star :: (semigroup_mult) semigroup_mult |
|
64435 | 675 |
by (intro_classes, transfer, rule mult.assoc) |
27468 | 676 |
|
677 |
instance star :: (ab_semigroup_mult) ab_semigroup_mult |
|
64435 | 678 |
by (intro_classes, transfer, rule mult.commute) |
27468 | 679 |
|
680 |
instance star :: (comm_monoid_add) comm_monoid_add |
|
64435 | 681 |
by (intro_classes, transfer, rule comm_monoid_add_class.add_0) |
27468 | 682 |
|
683 |
instance star :: (monoid_mult) monoid_mult |
|
64435 | 684 |
apply intro_classes |
685 |
apply (transfer, rule mult_1_left) |
|
686 |
apply (transfer, rule mult_1_right) |
|
687 |
done |
|
27468 | 688 |
|
60867 | 689 |
instance star :: (power) power .. |
690 |
||
27468 | 691 |
instance star :: (comm_monoid_mult) comm_monoid_mult |
64435 | 692 |
by (intro_classes, transfer, rule mult_1) |
27468 | 693 |
|
694 |
instance star :: (cancel_semigroup_add) cancel_semigroup_add |
|
64435 | 695 |
apply intro_classes |
696 |
apply (transfer, erule add_left_imp_eq) |
|
697 |
apply (transfer, erule add_right_imp_eq) |
|
698 |
done |
|
27468 | 699 |
|
700 |
instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add |
|
64435 | 701 |
by intro_classes (transfer, simp add: diff_diff_eq)+ |
27468 | 702 |
|
29904 | 703 |
instance star :: (cancel_comm_monoid_add) cancel_comm_monoid_add .. |
704 |
||
27468 | 705 |
instance star :: (ab_group_add) ab_group_add |
64435 | 706 |
apply intro_classes |
707 |
apply (transfer, rule left_minus) |
|
708 |
apply (transfer, rule diff_conv_add_uminus) |
|
709 |
done |
|
27468 | 710 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
711 |
instance star :: (ordered_ab_semigroup_add) ordered_ab_semigroup_add |
64435 | 712 |
by (intro_classes, transfer, rule add_left_mono) |
27468 | 713 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
714 |
instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add .. |
27468 | 715 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
716 |
instance star :: (ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le |
64435 | 717 |
by (intro_classes, transfer, rule add_le_imp_le_left) |
27468 | 718 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
719 |
instance star :: (ordered_comm_monoid_add) ordered_comm_monoid_add .. |
63456
3365c8ec67bd
sharing simp rules between ordered monoids and rings
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
62479
diff
changeset
|
720 |
instance star :: (ordered_ab_semigroup_monoid_add_imp_le) ordered_ab_semigroup_monoid_add_imp_le .. |
62376
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents:
61975
diff
changeset
|
721 |
instance star :: (ordered_cancel_comm_monoid_add) ordered_cancel_comm_monoid_add .. |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
722 |
instance star :: (ordered_ab_group_add) ordered_ab_group_add .. |
27468 | 723 |
|
62376
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents:
61975
diff
changeset
|
724 |
instance star :: (ordered_ab_group_add_abs) ordered_ab_group_add_abs |
64435 | 725 |
by intro_classes (transfer, simp add: abs_ge_self abs_leI abs_triangle_ineq)+ |
27468 | 726 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
727 |
instance star :: (linordered_cancel_ab_semigroup_add) linordered_cancel_ab_semigroup_add .. |
27468 | 728 |
|
729 |
||
61975 | 730 |
subsection \<open>Ring and field classes\<close> |
27468 | 731 |
|
732 |
instance star :: (semiring) semiring |
|
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
733 |
by (intro_classes; transfer) (fact distrib_right distrib_left)+ |
27468 | 734 |
|
62376
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents:
61975
diff
changeset
|
735 |
instance star :: (semiring_0) semiring_0 |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
736 |
by (intro_classes; transfer) simp_all |
27468 | 737 |
|
738 |
instance star :: (semiring_0_cancel) semiring_0_cancel .. |
|
739 |
||
62376
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents:
61975
diff
changeset
|
740 |
instance star :: (comm_semiring) comm_semiring |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
741 |
by (intro_classes; transfer) (fact distrib_right) |
27468 | 742 |
|
743 |
instance star :: (comm_semiring_0) comm_semiring_0 .. |
|
744 |
instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel .. |
|
745 |
||
746 |
instance star :: (zero_neq_one) zero_neq_one |
|
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
747 |
by (intro_classes; transfer) (fact zero_neq_one) |
27468 | 748 |
|
749 |
instance star :: (semiring_1) semiring_1 .. |
|
750 |
instance star :: (comm_semiring_1) comm_semiring_1 .. |
|
751 |
||
59680 | 752 |
declare dvd_def [transfer_refold] |
