| author | huffman | 
| Mon, 12 Sep 2011 11:54:20 -0700 | |
| changeset 44907 | 93943da0a010 | 
| parent 44890 | 22f665a2e91c | 
| child 49522 | 355f3d076924 | 
| permissions | -rw-r--r-- | 
| 44133 | 1 | (* Title: HOL/Multivariate_Analysis/Linear_Algebra.thy | 
| 2 | Author: Amine Chaieb, University of Cambridge | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Elementary linear algebra on Euclidean spaces *}
 | |
| 6 | ||
| 7 | theory Linear_Algebra | |
| 8 | imports | |
| 9 | Euclidean_Space | |
| 10 | "~~/src/HOL/Library/Infinite_Set" | |
| 11 | begin | |
| 12 | ||
| 13 | lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)" | |
| 14 | by auto | |
| 15 | ||
| 16 | notation inner (infix "\<bullet>" 70) | |
| 17 | ||
| 18 | lemma square_bound_lemma: "(x::real) < (1 + x) * (1 + x)" | |
| 19 | proof- | |
| 20 | have "(x + 1/2)^2 + 3/4 > 0" using zero_le_power2[of "x+1/2"] by arith | |
| 21 | thus ?thesis by (simp add: field_simps power2_eq_square) | |
| 22 | qed | |
| 23 | ||
| 24 | lemma square_continuous: "0 < (e::real) ==> \<exists>d. 0 < d \<and> (\<forall>y. abs(y - x) < d \<longrightarrow> abs(y * y - x * x) < e)" | |
| 25 | using isCont_power[OF isCont_ident, of 2, unfolded isCont_def LIM_eq, rule_format, of e x] apply (auto simp add: power2_eq_square) | |
| 26 | apply (rule_tac x="s" in exI) | |
| 27 | apply auto | |
| 28 | apply (erule_tac x=y in allE) | |
| 29 | apply auto | |
| 30 | done | |
| 31 | ||
| 32 | lemma real_le_lsqrt: "0 <= x \<Longrightarrow> 0 <= y \<Longrightarrow> x <= y^2 ==> sqrt x <= y" | |
| 33 | using real_sqrt_le_iff[of x "y^2"] by simp | |
| 34 | ||
| 35 | lemma real_le_rsqrt: "x^2 \<le> y \<Longrightarrow> x \<le> sqrt y" | |
| 36 | using real_sqrt_le_mono[of "x^2" y] by simp | |
| 37 | ||
| 38 | lemma real_less_rsqrt: "x^2 < y \<Longrightarrow> x < sqrt y" | |
| 39 | using real_sqrt_less_mono[of "x^2" y] by simp | |
| 40 | ||
| 41 | lemma sqrt_even_pow2: assumes n: "even n" | |
| 42 | shows "sqrt(2 ^ n) = 2 ^ (n div 2)" | |
| 43 | proof- | |
| 44 | from n obtain m where m: "n = 2*m" unfolding even_mult_two_ex .. | |
| 45 | from m have "sqrt(2 ^ n) = sqrt ((2 ^ m) ^ 2)" | |
| 46 | by (simp only: power_mult[symmetric] mult_commute) | |
| 47 | then show ?thesis using m by simp | |
| 48 | qed | |
| 49 | ||
| 50 | lemma real_div_sqrt: "0 <= x ==> x / sqrt(x) = sqrt(x)" | |
| 51 | apply (cases "x = 0", simp_all) | |
| 52 | using sqrt_divide_self_eq[of x] | |
| 53 | apply (simp add: inverse_eq_divide field_simps) | |
| 54 | done | |
| 55 | ||
| 56 | text{* Hence derive more interesting properties of the norm. *}
 | |
| 57 | ||
| 58 | lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (inner x x = (0::real))" | |
| 44666 | 59 | by simp (* TODO: delete *) | 
| 44133 | 60 | |
| 61 | lemma norm_cauchy_schwarz: | |
| 44666 | 62 | (* TODO: move to Inner_Product.thy *) | 
| 44133 | 63 | shows "inner x y <= norm x * norm y" | 
| 64 | using Cauchy_Schwarz_ineq2[of x y] by auto | |
| 65 | ||
| 66 | lemma norm_triangle_sub: | |
| 67 | fixes x y :: "'a::real_normed_vector" | |
| 68 | shows "norm x \<le> norm y + norm (x - y)" | |
| 69 | using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps) | |
| 70 | ||
| 71 | lemma norm_le: "norm(x) <= norm(y) \<longleftrightarrow> x \<bullet> x <= y \<bullet> y" | |
| 72 | by (simp add: norm_eq_sqrt_inner) | |
| 44666 | 73 | |
| 44133 | 74 | lemma norm_lt: "norm(x) < norm(y) \<longleftrightarrow> x \<bullet> x < y \<bullet> y" | 
| 75 | by (simp add: norm_eq_sqrt_inner) | |
| 44666 | 76 | |
| 44133 | 77 | lemma norm_eq: "norm(x) = norm (y) \<longleftrightarrow> x \<bullet> x = y \<bullet> y" | 
| 78 | apply(subst order_eq_iff) unfolding norm_le by auto | |
| 44666 | 79 | |
| 44133 | 80 | lemma norm_eq_1: "norm(x) = 1 \<longleftrightarrow> x \<bullet> x = 1" | 
| 44666 | 81 | by (simp add: norm_eq_sqrt_inner) | 
| 44133 | 82 | |
| 83 | text{* Squaring equations and inequalities involving norms.  *}
 | |
| 84 | ||
| 85 | lemma dot_square_norm: "x \<bullet> x = norm(x)^2" | |
| 44666 | 86 | by (simp only: power2_norm_eq_inner) (* TODO: move? *) | 
| 44133 | 87 | |
| 88 | lemma norm_eq_square: "norm(x) = a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x = a^2" | |
| 89 | by (auto simp add: norm_eq_sqrt_inner) | |
