| author | huffman | 
| Mon, 12 Sep 2011 11:54:20 -0700 | |
| changeset 44907 | 93943da0a010 | 
| parent 44647 | e4de7750cdeb | 
| child 50526 | 899c9c4e4a4c | 
| permissions | -rw-r--r-- | 
| 36432 | 1 | (* Author: John Harrison | 
| 2 | Translation from HOL light: Robert Himmelmann, TU Muenchen *) | |
| 3 | ||
| 4 | header {* Fashoda meet theorem. *}
 | |
| 5 | ||
| 6 | theory Fashoda | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 7 | imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space | 
| 36432 | 8 | begin | 
| 9 | ||
| 10 | subsection {*Fashoda meet theorem. *}
 | |
| 11 | ||
| 12 | lemma infnorm_2: "infnorm (x::real^2) = max (abs(x$1)) (abs(x$2))" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 13 | unfolding infnorm_cart UNIV_2 apply(rule Sup_eq) by auto | 
| 36432 | 14 | |
| 15 | lemma infnorm_eq_1_2: "infnorm (x::real^2) = 1 \<longleftrightarrow> | |
| 16 | (abs(x$1) \<le> 1 \<and> abs(x$2) \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1))" | |
| 17 | unfolding infnorm_2 by auto | |
| 18 | ||
| 19 | lemma infnorm_eq_1_imp: assumes "infnorm (x::real^2) = 1" shows "abs(x$1) \<le> 1" "abs(x$2) \<le> 1" | |
| 20 | using assms unfolding infnorm_eq_1_2 by auto | |
| 21 | ||
| 22 | lemma fashoda_unit: fixes f g::"real \<Rightarrow> real^2" | |
| 23 |   assumes "f ` {- 1..1} \<subseteq> {- 1..1}" "g ` {- 1..1} \<subseteq> {- 1..1}"
 | |
| 24 |   "continuous_on {- 1..1} f"  "continuous_on {- 1..1} g"
 | |
| 25 | "f (- 1)$1 = - 1" "f 1$1 = 1" "g (- 1) $2 = -1" "g 1 $2 = 1" | |
| 26 |   shows "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. f s = g t" proof(rule ccontr)
 | |
| 27 | case goal1 note as = this[unfolded bex_simps,rule_format] | |
| 28 | def sqprojection \<equiv> "\<lambda>z::real^2. (inverse (infnorm z)) *\<^sub>R z" | |
| 29 | def negatex \<equiv> "\<lambda>x::real^2. (vector [-(x$1), x$2])::real^2" | |
| 30 | have lem1:"\<forall>z::real^2. infnorm(negatex z) = infnorm z" | |
| 31 | unfolding negatex_def infnorm_2 vector_2 by auto | |
| 32 | have lem2:"\<forall>z. z\<noteq>0 \<longrightarrow> infnorm(sqprojection z) = 1" unfolding sqprojection_def | |
| 33 | unfolding infnorm_mul[unfolded smult_conv_scaleR] unfolding abs_inverse real_abs_infnorm | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 34 | apply(subst infnorm_eq_0[THEN sym]) by auto | 
| 36432 | 35 | let ?F = "(\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w)" | 
| 36 |   have *:"\<And>i. (\<lambda>x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
37674diff
changeset | 37 | apply(rule set_eqI) unfolding image_iff Bex_def mem_interval_cart apply rule defer | 
| 36432 | 38 | apply(rule_tac x="vec x" in exI) by auto | 
| 39 |   { fix x assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` {- 1..1::real^2}"
 | |
| 40 | then guess w unfolding image_iff .. note w = this | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 41 | hence "x \<noteq> 0" using as[of "w$1" "w$2"] unfolding mem_interval_cart by auto} note x0=this | 
| 36432 | 42 | have 21:"\<And>i::2. i\<noteq>1 \<Longrightarrow> i=2" using UNIV_2 by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 43 |   have 1:"{- 1<..<1::real^2} \<noteq> {}" unfolding interval_eq_empty_cart by auto
 | 
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 44 |   have 2:"continuous_on {- 1..1} (negatex \<circ> sqprojection \<circ> ?F)"
 | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 45 | apply(intro continuous_on_intros continuous_on_component) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 46 | unfolding * apply(rule assms)+ | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 47 | apply(subst sqprojection_def) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 48 | apply(intro continuous_on_intros) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 49 | apply(simp add: infnorm_eq_0 x0) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 50 | apply(rule linear_continuous_on) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 51 | proof- | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 52 | show "bounded_linear negatex" apply(rule bounded_linearI') unfolding vec_eq_iff proof(rule_tac[!] allI) fix i::2 and x y::"real^2" and c::real | 
| 36593 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 huffman parents: 
36583diff
changeset | 53 | show "negatex (x + y) $ i = (negatex x + negatex y) $ i" "negatex (c *\<^sub>R x) $ i = (c *\<^sub>R negatex x) $ i" | 
| 41958 | 54 | apply-apply(case_tac[!] "i\<noteq>1") prefer 3 apply(drule_tac[1-2] 21) | 
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 55 | unfolding negatex_def by(auto simp add:vector_2 ) qed | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 56 | qed | 
| 36432 | 57 |   have 3:"(negatex \<circ> sqprojection \<circ> ?F) ` {- 1..1} \<subseteq> {- 1..1}" unfolding subset_eq apply rule proof-