59676 | 753 |
|
60562
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents:
60516
diff
changeset
|
754 |
instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
755 |
by (intro_classes; transfer) (fact right_diff_distrib') |
59676 | 756 |
|
59833
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents:
59816
diff
changeset
|
757 |
instance star :: (semiring_no_zero_divisors) semiring_no_zero_divisors |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
758 |
by (intro_classes; transfer) (fact no_zero_divisors) |
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
759 |
|
60867 | 760 |
instance star :: (semiring_1_no_zero_divisors) semiring_1_no_zero_divisors .. |
62376
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents:
61975
diff
changeset
|
761 |
|
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
762 |
instance star :: (semiring_no_zero_divisors_cancel) semiring_no_zero_divisors_cancel |
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
763 |
by (intro_classes; transfer) simp_all |
27468 | 764 |
|
765 |
instance star :: (semiring_1_cancel) semiring_1_cancel .. |
|
766 |
instance star :: (ring) ring .. |
|
767 |
instance star :: (comm_ring) comm_ring .. |
|
768 |
instance star :: (ring_1) ring_1 .. |
|
769 |
instance star :: (comm_ring_1) comm_ring_1 .. |
|
59833
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents:
59816
diff
changeset
|
770 |
instance star :: (semidom) semidom .. |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
771 |
|
60353
838025c6e278
implicit partial divison operation in integral domains
haftmann
parents:
60352
diff
changeset
|
772 |
instance star :: (semidom_divide) semidom_divide |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
773 |
by (intro_classes; transfer) simp_all |
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
774 |
|
27468 | 775 |
instance star :: (ring_no_zero_divisors) ring_no_zero_divisors .. |
776 |
instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors .. |
|
62376
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
hoelzl
parents:
61975
diff
changeset
|
777 |
instance star :: (idom) idom .. |
60353
838025c6e278
implicit partial divison operation in integral domains
haftmann
parents:
60352
diff
changeset
|
778 |
instance star :: (idom_divide) idom_divide .. |
27468 | 779 |
|
780 |
instance star :: (division_ring) division_ring |
|
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
781 |
by (intro_classes; transfer) (simp_all add: divide_inverse) |
27468 | 782 |
|
783 |
instance star :: (field) field |
|
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
784 |
by (intro_classes; transfer) (simp_all add: divide_inverse) |
27468 | 785 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
786 |
instance star :: (ordered_semiring) ordered_semiring |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
787 |
by (intro_classes; transfer) (fact mult_left_mono mult_right_mono)+ |
27468 | 788 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
789 |
instance star :: (ordered_cancel_semiring) ordered_cancel_semiring .. |
27468 | 790 |
|
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35035
diff
changeset
|
791 |
instance star :: (linordered_semiring_strict) linordered_semiring_strict |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
792 |
by (intro_classes; transfer) (fact mult_strict_left_mono mult_strict_right_mono)+ |
27468 | 793 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
794 |
instance star :: (ordered_comm_semiring) ordered_comm_semiring |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
795 |
by (intro_classes; transfer) (fact mult_left_mono) |
27468 | 796 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
797 |
instance star :: (ordered_cancel_comm_semiring) ordered_cancel_comm_semiring .. |
27468 | 798 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
799 |
instance star :: (linordered_comm_semiring_strict) linordered_comm_semiring_strict |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
800 |
by (intro_classes; transfer) (fact mult_strict_left_mono) |
27468 | 801 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
802 |
instance star :: (ordered_ring) ordered_ring .. |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
803 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
804 |
instance star :: (ordered_ring_abs) ordered_ring_abs |
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
805 |
by (intro_classes; transfer) (fact abs_eq_mult) |
27468 | 806 |
|
807 |
instance star :: (abs_if) abs_if |
|
60516
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
haftmann
parents:
60429
diff
changeset
|
808 |