| 90 | ||
| 91 | lemma real_abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> (x::real)^2 \<le> y^2" | |
| 92 | proof | |
| 93 | assume "\<bar>x\<bar> \<le> \<bar>y\<bar>" | |
| 94 | then have "\<bar>x\<bar>\<twosuperior> \<le> \<bar>y\<bar>\<twosuperior>" by (rule power_mono, simp) | |
| 95 | then show "x\<twosuperior> \<le> y\<twosuperior>" by simp | |
| 96 | next | |
| 97 | assume "x\<twosuperior> \<le> y\<twosuperior>" | |
| 98 | then have "sqrt (x\<twosuperior>) \<le> sqrt (y\<twosuperior>)" by (rule real_sqrt_le_mono) | |
| 99 | then show "\<bar>x\<bar> \<le> \<bar>y\<bar>" by simp | |
| 100 | qed | |
| 101 | ||
| 102 | lemma norm_le_square: "norm(x) <= a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x <= a^2" | |
| 103 | apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) | |
| 104 | using norm_ge_zero[of x] | |
| 105 | apply arith | |
| 106 | done | |
| 107 | ||
| 108 | lemma norm_ge_square: "norm(x) >= a \<longleftrightarrow> a <= 0 \<or> x \<bullet> x >= a ^ 2" | |
| 109 | apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) | |
| 110 | using norm_ge_zero[of x] | |
| 111 | apply arith | |
| 112 | done | |
| 113 | ||
| 114 | lemma norm_lt_square: "norm(x) < a \<longleftrightarrow> 0 < a \<and> x \<bullet> x < a^2" | |
| 115 | by (metis not_le norm_ge_square) | |
| 116 | lemma norm_gt_square: "norm(x) > a \<longleftrightarrow> a < 0 \<or> x \<bullet> x > a^2" | |
| 117 | by (metis norm_le_square not_less) | |
| 118 | ||
| 119 | text{* Dot product in terms of the norm rather than conversely. *}
 | |
| 120 | ||
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44176diff
changeset | 121 | lemmas inner_simps = inner_add_left inner_add_right inner_diff_right inner_diff_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44176diff
changeset | 122 | inner_scaleR_left inner_scaleR_right | 
| 44133 | 123 | |
| 124 | lemma dot_norm: "x \<bullet> y = (norm(x + y) ^2 - norm x ^ 2 - norm y ^ 2) / 2" | |
| 125 | unfolding power2_norm_eq_inner inner_simps inner_commute by auto | |
| 126 | ||
| 127 | lemma dot_norm_neg: "x \<bullet> y = ((norm x ^ 2 + norm y ^ 2) - norm(x - y) ^ 2) / 2" | |
| 128 | unfolding power2_norm_eq_inner inner_simps inner_commute by(auto simp add:algebra_simps) | |
| 129 | ||
| 130 | text{* Equality of vectors in terms of @{term "op \<bullet>"} products.    *}
 | |
| 131 | ||
| 132 | lemma vector_eq: "x = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y \<and> y \<bullet> y = x \<bullet> x" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 133 | proof | |
| 134 | assume ?lhs then show ?rhs by simp | |
| 135 | next | |
| 136 | assume ?rhs | |
| 137 | then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0" by simp | |
| 44454 | 138 | hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0" by (simp add: inner_diff inner_commute) | 
| 139 | then have "(x - y) \<bullet> (x - y) = 0" by (simp add: field_simps inner_diff inner_commute) | |
| 44133 | 140 | then show "x = y" by (simp) | 
| 141 | qed | |
| 142 | ||
| 143 | lemma norm_triangle_half_r: | |
| 144 | shows "norm (y - x1) < e / 2 \<Longrightarrow> norm (y - x2) < e / 2 \<Longrightarrow> norm (x1 - x2) < e" | |
| 145 | using dist_triangle_half_r unfolding dist_norm[THEN sym] by auto | |
| 146 | ||
| 147 | lemma norm_triangle_half_l: assumes "norm (x - y) < e / 2" "norm (x' - (y)) < e / 2" | |
| 148 | shows "norm (x - x') < e" | |
| 149 | using dist_triangle_half_l[OF assms[unfolded dist_norm[THEN sym]]] | |
| 150 | unfolding dist_norm[THEN sym] . | |
| 151 | ||
| 152 | lemma norm_triangle_le: "norm(x) + norm y <= e ==> norm(x + y) <= e" | |
| 44666 | 153 | by (rule norm_triangle_ineq [THEN order_trans]) | 
| 44133 | 154 | |
| 155 | lemma norm_triangle_lt: "norm(x) + norm(y) < e ==> norm(x + y) < e" | |
| 44666 | 156 | by (rule norm_triangle_ineq [THEN le_less_trans]) | 
| 44133 | 157 | |
| 158 | lemma setsum_clauses: | |
| 159 |   shows "setsum f {} = 0"
 | |
| 160 | and "finite S \<Longrightarrow> setsum f (insert x S) = | |
| 161 | (if x \<in> S then setsum f S else f x + setsum f S)" | |
| 162 | by (auto simp add: insert_absorb) | |
| 163 | ||
| 164 | lemma setsum_norm_le: | |