 | 
| 58 | case goal1 then guess y unfolding image_iff .. note y=this have "?F y \<noteq> 0" apply(rule x0) using y(1) by auto | |
| 59 | hence *:"infnorm (sqprojection (?F y)) = 1" unfolding y o_def apply- by(rule lem2[rule_format]) | |
| 60 | have "infnorm x = 1" unfolding *[THEN sym] y o_def by(rule lem1[rule_format]) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 61 |     thus "x\<in>{- 1..1}" unfolding mem_interval_cart infnorm_2 apply- apply rule
 | 
| 36432 | 62 | proof-case goal1 thus ?case apply(cases "i=1") defer apply(drule 21) by auto qed qed | 
| 63 |   guess x apply(rule brouwer_weak[of "{- 1..1::real^2}" "negatex \<circ> sqprojection \<circ> ?F"])
 | |
| 64 | apply(rule compact_interval convex_interval)+ unfolding interior_closed_interval | |
| 65 | apply(rule 1 2 3)+ . note x=this | |
| 66 | have "?F x \<noteq> 0" apply(rule x0) using x(1) by auto | |
| 67 | hence *:"infnorm (sqprojection (?F x)) = 1" unfolding o_def by(rule lem2[rule_format]) | |
| 68 | have nx:"infnorm x = 1" apply(subst x(2)[THEN sym]) unfolding *[THEN sym] o_def by(rule lem1[rule_format]) | |
| 69 | have "\<forall>x i. x \<noteq> 0 \<longrightarrow> (0 < (sqprojection x)$i \<longleftrightarrow> 0 < x$i)" "\<forall>x i. x \<noteq> 0 \<longrightarrow> ((sqprojection x)$i < 0 \<longleftrightarrow> x$i < 0)" | |
| 70 | apply- apply(rule_tac[!] allI impI)+ proof- fix x::"real^2" and i::2 assume x:"x\<noteq>0" | |
| 71 | have "inverse (infnorm x) > 0" using x[unfolded infnorm_pos_lt[THEN sym]] by auto | |
| 72 | thus "(0 < sqprojection x $ i) = (0 < x $ i)" "(sqprojection x $ i < 0) = (x $ i < 0)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44136diff
changeset | 73 | unfolding sqprojection_def vector_component_simps vector_scaleR_component real_scaleR_def | 
| 36432 | 74 | unfolding zero_less_mult_iff mult_less_0_iff by(auto simp add:field_simps) qed | 
| 75 | note lem3 = this[rule_format] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 76 |   have x1:"x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}" using x(1) unfolding mem_interval_cart by auto
 | 
| 36432 | 77 | hence nz:"f (x $ 1) - g (x $ 2) \<noteq> 0" unfolding right_minus_eq apply-apply(rule as) by auto | 
| 78 | have "x $ 1 = -1 \<or> x $ 1 = 1 \<or> x $ 2 = -1 \<or> x $ 2 = 1" using nx unfolding infnorm_eq_1_2 by auto | |
| 79 | thus False proof- fix P Q R S | |
| 80 | presume "P \<or> Q \<or> R \<or> S" "P\<Longrightarrow>False" "Q\<Longrightarrow>False" "R\<Longrightarrow>False" "S\<Longrightarrow>False" thus False by auto | |
| 81 | next assume as:"x$1 = 1" | |
| 82 | hence *:"f (x $ 1) $ 1 = 1" using assms(6) by auto | |
| 83 | have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0" | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 84 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] | 
| 36432 | 85 | unfolding as negatex_def vector_2 by auto moreover | 
| 86 |     from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 87 | ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | 
| 36432 | 88 | apply(erule_tac x=1 in allE) by auto | 
| 89 | next assume as:"x$1 = -1" | |
| 90 | hence *:"f (x $ 1) $ 1 = - 1" using assms(5) by auto | |
| 91 | have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0" | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 92 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] | 
| 36432 | 93 | unfolding as negatex_def vector_2 by auto moreover | 
| 94 |     from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 95 | ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | 
| 36432 | 96 | apply(erule_tac x=1 in allE) by auto | 
| 97 | next assume as:"x$2 = 1" | |
| 98 | hence *:"g (x $ 2) $ 2 = 1" using assms(8) by auto | |
| 99 | have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0" | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 100 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] | 
| 36432 | 101 | unfolding as negatex_def vector_2 by auto moreover | 
| 102 |     from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 103 | ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | 
| 36432 | 104 | apply(erule_tac x=2 in allE) by auto | 
| 105 | next assume as:"x$2 = -1" | |
| 106 | hence *:"g (x $ 2) $ 2 = - 1" using assms(7) by auto | |
| 107 | have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0" | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 108 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] | 
| 36432 | 109 | unfolding as negatex_def vector_2 by auto moreover | 
| 110 |     from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 111 | ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | 
| 36432 | 112 | apply(erule_tac x=2 in allE) by auto qed(auto) qed | 
| 113 | ||
| 114 | lemma fashoda_unit_path: fixes f ::"real \<Rightarrow> real^2" and g ::"real \<Rightarrow> real^2" | |