by (intro_classes; transfer) (fact abs_if) |
27468 | 809 |
|
35043
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
haftmann
parents:
35035
diff
changeset
|
810 |
instance star :: (linordered_ring_strict) linordered_ring_strict .. |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
811 |
instance star :: (ordered_comm_ring) ordered_comm_ring .. |
27468 | 812 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
813 |
instance star :: (linordered_semidom) linordered_semidom |
64290 | 814 |
by (intro_classes; transfer) (fact zero_less_one le_add_diff_inverse2)+ |
27468 | 815 |
|
64290 | 816 |
instance star :: (linordered_idom) linordered_idom |
817 |
by (intro_classes; transfer) (fact sgn_if) |
|
818 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
31021
diff
changeset
|
819 |
instance star :: (linordered_field) linordered_field .. |
27468 | 820 |
|
66806
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
821 |
instance star :: (algebraic_semidom) algebraic_semidom .. |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
822 |
|
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
823 |
instantiation star :: (normalization_semidom) normalization_semidom |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
824 |
begin |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
825 |
|
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
826 |
definition unit_factor_star :: "'a star \<Rightarrow> 'a star" |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
827 |
where [transfer_unfold]: "unit_factor_star = *f* unit_factor" |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
828 |
|
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
829 |
definition normalize_star :: "'a star \<Rightarrow> 'a star" |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
830 |
where [transfer_unfold]: "normalize_star = *f* normalize" |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
831 |
|
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
832 |
instance |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
833 |
by standard (transfer; simp add: is_unit_unit_factor unit_factor_mult)+ |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
834 |
|
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
835 |
end |
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents:
64600
diff
changeset
|
836 |
|
66815 | 837 |
instance star :: (semidom_modulo) semidom_modulo |
838 |
by standard (transfer; simp) |
|
839 |
||
840 |
||
64435 | 841 |
|
61975 | 842 |
subsection \<open>Power\<close> |
30968
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
843 |
|
64435 | 844 |
lemma star_power_def [transfer_unfold]: "(op ^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x" |
30968
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
845 |
proof (rule eq_reflection, rule ext, rule ext) |
64435 | 846 |
show "x ^ n = ( *f* (\<lambda>x. x ^ n)) x" for n :: nat and x :: "'a star" |
847 |
proof (induct n arbitrary: x) |
|
30968
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
848 |
case 0 |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
849 |
have "\<And>x::'a star. ( *f* (\<lambda>x. 1)) x = 1" |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
850 |
by transfer simp |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
851 |
then show ?case by simp |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
852 |
next |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
853 |
case (Suc n) |
61076 | 854 |
have "\<And>x::'a star. x * ( *f* (\<lambda>x::'a. x ^ n)) x = ( *f* (\<lambda>x::'a. x * x ^ n)) x" |
30968
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
855 |
by transfer simp |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
856 |
with Suc show ?case by simp |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
857 |
qed |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
858 |
qed |
27468 | 859 |
|
30968
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
860 |
lemma Standard_power [simp]: "x \<in> Standard \<Longrightarrow> x ^ n \<in> Standard" |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
861 |
by (simp add: star_power_def) |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
862 |
|
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
863 |
lemma star_of_power [simp]: "star_of (x ^ n) = star_of x ^ n" |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
864 |
by transfer (rule refl) |
10fef94f40fc
adaptions due to rearrangment of power operation
haftmann
parents:
30729
diff
changeset
|
865 |
|
27468 | 866 |
|
61975 | 867 |
subsection \<open>Number classes\<close> |
27468 | 868 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