| 165 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 44176 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 huffman parents: 
44170diff
changeset | 166 | assumes fg: "\<forall>x \<in> S. norm (f x) \<le> g x" | 
| 44133 | 167 | shows "norm (setsum f S) \<le> setsum g S" | 
| 44176 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 huffman parents: 
44170diff
changeset | 168 | by (rule order_trans [OF norm_setsum setsum_mono], simp add: fg) | 
| 44133 | 169 | |
| 170 | lemma setsum_norm_bound: | |
| 171 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 172 | assumes fS: "finite S" | |
| 173 | and K: "\<forall>x \<in> S. norm (f x) \<le> K" | |
| 174 | shows "norm (setsum f S) \<le> of_nat (card S) * K" | |
| 44176 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 huffman parents: 
44170diff
changeset | 175 | using setsum_norm_le[OF K] setsum_constant[symmetric] | 
| 44133 | 176 | by simp | 
| 177 | ||
| 178 | lemma setsum_group: | |
| 179 | assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \<subseteq> T" | |
| 180 |   shows "setsum (\<lambda>y. setsum g {x. x\<in> S \<and> f x = y}) T = setsum g S"
 | |
| 181 | apply (subst setsum_image_gen[OF fS, of g f]) | |
| 182 | apply (rule setsum_mono_zero_right[OF fT fST]) | |
| 183 | by (auto intro: setsum_0') | |
| 184 | ||
| 185 | lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = z" | |
| 186 | proof | |
| 187 | assume "\<forall>x. x \<bullet> y = x \<bullet> z" | |
| 44454 | 188 | hence "\<forall>x. x \<bullet> (y - z) = 0" by (simp add: inner_diff) | 
| 44133 | 189 | hence "(y - z) \<bullet> (y - z) = 0" .. | 
| 190 | thus "y = z" by simp | |
| 191 | qed simp | |
| 192 | ||
| 193 | lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = y" | |
| 194 | proof | |
| 195 | assume "\<forall>z. x \<bullet> z = y \<bullet> z" | |
| 44454 | 196 | hence "\<forall>z. (x - y) \<bullet> z = 0" by (simp add: inner_diff) | 
| 44133 | 197 | hence "(x - y) \<bullet> (x - y) = 0" .. | 
| 198 | thus "x = y" by simp | |
| 199 | qed simp | |
| 200 | ||
| 201 | subsection{* Orthogonality. *}
 | |
| 202 | ||
| 203 | context real_inner | |
| 204 | begin | |
| 205 | ||
| 206 | definition "orthogonal x y \<longleftrightarrow> (x \<bullet> y = 0)" | |
| 207 | ||
| 208 | lemma orthogonal_clauses: | |
| 209 | "orthogonal a 0" | |
| 210 | "orthogonal a x \<Longrightarrow> orthogonal a (c *\<^sub>R x)" | |
| 211 | "orthogonal a x \<Longrightarrow> orthogonal a (-x)" | |
| 212 | "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x + y)" | |
| 213 | "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x - y)" | |
| 214 | "orthogonal 0 a" | |
| 215 | "orthogonal x a \<Longrightarrow> orthogonal (c *\<^sub>R x) a" | |
| 216 | "orthogonal x a \<Longrightarrow> orthogonal (-x) a" | |
| 217 | "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x + y) a" | |
| 218 | "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x - y) a" | |
| 44666 | 219 | unfolding orthogonal_def inner_add inner_diff by auto | 
| 220 | ||
| 44133 | 221 | end | 
| 222 | ||
| 223 | lemma orthogonal_commute: "orthogonal x y \<longleftrightarrow> orthogonal y x" | |
| 224 | by (simp add: orthogonal_def inner_commute) | |
| 225 | ||
| 226 | subsection{* Linear functions. *}
 | |
| 227 | ||
| 228 | definition | |
| 229 |   linear :: "('a::real_vector \<Rightarrow> 'b::real_vector) \<Rightarrow> bool" where
 | |
| 230 | "linear f \<longleftrightarrow> (\<forall>x y. f(x + y) = f x + f y) \<and> (\<forall>c x. f(c *\<^sub>R x) = c *\<^sub>R f x)" | |
| 231 | ||
| 232 | lemma linearI: assumes "\<And>x y. f (x + y) = f x + f y" "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x" | |
| 233 | shows "linear f" using assms unfolding linear_def by auto | |
| 234 | ||
| 235 | lemma linear_compose_cmul: "linear f ==> linear (\<lambda>x. c *\<^sub>R f x)" | |
| 236 | by (simp add: linear_def algebra_simps) | |
| 237 | ||
| 238 | lemma linear_compose_neg: "linear f ==> linear (\<lambda>x. -(f(x)))" | |
| 239 | by (simp add: linear_def) | |
| 240 | ||
| 241 | lemma linear_compose_add: "linear f \<Longrightarrow> linear g ==> linear (\<lambda>x. f(x) + g(x))" | |
| 242 | by (simp add: linear_def algebra_simps) | |
| 243 | ||
| 244 | lemma linear_compose_sub: "linear f \<Longrightarrow> linear g ==> linear (\<lambda>x. f x - g x)" | |