| 115 |   assumes "path f" "path g" "path_image f \<subseteq> {- 1..1}" "path_image g \<subseteq> {- 1..1}"
 | |
| 116 | "(pathstart f)$1 = -1" "(pathfinish f)$1 = 1" "(pathstart g)$2 = -1" "(pathfinish g)$2 = 1" | |
| 117 | obtains z where "z \<in> path_image f" "z \<in> path_image g" proof- | |
| 118 | note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def] | |
| 119 | def iscale \<equiv> "\<lambda>z::real. inverse 2 *\<^sub>R (z + 1)" | |
| 120 |   have isc:"iscale ` {- 1..1} \<subseteq> {0..1}" unfolding iscale_def by(auto)
 | |
| 121 |   have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t" proof(rule fashoda_unit) 
 | |
| 122 |     show "(f \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}" "(g \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}"
 | |
| 123 | using isc and assms(3-4) unfolding image_compose by auto | |
| 124 |     have *:"continuous_on {- 1..1} iscale" unfolding iscale_def by(rule continuous_on_intros)+
 | |
| 125 |     show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
 | |
| 126 | apply-apply(rule_tac[!] continuous_on_compose[OF *]) apply(rule_tac[!] continuous_on_subset[OF _ isc]) | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 127 | by(rule assms)+ have *:"(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" unfolding vec_eq_iff by auto | 
| 36432 | 128 | show "(f \<circ> iscale) (- 1) $ 1 = - 1" "(f \<circ> iscale) 1 $ 1 = 1" "(g \<circ> iscale) (- 1) $ 2 = -1" "(g \<circ> iscale) 1 $ 2 = 1" | 
| 129 | unfolding o_def iscale_def using assms by(auto simp add:*) qed | |
| 130 | then guess s .. from this(2) guess t .. note st=this | |
| 131 | show thesis apply(rule_tac z="f (iscale s)" in that) | |
| 132 |     using st `s\<in>{- 1..1}` unfolding o_def path_image_def image_iff apply-
 | |
| 133 | apply(rule_tac x="iscale s" in bexI) prefer 3 apply(rule_tac x="iscale t" in bexI) | |
| 134 | using isc[unfolded subset_eq, rule_format] by auto qed | |
| 135 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 136 | (* move *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 137 | lemma interval_bij_bij_cart: fixes x::"real^'n" assumes "\<forall>i. a$i < b$i \<and> u$i < v$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 138 | shows "interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 139 | unfolding interval_bij_cart split_conv vec_eq_iff vec_lambda_beta | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 140 | apply(rule,insert assms,erule_tac x=i in allE) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 141 | |
| 36432 | 142 | lemma fashoda: fixes b::"real^2" | 
| 143 |   assumes "path f" "path g" "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
 | |
| 144 | "(pathstart f)$1 = a$1" "(pathfinish f)$1 = b$1" | |
| 145 | "(pathstart g)$2 = a$2" "(pathfinish g)$2 = b$2" | |
| 146 | obtains z where "z \<in> path_image f" "z \<in> path_image g" proof- | |
| 147 | fix P Q S presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" "Q \<Longrightarrow> thesis" "S \<Longrightarrow> thesis" thus thesis by auto | |
| 148 | next have "{a..b} \<noteq> {}" using assms(3) using path_image_nonempty by auto
 | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 149 | hence "a \<le> b" unfolding interval_eq_empty_cart less_eq_vec_def by(auto simp add: not_less) | 
| 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 150 | thus "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" unfolding less_eq_vec_def forall_2 by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 151 | next assume as:"a$1 = b$1" have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" apply(rule connected_ivt_component_cart) | 
| 36432 | 152 | apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image) | 
| 153 | unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"] | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 154 | unfolding pathstart_def by(auto simp add: less_eq_vec_def) then guess z .. note z=this | 
| 36432 | 155 |   have "z \<in> {a..b}" using z(1) assms(4) unfolding path_image_def by blast 
 | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 156 | hence "z = f 0" unfolding vec_eq_iff forall_2 unfolding z(2) pathstart_def | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 157 | using assms(3)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "f 0" 1] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 158 | unfolding mem_interval_cart apply(erule_tac x=1 in allE) using as by auto | 
| 36432 | 159 | thus thesis apply-apply(rule that[OF _ z(1)]) unfolding path_image_def by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 160 | next assume as:"a$2 = b$2" have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" apply(rule connected_ivt_component_cart) | 
| 36432 | 161 | apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image) | 