869 |
instance star :: (numeral) numeral .. |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
870 |
|
64435 | 871 |
lemma star_numeral_def [transfer_unfold]: "numeral k = star_of (numeral k)" |
872 |
by (induct k) (simp_all only: numeral.simps star_of_one star_of_add) |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
873 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
874 |
lemma Standard_numeral [simp]: "numeral k \<in> Standard" |
64435 | 875 |
by (simp add: star_numeral_def) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
876 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
877 |
lemma star_of_numeral [simp]: "star_of (numeral k) = numeral k" |
64435 | 878 |
by transfer (rule refl) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
879 |
|
27468 | 880 |
lemma star_of_nat_def [transfer_unfold]: "of_nat n = star_of (of_nat n)" |
64435 | 881 |
by (induct n) simp_all |
27468 | 882 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
883 |
lemmas star_of_compare_numeral [simp] = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
884 |
star_of_less [of "numeral k", simplified star_of_numeral] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
885 |
star_of_le [of "numeral k", simplified star_of_numeral] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
886 |
star_of_eq [of "numeral k", simplified star_of_numeral] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
887 |
star_of_less [of _ "numeral k", simplified star_of_numeral] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
888 |
star_of_le [of _ "numeral k", simplified star_of_numeral] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
889 |
star_of_eq [of _ "numeral k", simplified star_of_numeral] |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54230
diff
changeset
|
890 |
star_of_less [of "- numeral k", simplified star_of_numeral] |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54230
diff
changeset
|
891 |
star_of_le [of "- numeral k", simplified star_of_numeral] |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54230
diff
changeset
|
892 |
star_of_eq [of "- numeral k", simplified star_of_numeral] |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54230
diff
changeset
|
893 |
star_of_less [of _ "- numeral k", simplified star_of_numeral] |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54230
diff
changeset
|
894 |
star_of_le [of _ "- numeral k", simplified star_of_numeral] |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54230
diff
changeset
|
895 |
star_of_eq [of _ "- numeral k", simplified star_of_numeral] for k |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46008
diff
changeset
|
896 |
|
27468 | 897 |
lemma Standard_of_nat [simp]: "of_nat n \<in> Standard" |
64435 | 898 |
by (simp add: star_of_nat_def) |
27468 | 899 |
|
900 |
lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n" |
|
64435 | 901 |
by transfer (rule refl) |
27468 | 902 |
|
903 |
lemma star_of_int_def [transfer_unfold]: "of_int z = star_of (of_int z)" |
|
64435 | 904 |
by (rule int_diff_cases [of z]) simp |
27468 | 905 |
|
906 |
lemma Standard_of_int [simp]: "of_int z \<in> Standard" |
|
64435 | 907 |
by (simp add: star_of_int_def) |
27468 | 908 |
|
909 |
lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z" |
|
64435 | 910 |
by transfer (rule refl) |
27468 | 911 |
|
62378
85ed00c1fe7c
generalize more theorems to support enat and ennreal
hoelzl
parents:
62376
diff
changeset
|
912 |
instance star :: (semiring_char_0) semiring_char_0 |
85ed00c1fe7c
generalize more theorems to support enat and ennreal
hoelzl
parents:
62376
diff
changeset
|
913 |
proof |
64435 | 914 |
have "inj (star_of :: 'a \<Rightarrow> 'a star)" |
915 |
by (rule injI) simp |
|
916 |
then have "inj (star_of \<circ> of_nat :: nat \<Rightarrow> 'a star)" |
|
917 |
using inj_of_nat by (rule inj_comp) |
|
918 |
then show "inj (of_nat :: nat \<Rightarrow> 'a star)" |
|
919 |
by (simp add: comp_def) |
|
38621
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
haftmann
parents:
37765
diff
changeset
|
920 |
qed |
27468 | 921 |
|
922 |
instance star :: (ring_char_0) ring_char_0 .. |
|
923 |
||
924 |
||
61975 | 925 |
subsection \<open>Finite class\<close> |
27468 | 926 |
|
927 |
lemma starset_finite: "finite A \<Longrightarrow> *s* A = star_of ` A" |
|
64435 | 928 |
by (erule finite_induct) simp_all |
27468 | 929 |
|
930 |
instance star :: (finite) finite |
|
64435 | 931 |
apply intro_classes |
932 |
apply (subst starset_UNIV [symmetric]) |
|
933 |
apply (subst starset_finite [OF finite]) |
|
934 |
apply (rule finite_imageI [OF finite]) |
|
935 |
done |
|
27468 | 936 |
|
937 |
end |