| 245 | by (simp add: linear_def algebra_simps) | |
| 246 | ||
| 247 | lemma linear_compose: "linear f \<Longrightarrow> linear g ==> linear (g o f)" | |
| 248 | by (simp add: linear_def) | |
| 249 | ||
| 250 | lemma linear_id: "linear id" by (simp add: linear_def id_def) | |
| 251 | ||
| 252 | lemma linear_zero: "linear (\<lambda>x. 0)" by (simp add: linear_def) | |
| 253 | ||
| 254 | lemma linear_compose_setsum: | |
| 255 | assumes fS: "finite S" and lS: "\<forall>a \<in> S. linear (f a)" | |
| 256 | shows "linear(\<lambda>x. setsum (\<lambda>a. f a x) S)" | |
| 257 | using lS | |
| 258 | apply (induct rule: finite_induct[OF fS]) | |
| 259 | by (auto simp add: linear_zero intro: linear_compose_add) | |
| 260 | ||
| 261 | lemma linear_0: "linear f \<Longrightarrow> f 0 = 0" | |
| 262 | unfolding linear_def | |
| 263 | apply clarsimp | |
| 264 | apply (erule allE[where x="0::'a"]) | |
| 265 | apply simp | |
| 266 | done | |
| 267 | ||
| 268 | lemma linear_cmul: "linear f ==> f(c *\<^sub>R x) = c *\<^sub>R f x" by (simp add: linear_def) | |
| 269 | ||
| 270 | lemma linear_neg: "linear f ==> f (-x) = - f x" | |
| 271 | using linear_cmul [where c="-1"] by simp | |
| 272 | ||
| 273 | lemma linear_add: "linear f ==> f(x + y) = f x + f y" by (metis linear_def) | |
| 274 | ||
| 275 | lemma linear_sub: "linear f ==> f(x - y) = f x - f y" | |
| 276 | by (simp add: diff_minus linear_add linear_neg) | |
| 277 | ||
| 278 | lemma linear_setsum: | |
| 279 | assumes lf: "linear f" and fS: "finite S" | |
| 280 | shows "f (setsum g S) = setsum (f o g) S" | |
| 281 | proof (induct rule: finite_induct[OF fS]) | |
| 282 | case 1 thus ?case by (simp add: linear_0[OF lf]) | |
| 283 | next | |
| 284 | case (2 x F) | |
| 285 | have "f (setsum g (insert x F)) = f (g x + setsum g F)" using "2.hyps" | |
| 286 | by simp | |
| 287 | also have "\<dots> = f (g x) + f (setsum g F)" using linear_add[OF lf] by simp | |
| 288 | also have "\<dots> = setsum (f o g) (insert x F)" using "2.hyps" by simp | |
| 289 | finally show ?case . | |
| 290 | qed | |
| 291 | ||
| 292 | lemma linear_setsum_mul: | |
| 293 | assumes lf: "linear f" and fS: "finite S" | |
| 294 | shows "f (setsum (\<lambda>i. c i *\<^sub>R v i) S) = setsum (\<lambda>i. c i *\<^sub>R f (v i)) S" | |
| 295 | using linear_setsum[OF lf fS, of "\<lambda>i. c i *\<^sub>R v i" , unfolded o_def] | |
| 296 | linear_cmul[OF lf] by simp | |
| 297 | ||
| 298 | lemma linear_injective_0: | |
| 299 | assumes lf: "linear f" | |
| 300 | shows "inj f \<longleftrightarrow> (\<forall>x. f x = 0 \<longrightarrow> x = 0)" | |
| 301 | proof- | |
| 302 | have "inj f \<longleftrightarrow> (\<forall> x y. f x = f y \<longrightarrow> x = y)" by (simp add: inj_on_def) | |
| 303 | also have "\<dots> \<longleftrightarrow> (\<forall> x y. f x - f y = 0 \<longrightarrow> x - y = 0)" by simp | |
| 304 | also have "\<dots> \<longleftrightarrow> (\<forall> x y. f (x - y) = 0 \<longrightarrow> x - y = 0)" | |
| 305 | by (simp add: linear_sub[OF lf]) | |
| 306 | also have "\<dots> \<longleftrightarrow> (\<forall> x. f x = 0 \<longrightarrow> x = 0)" by auto | |
| 307 | finally show ?thesis . | |
| 308 | qed | |
| 309 | ||
| 310 | subsection{* Bilinear functions. *}
 | |
| 311 | ||
| 312 | definition "bilinear f \<longleftrightarrow> (\<forall>x. linear(\<lambda>y. f x y)) \<and> (\<forall>y. linear(\<lambda>x. f x y))" | |
| 313 | ||
| 314 | lemma bilinear_ladd: "bilinear h ==> h (x + y) z = (h x z) + (h y z)" | |
| 315 | by (simp add: bilinear_def linear_def) | |
| 316 | lemma bilinear_radd: "bilinear h ==> h x (y + z) = (h x y) + (h x z)" | |
| 317 | by (simp add: bilinear_def linear_def) | |
| 318 | ||
| 319 | lemma bilinear_lmul: "bilinear h ==> h (c *\<^sub>R x) y = c *\<^sub>R (h x y)" | |
| 320 | by (simp add: bilinear_def linear_def) | |
| 321 | ||
| 322 | lemma bilinear_rmul: "bilinear h ==> h x (c *\<^sub>R y) = c *\<^sub>R (h x y)" | |
| 323 | by (simp add: bilinear_def linear_def) | |
| 324 | ||
| 325 | lemma bilinear_lneg: "bilinear h ==> h (- x) y = -(h x y)" | |
| 326 | by (simp only: scaleR_minus1_left [symmetric] bilinear_lmul) | |
| 327 | ||
| 328 | lemma bilinear_rneg: "bilinear h ==> h x (- y) = - h x y" | |