| 162 | unfolding assms using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"] | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 163 | unfolding pathstart_def by(auto simp add: less_eq_vec_def) then guess z .. note z=this | 
| 36432 | 164 |   have "z \<in> {a..b}" using z(1) assms(3) unfolding path_image_def by blast 
 | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 165 | hence "z = g 0" unfolding vec_eq_iff forall_2 unfolding z(2) pathstart_def | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 166 | using assms(4)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "g 0" 2] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 167 | unfolding mem_interval_cart apply(erule_tac x=2 in allE) using as by auto | 
| 36432 | 168 | thus thesis apply-apply(rule that[OF z(1)]) unfolding path_image_def by auto | 
| 169 | next assume as:"a $ 1 < b $ 1 \<and> a $ 2 < b $ 2" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 170 |   have int_nem:"{- 1..1::real^2} \<noteq> {}" unfolding interval_eq_empty_cart by auto
 | 
| 36432 | 171 | guess z apply(rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"]) | 
| 172 | unfolding path_def path_image_def pathstart_def pathfinish_def | |
| 173 | apply(rule_tac[1-2] continuous_on_compose) apply(rule assms[unfolded path_def] continuous_on_interval_bij)+ | |
| 174 | unfolding subset_eq apply(rule_tac[1-2] ballI) | |
| 175 |   proof- fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | |
| 176 | then guess y unfolding image_iff .. note y=this | |
| 177 |     show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
 | |
| 178 | using y(1) using assms(3)[unfolded path_image_def subset_eq] int_nem by auto | |
| 179 |   next fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | |
| 180 | then guess y unfolding image_iff .. note y=this | |
| 181 |     show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
 | |
| 182 | using y(1) using assms(4)[unfolded path_image_def subset_eq] int_nem by auto | |
| 183 | next show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1" | |
| 184 | "(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1" | |
| 185 | "(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 186 | "(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1" | 
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44282diff
changeset | 187 | unfolding interval_bij_cart vector_component_simps o_def split_conv | 
| 36432 | 188 | unfolding assms[unfolded pathstart_def pathfinish_def] using as by auto qed note z=this | 
| 189 | from z(1) guess zf unfolding image_iff .. note zf=this | |
| 190 | from z(2) guess zg unfolding image_iff .. note zg=this | |
| 191 | have *:"\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" unfolding forall_2 using as by auto | |
| 192 | show thesis apply(rule_tac z="interval_bij (- 1,1) (a,b) z" in that) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 193 | apply(subst zf) defer apply(subst zg) unfolding o_def interval_bij_bij_cart[OF *] path_image_def | 
| 36432 | 194 | using zf(1) zg(1) by auto qed | 
| 195 | ||
| 196 | subsection {*Some slightly ad hoc lemmas I use below*}
 | |
| 197 | ||
| 198 | lemma segment_vertical: fixes a::"real^2" assumes "a$1 = b$1" | |
| 199 | shows "x \<in> closed_segment a b \<longleftrightarrow> (x$1 = a$1 \<and> x$1 = b$1 \<and> | |
| 200 | (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2))" (is "_ = ?R") | |
| 201 | proof- | |
| 202 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | |
| 203 |   { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
 | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 204 | unfolding vec_eq_iff forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast } | 
| 36432 | 205 |   { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
 | 
| 206 |     { fix b a assume "b + u * a > a + u * b"
 | |
| 207 | hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps) | |
| 208 | hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto | |
| 209 | hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) | |
| 210 | using u(3-4) by(auto simp add:field_simps) } note * = this | |
| 211 |     { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
 | |
| 212 | apply(drule mult_less_imp_less_left) using u by auto | |
| 213 | hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this | |
| 214 | thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) } | |
| 215 |   { assume ?R thus ?L proof(cases "x$2 = b$2")
 | |
| 216 | case True thus ?L apply(rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) unfolding assms True | |
| 217 | using `?R` by(auto simp add:field_simps) | |
| 218 | next case False thus ?L apply(rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) unfolding assms using `?R` | |
| 219 | by(auto simp add:field_simps) | |
| 220 | qed } qed | |
| 221 | ||
| 222 | lemma segment_horizontal: fixes a::"real^2" assumes "a$2 = b$2" | |