| 329 | by (simp only: scaleR_minus1_left [symmetric] bilinear_rmul) | |
| 330 | ||
| 331 | lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0" | |
| 332 | using add_imp_eq[of x y 0] by auto | |
| 333 | ||
| 334 | lemma bilinear_lzero: | |
| 335 | assumes bh: "bilinear h" shows "h 0 x = 0" | |
| 336 | using bilinear_ladd[OF bh, of 0 0 x] | |
| 337 | by (simp add: eq_add_iff field_simps) | |
| 338 | ||
| 339 | lemma bilinear_rzero: | |
| 340 | assumes bh: "bilinear h" shows "h x 0 = 0" | |
| 341 | using bilinear_radd[OF bh, of x 0 0 ] | |
| 342 | by (simp add: eq_add_iff field_simps) | |
| 343 | ||
| 344 | lemma bilinear_lsub: "bilinear h ==> h (x - y) z = h x z - h y z" | |
| 345 | by (simp add: diff_minus bilinear_ladd bilinear_lneg) | |
| 346 | ||
| 347 | lemma bilinear_rsub: "bilinear h ==> h z (x - y) = h z x - h z y" | |
| 348 | by (simp add: diff_minus bilinear_radd bilinear_rneg) | |
| 349 | ||
| 350 | lemma bilinear_setsum: | |
| 351 | assumes bh: "bilinear h" and fS: "finite S" and fT: "finite T" | |
| 352 | shows "h (setsum f S) (setsum g T) = setsum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) " | |
| 353 | proof- | |
| 354 | have "h (setsum f S) (setsum g T) = setsum (\<lambda>x. h (f x) (setsum g T)) S" | |
| 355 | apply (rule linear_setsum[unfolded o_def]) | |
| 356 | using bh fS by (auto simp add: bilinear_def) | |
| 357 | also have "\<dots> = setsum (\<lambda>x. setsum (\<lambda>y. h (f x) (g y)) T) S" | |
| 358 | apply (rule setsum_cong, simp) | |
| 359 | apply (rule linear_setsum[unfolded o_def]) | |
| 360 | using bh fT by (auto simp add: bilinear_def) | |
| 361 | finally show ?thesis unfolding setsum_cartesian_product . | |
| 362 | qed | |
| 363 | ||
| 364 | subsection{* Adjoints. *}
 | |
| 365 | ||
| 366 | definition "adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)" | |
| 367 | ||
| 368 | lemma adjoint_unique: | |
| 369 | assumes "\<forall>x y. inner (f x) y = inner x (g y)" | |
| 370 | shows "adjoint f = g" | |
| 371 | unfolding adjoint_def | |
| 372 | proof (rule some_equality) | |
| 373 | show "\<forall>x y. inner (f x) y = inner x (g y)" using assms . | |
| 374 | next | |
| 375 | fix h assume "\<forall>x y. inner (f x) y = inner x (h y)" | |
| 376 | hence "\<forall>x y. inner x (g y) = inner x (h y)" using assms by simp | |
| 377 | hence "\<forall>x y. inner x (g y - h y) = 0" by (simp add: inner_diff_right) | |
| 378 | hence "\<forall>y. inner (g y - h y) (g y - h y) = 0" by simp | |
| 379 | hence "\<forall>y. h y = g y" by simp | |
| 380 | thus "h = g" by (simp add: ext) | |
| 381 | qed | |
| 382 | ||
| 383 | lemma choice_iff: "(\<forall>x. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x. P x (f x))" by metis | |
| 384 | ||
| 385 | subsection{* Interlude: Some properties of real sets *}
 | |
| 386 | ||
| 387 | lemma seq_mono_lemma: assumes "\<forall>(n::nat) \<ge> m. (d n :: real) < e n" and "\<forall>n \<ge> m. e n <= e m" | |
| 388 | shows "\<forall>n \<ge> m. d n < e m" | |
| 389 | using assms apply auto | |
| 390 | apply (erule_tac x="n" in allE) | |
| 391 | apply (erule_tac x="n" in allE) | |
| 392 | apply auto | |
| 393 | done | |
| 394 | ||
| 395 | ||
| 396 | lemma infinite_enumerate: assumes fS: "infinite S" | |
| 397 | shows "\<exists>r. subseq r \<and> (\<forall>n. r n \<in> S)" | |
| 398 | unfolding subseq_def | |
| 399 | using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto | |
| 400 | ||
| 401 | lemma approachable_lt_le: "(\<exists>(d::real)>0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)" | |
| 402 | apply auto | |
| 403 | apply (rule_tac x="d/2" in exI) | |
| 404 | apply auto | |
| 405 | done | |
| 406 | ||
| 407 | ||
| 408 | lemma triangle_lemma: | |
| 409 | assumes x: "0 <= (x::real)" and y:"0 <= y" and z: "0 <= z" and xy: "x^2 <= y^2 + z^2" | |
| 410 | shows "x <= y + z" | |
| 411 | proof- | |
| 412 | have "y^2 + z^2 \<le> y^2 + 2*y*z + z^2" using z y by (simp add: mult_nonneg_nonneg) | |
| 413 | with xy have th: "x ^2 \<le> (y+z)^2" by (simp add: power2_eq_square field_simps) | |
| 414 | from y z have yz: "y + z \<ge> 0" by arith | |
| 415 | from power2_le_imp_le[OF th yz] show ?thesis . | |
| 416 | qed | |
| 417 | ||
| 418 | subsection {* A generic notion of "hull" (convex, affine, conic hull and closure). *}