| 223 | shows "x \<in> closed_segment a b \<longleftrightarrow> (x$2 = a$2 \<and> x$2 = b$2 \<and> | |
| 224 | (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1))" (is "_ = ?R") | |
| 225 | proof- | |
| 226 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | |
| 227 |   { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
 | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 228 | unfolding vec_eq_iff forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast } | 
| 36432 | 229 |   { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
 | 
| 230 |     { fix b a assume "b + u * a > a + u * b"
 | |
| 231 | hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps) | |
| 232 | hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto | |
| 233 | hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) | |
| 234 | using u(3-4) by(auto simp add:field_simps) } note * = this | |
| 235 |     { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
 | |
| 236 | apply(drule mult_less_imp_less_left) using u by auto | |
| 237 | hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this | |
| 238 | thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) } | |
| 239 |   { assume ?R thus ?L proof(cases "x$1 = b$1")
 | |
| 240 | case True thus ?L apply(rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) unfolding assms True | |
| 241 | using `?R` by(auto simp add:field_simps) | |
| 242 | next case False thus ?L apply(rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) unfolding assms using `?R` | |
| 243 | by(auto simp add:field_simps) | |
| 244 | qed } qed | |
| 245 | ||
| 246 | subsection {*useful Fashoda corollary pointed out to me by Tom Hales. *}
 | |
| 247 | ||
| 248 | lemma fashoda_interlace: fixes a::"real^2" | |
| 249 | assumes "path f" "path g" | |
| 250 |   "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
 | |
| 251 | "(pathstart f)$2 = a$2" "(pathfinish f)$2 = a$2" | |
| 252 | "(pathstart g)$2 = a$2" "(pathfinish g)$2 = a$2" | |
| 253 | "(pathstart f)$1 < (pathstart g)$1" "(pathstart g)$1 < (pathfinish f)$1" | |
| 254 | "(pathfinish f)$1 < (pathfinish g)$1" | |
| 255 | obtains z where "z \<in> path_image f" "z \<in> path_image g" | |
| 256 | proof- | |
| 257 |   have "{a..b} \<noteq> {}" using path_image_nonempty using assms(3) by auto
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 258 | note ab=this[unfolded interval_eq_empty_cart not_ex forall_2 not_less] | 
| 36432 | 259 |   have "pathstart f \<in> {a..b}" "pathfinish f \<in> {a..b}" "pathstart g \<in> {a..b}" "pathfinish g \<in> {a..b}"
 | 
| 260 | using pathstart_in_path_image pathfinish_in_path_image using assms(3-4) by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 261 | note startfin = this[unfolded mem_interval_cart forall_2] | 
| 36432 | 262 | let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++ | 
| 263 | linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++ | |
| 264 | linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++ | |
| 265 | linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" | |
| 266 | let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++ | |
| 267 | linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++ | |
| 268 | linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++ | |
| 269 | linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])" | |
| 270 | let ?a = "vector[a$1 - 2, a$2 - 3]" | |
| 271 | let ?b = "vector[b$1 + 2, b$2 + 3]" | |
| 272 | have P1P2:"path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union> | |
| 273 | path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union> | |
| 274 | path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union> | |
| 275 | path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))" | |
| 276 | "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union> | |
| 277 | path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union> | |
| 278 | path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union> | |
| 279 | path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) | |
| 280 | by(auto simp add: path_image_join path_linepath) | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 281 |   have abab: "{a..b} \<subseteq> {?a..?b}" by(auto simp add:less_eq_vec_def forall_2 vector_2)
 | 
| 36432 | 282 | guess z apply(rule fashoda[of ?P1 ?P2 ?a ?b]) | 
| 283 | unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 proof- | |
| 284 | show "path ?P1" "path ?P2" using assms by auto | |
| 285 |     have "path_image ?P1 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 3
 | |
| 286 | apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 287 | unfolding mem_interval_cart forall_2 vector_2 using ab startfin abab assms(3) | 
| 36432 | 288 | using assms(9-) unfolding assms by(auto simp add:field_simps) | 
| 289 |     thus "path_image ?P1  \<subseteq> {?a .. ?b}" .