 | |
| 419 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 420 | definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "hull" 75) where
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 421 |   "S hull s = Inter {t. S t \<and> s \<subseteq> t}"
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 422 | |
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 423 | lemma hull_same: "S s \<Longrightarrow> S hull s = s" | 
| 44133 | 424 | unfolding hull_def by auto | 
| 425 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 426 | lemma hull_in: "(\<And>T. Ball T S ==> S (Inter T)) ==> S (S hull s)" | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 427 | unfolding hull_def Ball_def by auto | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 428 | |
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 429 | lemma hull_eq: "(\<And>T. Ball T S ==> S (Inter T)) ==> (S hull s) = s \<longleftrightarrow> S s" | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 430 | using hull_same[of S s] hull_in[of S s] by metis | 
| 44133 | 431 | |
| 432 | ||
| 433 | lemma hull_hull: "S hull (S hull s) = S hull s" | |
| 434 | unfolding hull_def by blast | |
| 435 | ||
| 436 | lemma hull_subset[intro]: "s \<subseteq> (S hull s)" | |
| 437 | unfolding hull_def by blast | |
| 438 | ||
| 439 | lemma hull_mono: " s \<subseteq> t ==> (S hull s) \<subseteq> (S hull t)" | |
| 440 | unfolding hull_def by blast | |
| 441 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 442 | lemma hull_antimono: "\<forall>x. S x \<longrightarrow> T x ==> (T hull s) \<subseteq> (S hull s)" | 
| 44133 | 443 | unfolding hull_def by blast | 
| 444 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 445 | lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> S t ==> (S hull s) \<subseteq> t" | 
| 44133 | 446 | unfolding hull_def by blast | 
| 447 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 448 | lemma subset_hull: "S t ==> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t" | 
| 44133 | 449 | unfolding hull_def by blast | 
| 450 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 451 | lemma hull_unique: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> S t' ==> t \<subseteq> t') | 
| 44133 | 452 | ==> (S hull s = t)" | 
| 453 | unfolding hull_def by auto | |
| 454 | ||
| 455 | lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x"
 | |
| 456 |   using hull_minimal[of S "{x. P x}" Q]
 | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 457 | by (auto simp add: subset_eq) | 
| 44133 | 458 | |
| 459 | lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S" by (metis hull_subset subset_eq) | |
| 460 | ||
| 461 | lemma hull_union_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))" | |
| 462 | unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2) | |
| 463 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 464 | lemma hull_union: assumes T: "\<And>T. Ball T S ==> S (Inter T)" | 
| 44133 | 465 | shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)" | 
| 466 | apply rule | |
| 467 | apply (rule hull_mono) | |
| 468 | unfolding Un_subset_iff | |
| 469 | apply (metis hull_subset Un_upper1 Un_upper2 subset_trans) | |
| 470 | apply (rule hull_minimal) | |
| 471 | apply (metis hull_union_subset) | |
| 472 | apply (metis hull_in T) | |
| 473 | done | |
| 474 | ||
| 475 | lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> (S hull (insert a s) = S hull s)" | |
| 476 | unfolding hull_def by blast | |
| 477 | ||
| 478 | lemma hull_redundant: "a \<in> (S hull s) ==> (S hull (insert a s) = S hull s)" | |
| 479 | by (metis hull_redundant_eq) | |
| 480 | ||
| 44666 | 481 | subsection {* Archimedean properties and useful consequences *}
 | 
| 44133 | 482 | |
| 483 | lemma real_arch_simple: "\<exists>n. x <= real (n::nat)" | |
| 44666 | 484 | unfolding real_of_nat_def by (rule ex_le_of_nat) | 
| 44133 | 485 | |
| 486 | lemma real_arch_inv: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" | |
| 487 | using reals_Archimedean | |
| 488 | apply (auto simp add: field_simps) | |
| 489 | apply (subgoal_tac "inverse (real n) > 0") | |
| 490 | apply arith | |
| 491 | apply simp | |
| 492 | done | |
| 493 | ||
| 494 | lemma real_pow_lbound: "0 <= x ==> 1 + real n * x <= (1 + x) ^ n" | |
| 495 | proof(induct n) | |
| 496 | case 0 thus ?case by simp | |
| 497 | next | |
| 498 | case (Suc n) | |
| 499 | hence h: "1 + real n * x \<le> (1 + x) ^ n" by simp | |
| 500 | from h have p: "1 \<le> (1 + x) ^ n" using Suc.prems by simp | |
| 501 | from h have "1 + real n * x + x \<le> (1 + x) ^ n + x" by simp | |
| 502 | also have "\<dots> \<le> (1 + x) ^ Suc n" apply (subst diff_le_0_iff_le[symmetric]) | |
| 503 | apply (simp add: field_simps) | |
| 504 | using mult_left_mono[OF p Suc.prems] by simp | |
| 505 | finally show ?case by (simp add: real_of_nat_Suc field_simps) | |
| 506 | qed | |
| 507 | ||
| 508 | lemma real_arch_pow: assumes x: "1 < (x::real)" shows "\<exists>n. y < x^n" | |
| 509 | proof- | |
| 510 | from x have x0: "x - 1 > 0" by arith | |
| 44666 | 511 | from reals_Archimedean3[OF x0, rule_format, of y] | 
| 44133 | 512 | obtain n::nat where n:"y < real n * (x - 1)" by metis | 
| 513 | from x0 have x00: "x- 1 \<ge> 0" by arith | |
| 514 | from real_pow_lbound[OF x00, of n] n | |
| 515 | have "y < x^n" by auto | |
| 516 | then show ?thesis by metis | |
| 517 | qed | |
| 518 | ||
| 519 | lemma real_arch_pow2: "\<exists>n. (x::real) < 2^ n" | |
| 520 | using real_arch_pow[of 2 x] by simp | |
| 521 | ||
| 522 | lemma real_arch_pow_inv: assumes y: "(y::real) > 0" and x1: "x < 1" | |
| 523 | shows "\<exists>n. x^n < y" | |
| 524 | proof- | |
| 525 |   {assume x0: "x > 0"
 | |
| 526 | from x0 x1 have ix: "1 < 1/x" by (simp add: field_simps) | |
| 527 | from real_arch_pow[OF ix, of "1/y"] | |
| 528 | obtain n where n: "1/y < (1/x)^n" by blast | |
| 529 | then | |
| 530 | have ?thesis using y x0 by (auto simp add: field_simps power_divide) } | |
| 531 | moreover | |
| 532 |   {assume "\<not> x > 0" with y x1 have ?thesis apply auto by (rule exI[where x=1], auto)}
 | |
| 533 | ultimately show ?thesis by metis | |
| 534 | qed | |
| 535 | ||
| 536 | lemma forall_pos_mono: "(\<And>d e::real. d < e \<Longrightarrow> P d ==> P e) \<Longrightarrow> (\<And>n::nat. n \<noteq> 0 ==> P(inverse(real n))) \<Longrightarrow> (\<And>e. 0 < e ==> P e)" | |
| 537 | by (metis real_arch_inv) | |
| 538 | ||
| 539 | lemma forall_pos_mono_1: "(\<And>d e::real. d < e \<Longrightarrow> P d ==> P e) \<Longrightarrow> (\<And>n. P(inverse(real (Suc n)))) ==> 0 < e ==> P e" | |
| 540 | apply (rule forall_pos_mono) | |
| 541 | apply auto | |
| 542 | apply (atomize) | |
| 543 | apply (erule_tac x="n - 1" in allE) | |
| 544 | apply auto | |
| 545 | done | |
| 546 | ||
| 547 | lemma real_archimedian_rdiv_eq_0: assumes x0: "x \<ge> 0" and c: "c \<ge> 0" and xc: "\<forall>(m::nat)>0. real m * x \<le> c" | |
| 548 | shows "x = 0" | |
| 549 | proof- | |
| 550 |   {assume "x \<noteq> 0" with x0 have xp: "x > 0" by arith
 | |
| 44666 | 551 | from reals_Archimedean3[OF xp, rule_format, of c] | 
| 552 | obtain n::nat where n: "c < real n * x" by blast | |
| 44133 | 553 | with xc[rule_format, of n] have "n = 0" by arith | 
| 554 | with n c have False by simp} | |
| 555 | then show ?thesis by blast | |
| 556 | qed | |
| 557 | ||
| 558 | subsection{* A bit of linear algebra. *}
 | |
| 559 | ||
| 560 | definition (in real_vector) | |
| 561 | subspace :: "'a set \<Rightarrow> bool" where | |
| 562 | "subspace S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>x\<in> S. \<forall>y \<in>S. x + y \<in> S) \<and> (\<forall>c. \<forall>x \<in>S. c *\<^sub>R x \<in>S )" | |
| 563 | ||
| 564 | definition (in real_vector) "span S = (subspace hull S)" | |
| 565 | definition (in real_vector) "dependent S \<longleftrightarrow> (\<exists>a \<in> S. a \<in> span(S - {a}))"
 | |
| 566 | abbreviation (in real_vector) "independent s == ~(dependent s)" | |
| 567 | ||
| 568 | text {* Closure properties of subspaces. *}
 | |
| 569 | ||
| 570 | lemma subspace_UNIV[simp]: "subspace(UNIV)" by (simp add: subspace_def) | |
| 571 | ||
| 572 | lemma (in real_vector) subspace_0: "subspace S ==> 0 \<in> S" by (metis subspace_def) | |
| 573 | ||
| 574 | lemma (in real_vector) subspace_add: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S ==> x + y \<in> S" | |
| 575 | by (metis subspace_def) | |
| 576 | ||
| 577 | lemma (in real_vector) subspace_mul: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> c *\<^sub>R x \<in> S" | |