 | |
| 290 |     have "path_image ?P2 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 2
 | |
| 291 | apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 292 | unfolding mem_interval_cart forall_2 vector_2 using ab startfin abab assms(4) | 
| 36432 | 293 | using assms(9-) unfolding assms by(auto simp add:field_simps) | 
| 294 |     thus "path_image ?P2  \<subseteq> {?a .. ?b}" . 
 | |
| 295 | show "a $ 1 - 2 = a $ 1 - 2" "b $ 1 + 2 = b $ 1 + 2" "pathstart g $ 2 - 3 = a $ 2 - 3" "b $ 2 + 3 = b $ 2 + 3" | |
| 296 | by(auto simp add: assms) | |
| 297 | qed note z=this[unfolded P1P2 path_image_linepath] | |
| 298 | show thesis apply(rule that[of z]) proof- | |
| 299 | have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or> | |
| 300 | z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or> | |
| 301 | z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or> | |
| 302 | z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow> | |
| 303 | (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or> | |
| 304 | z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or> | |
| 305 | z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or> | |
| 306 | z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False" | |
| 307 | apply(simp only: segment_vertical segment_horizontal vector_2) proof- case goal1 note as=this | |
| 308 |       have "pathfinish f \<in> {a..b}" using assms(3) pathfinish_in_path_image[of f] by auto 
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 309 | hence "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" unfolding mem_interval_cart forall_2 by auto | 
| 36432 | 310 | hence "z$1 \<noteq> pathfinish f$1" using as(2) using assms ab by(auto simp add:field_simps) | 
| 311 |       moreover have "pathstart f \<in> {a..b}" using assms(3) pathstart_in_path_image[of f] by auto 
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 312 | hence "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" unfolding mem_interval_cart forall_2 by auto | 
| 36432 | 313 | hence "z$1 \<noteq> pathstart f$1" using as(2) using assms ab by(auto simp add:field_simps) | 
| 314 | ultimately have *:"z$2 = a$2 - 2" using goal1(1) by auto | |
| 315 | have "z$1 \<noteq> pathfinish g$1" using as(2) using assms ab by(auto simp add:field_simps *) | |
| 316 |       moreover have "pathstart g \<in> {a..b}" using assms(4) pathstart_in_path_image[of g] by auto 
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 317 | note this[unfolded mem_interval_cart forall_2] | 
| 36432 | 318 | hence "z$1 \<noteq> pathstart g$1" using as(1) using assms ab by(auto simp add:field_simps *) | 
| 319 | ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1" | |
| 320 | using as(2) unfolding * assms by(auto simp add:field_simps) | |
| 321 | thus False unfolding * using ab by auto | |
| 322 | qed hence "z \<in> path_image f \<or> z \<in> path_image g" using z unfolding Un_iff by blast | |
| 323 |     hence z':"z\<in>{a..b}" using assms(3-4) by auto
 | |
| 324 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> (z = pathstart f \<or> z = pathfinish f)" | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 325 | unfolding vec_eq_iff forall_2 assms by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 326 | with z' show "z\<in>path_image f" using z(1) unfolding Un_iff mem_interval_cart forall_2 apply- | 
| 36432 | 327 | apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto | 
| 328 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> (z = pathstart g \<or> z = pathfinish g)" | |
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 329 | unfolding vec_eq_iff forall_2 assms by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 330 | with z' show "z\<in>path_image g" using z(2) unfolding Un_iff mem_interval_cart forall_2 apply- | 
| 36432 | 331 | apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto | 
| 332 | qed qed | |
| 333 | ||
| 334 | (** The Following still needs to be translated. Maybe I will do that later. | |
| 335 | ||
| 336 | (* ------------------------------------------------------------------------- *) | |
| 337 | (* Complement in dimension N >= 2 of set homeomorphic to any interval in *) | |
| 338 | (* any dimension is (path-)connected. This naively generalizes the argument *) | |
| 339 | (* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *) | |
| 340 | (* fixed point theorem", American Mathematical Monthly 1984. *) | |
| 341 | (* ------------------------------------------------------------------------- *) | |
| 342 | ||
| 343 | let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove | |
| 344 | (`!p:real^M->real^N a b. | |
| 345 |         ~(interval[a,b] = {}) /\
 | |
| 346 | p continuous_on interval[a,b] /\ | |
| 347 | (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y) | |
| 348 | ==> ?f. f continuous_on (:real^N) /\ | |
| 349 | IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\ | |
| 350 | (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`, | |
| 351 | REPEAT STRIP_TAC THEN | |
| 352 | FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN | |
| 353 | DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN | |
| 354 | SUBGOAL_THEN `(q:real^N->real^M) continuous_on | |
| 355 | (IMAGE p (interval[a:real^M,b]))` | |
| 356 | ASSUME_TAC THENL | |
| 357 | [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]; | |
| 358 | ALL_TAC] THEN | |
| 359 | MP_TAC(ISPECL [`q:real^N->real^M`; | |
| 360 | `IMAGE (p:real^M->real^N) | |
| 361 | (interval[a,b])`; | |
| 362 | `a:real^M`; `b:real^M`] | |
| 363 | TIETZE_CLOSED_INTERVAL) THEN | |
| 364 | ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE; | |
| 365 | COMPACT_IMP_CLOSED] THEN | |
| 366 | ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
| 367 | DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN | |
| 368 | EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN | |
| 369 | REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN | |
| 370 | CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
| 371 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN | |
| 372 | FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] | |
| 373 | CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; | |
| 374 | ||
| 375 | let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove | |
| 376 | (`!s:real^N->bool a b:real^M. | |
| 377 | s homeomorphic (interval[a,b]) | |
| 378 | ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`, | |
| 379 | REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN | |
| 380 | REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
| 381 | MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN | |
| 382 | DISCH_TAC THEN | |
| 383 | SUBGOAL_THEN | |
| 384 | `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ | |
| 385 | (p:real^M->real^N) x = p y ==> x = y` | |
| 386 | ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
| 387 | FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN | |
| 388 | DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN | |
| 389 |   ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN
 | |
| 390 | ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV; | |
| 391 | NOT_BOUNDED_UNIV] THEN | |
| 392 | ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN | |
| 393 | X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN | |
| 394 | SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
| 395 | SUBGOAL_THEN `bounded((path_component s c) UNION | |
| 396 | (IMAGE (p:real^M->real^N) (interval[a,b])))` | |
| 397 | MP_TAC THENL | |
| 398 | [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED; | |
| 399 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 400 | ALL_TAC] THEN | |
| 401 | DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN | |
| 402 | REWRITE_TAC[UNION_SUBSET] THEN | |
| 403 | DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN | |
| 404 | MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`] | |
| 405 | RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN | |
| 406 | ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN | |
| 407 | DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN | |
| 408 | DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC | |
| 409 | (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
| 410 | REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN | |
| 411 | ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN | |
| 412 | SUBGOAL_THEN | |
| 413 | `(q:real^N->real^N) continuous_on | |
| 414 | (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))` | |
| 415 | MP_TAC THENL | |
| 416 | [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN | |
| 417 | REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN | |
| 418 | REPEAT CONJ_TAC THENL | |
| 419 | [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN | |
| 420 | ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; | |
| 421 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 422 | ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; | |
| 423 | ALL_TAC] THEN | |
| 424 | X_GEN_TAC `z:real^N` THEN | |
| 425 | REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN | |
| 426 | STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
| 427 | MP_TAC(ISPECL | |
| 428 | [`path_component s (z:real^N)`; `path_component s (c:real^N)`] | |
| 429 | OPEN_INTER_CLOSURE_EQ_EMPTY) THEN | |
| 430 | ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL | |
| 431 | [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN | |
| 432 | ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; | |
| 433 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 434 | REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
| 435 | DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN | |
| 436 | GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN | |
| 437 | REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]]; | |
| 438 | ALL_TAC] THEN | |
| 439 | SUBGOAL_THEN | |
| 440 | `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) = | |
| 441 | (:real^N)` | |
| 442 | SUBST1_TAC THENL | |
| 443 | [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN | |
| 444 | REWRITE_TAC[CLOSURE_SUBSET]; | |
| 445 | DISCH_TAC] THEN | |
| 446 | MP_TAC(ISPECL | |
| 447 | [`(\x. &2 % c - x) o | |
| 448 | (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`; | |
| 449 | `cball(c:real^N,B)`] | |
| 450 | BROUWER) THEN | |
| 451 | REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN | |
| 452 | ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN | |
| 453 | SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL | |
| 454 | [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN | |
| 455 | REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN | |
| 456 | ASM SET_TAC[PATH_COMPONENT_REFL_EQ]; | |
| 457 | ALL_TAC] THEN | |
| 458 | REPEAT CONJ_TAC THENL | |
| 459 | [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN | |
| 460 | SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN | |
| 461 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL | |
| 462 | [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN | |
| 463 | MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN | |
| 464 | MATCH_MP_TAC CONTINUOUS_ON_MUL THEN | |
| 465 | SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN | |
| 466 | REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN | |
| 467 | MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN | |
| 468 | MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN | |
| 469 | ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 470 | SUBGOAL_THEN | |
| 471 | `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)` | |
| 472 | SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN | |
| 473 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN | |
| 474 | ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST; | |
| 475 | CONTINUOUS_ON_LIFT_NORM]; | |
| 476 | REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN | |
| 477 | X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN | |
| 478 | REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN | |
| 479 | REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN | |
| 480 | ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 481 | ASM_REAL_ARITH_TAC; | |
| 482 | REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN | |
| 483 | REWRITE_TAC[IN_CBALL; o_THM; dist] THEN | |
| 484 | X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN | |
| 485 | REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN | |
| 486 | ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL | |
| 487 | [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN | |
| 488 | REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN | |
| 489 | ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 490 | ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN | |
| 491 | UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN | |
| 492 | REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB]; | |
| 493 | EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN | |
| 494 | REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN | |
| 495 | ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN | |
| 496 | SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL | |
| 497 | [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN | |
| 498 | ASM_REWRITE_TAC[] THEN | |
| 499 | MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN | |
| 500 | ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);; | |
| 501 | ||
| 502 | let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove | |
| 503 | (`!s:real^N->bool a b:real^M. | |
| 504 | 2 <= dimindex(:N) /\ s homeomorphic interval[a,b] | |
| 505 | ==> path_connected((:real^N) DIFF s)`, | |
| 506 | REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN | |
| 507 | FIRST_ASSUM(MP_TAC o MATCH_MP | |
| 508 | UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN | |
| 509 | ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN | |
| 510 | ABBREV_TAC `t = (:real^N) DIFF s` THEN | |
| 511 | DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN | |
| 512 | STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN | |
| 513 | REWRITE_TAC[COMPACT_INTERVAL] THEN | |
| 514 | DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN | |
| 515 | REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN | |
| 516 | X_GEN_TAC `B:real` THEN STRIP_TAC THEN | |
| 517 | SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\ | |
| 518 | (?v:real^N. v IN path_component t y /\ B < norm(v))` | |
| 519 | STRIP_ASSUME_TAC THENL | |
| 520 | [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN | |
| 521 | MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN | |
| 522 | CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
| 523 | MATCH_MP_TAC PATH_COMPONENT_SYM THEN | |
| 524 | MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN | |
| 525 | CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
| 526 | MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN | |
| 527 | EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL | |
| 528 | [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE | |
| 529 | `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN | |
| 530 | ASM_REWRITE_TAC[SUBSET; IN_CBALL_0]; | |
| 531 | MP_TAC(ISPEC `cball(vec 0:real^N,B)` | |
| 532 | PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN | |
| 533 | ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN | |
| 534 | REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN | |
| 535 | DISCH_THEN MATCH_MP_TAC THEN | |
| 536 | ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);; | |
| 537 | ||
| 538 | (* ------------------------------------------------------------------------- *) | |
| 539 | (* In particular, apply all these to the special case of an arc. *) | |
| 540 | (* ------------------------------------------------------------------------- *) | |
| 541 | ||
| 542 | let RETRACTION_ARC = prove | |
| 543 | (`!p. arc p | |
| 544 | ==> ?f. f continuous_on (:real^N) /\ | |
| 545 | IMAGE f (:real^N) SUBSET path_image p /\ | |
| 546 | (!x. x IN path_image p ==> f x = x)`, | |
| 547 | REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN | |
| 548 | MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 549 | ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_CART_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);; | 
| 36432 | 550 | |
| 551 | let PATH_CONNECTED_ARC_COMPLEMENT = prove | |
| 552 | (`!p. 2 <= dimindex(:N) /\ arc p | |
| 553 | ==> path_connected((:real^N) DIFF path_image p)`, | |
| 554 | REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN | |
| 555 | MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`] | |
| 556 | PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN | |
| 557 | ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN | |
| 558 | ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN | |
| 559 | MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN | |
| 560 | EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);; | |
| 561 | ||
| 562 | let CONNECTED_ARC_COMPLEMENT = prove | |
| 563 | (`!p. 2 <= dimindex(:N) /\ arc p | |
| 564 | ==> connected((:real^N) DIFF path_image p)`, | |
| 565 | SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *) | |
| 566 | ||
| 567 | end |