| 578 | by (metis subspace_def) | |
| 579 | ||
| 580 | lemma subspace_neg: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> - x \<in> S" | |
| 581 | by (metis scaleR_minus1_left subspace_mul) | |
| 582 | ||
| 583 | lemma subspace_sub: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S" | |
| 584 | by (metis diff_minus subspace_add subspace_neg) | |
| 585 | ||
| 586 | lemma (in real_vector) subspace_setsum: | |
| 587 | assumes sA: "subspace A" and fB: "finite B" | |
| 588 | and f: "\<forall>x\<in> B. f x \<in> A" | |
| 589 | shows "setsum f B \<in> A" | |
| 590 | using fB f sA | |
| 591 | apply(induct rule: finite_induct[OF fB]) | |
| 592 | by (simp add: subspace_def sA, auto simp add: sA subspace_add) | |
| 593 | ||
| 594 | lemma subspace_linear_image: | |
| 595 | assumes lf: "linear f" and sS: "subspace S" | |
| 596 | shows "subspace(f ` S)" | |
| 597 | using lf sS linear_0[OF lf] | |
| 598 | unfolding linear_def subspace_def | |
| 599 | apply (auto simp add: image_iff) | |
| 600 | apply (rule_tac x="x + y" in bexI, auto) | |
| 601 | apply (rule_tac x="c *\<^sub>R x" in bexI, auto) | |
| 602 | done | |
| 603 | ||
| 44521 | 604 | lemma subspace_linear_vimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace (f -` S)" | 
| 605 | by (auto simp add: subspace_def linear_def linear_0[of f]) | |
| 606 | ||
| 44133 | 607 | lemma subspace_linear_preimage: "linear f ==> subspace S ==> subspace {x. f x \<in> S}"
 | 
| 608 | by (auto simp add: subspace_def linear_def linear_0[of f]) | |
| 609 | ||
| 610 | lemma subspace_trivial: "subspace {0}"
 | |
| 611 | by (simp add: subspace_def) | |
| 612 | ||
| 613 | lemma (in real_vector) subspace_inter: "subspace A \<Longrightarrow> subspace B ==> subspace (A \<inter> B)" | |
| 614 | by (simp add: subspace_def) | |
| 615 | ||
| 44521 | 616 | lemma subspace_Times: "\<lbrakk>subspace A; subspace B\<rbrakk> \<Longrightarrow> subspace (A \<times> B)" | 
| 617 | unfolding subspace_def zero_prod_def by simp | |
| 618 | ||
| 619 | text {* Properties of span. *}
 | |
| 620 | ||
| 44133 | 621 | lemma (in real_vector) span_mono: "A \<subseteq> B ==> span A \<subseteq> span B" | 
| 622 | by (metis span_def hull_mono) | |
| 623 | ||
| 624 | lemma (in real_vector) subspace_span: "subspace(span S)" | |
| 625 | unfolding span_def | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 626 | apply (rule hull_in) | 
| 44133 | 627 | apply (simp only: subspace_def Inter_iff Int_iff subset_eq) | 
| 628 | apply auto | |
| 629 | done | |
| 630 | ||
| 631 | lemma (in real_vector) span_clauses: | |
| 632 | "a \<in> S ==> a \<in> span S" | |
| 633 | "0 \<in> span S" | |
| 634 | "x\<in> span S \<Longrightarrow> y \<in> span S ==> x + y \<in> span S" | |
| 635 | "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S" | |
| 636 | by (metis span_def hull_subset subset_eq) | |
| 637 | (metis subspace_span subspace_def)+ | |
| 638 | ||
| 44521 | 639 | lemma span_unique: | 
| 640 | "\<lbrakk>S \<subseteq> T; subspace T; \<And>T'. \<lbrakk>S \<subseteq> T'; subspace T'\<rbrakk> \<Longrightarrow> T \<subseteq> T'\<rbrakk> \<Longrightarrow> span S = T" | |
| 641 | unfolding span_def by (rule hull_unique) | |
| 642 | ||
| 643 | lemma span_minimal: "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> span S \<subseteq> T" | |
| 644 | unfolding span_def by (rule hull_minimal) | |
| 645 | ||
| 646 | lemma (in real_vector) span_induct: | |
| 647 | assumes x: "x \<in> span S" and P: "subspace P" and SP: "\<And>x. x \<in> S ==> x \<in> P" | |
| 648 | shows "x \<in> P" | |
| 44133 | 649 | proof- | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 650 | from SP have SP': "S \<subseteq> P" by (simp add: subset_eq) | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 651 | from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]] | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 652 | show "x \<in> P" by (metis subset_eq) | 
| 44133 | 653 | qed | 
| 654 | ||
| 655 | lemma span_empty[simp]: "span {} = {0}"
 | |
| 656 | apply (simp add: span_def) | |
| 657 | apply (rule hull_unique) | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 658 | apply (auto simp add: subspace_def) | 
| 44133 | 659 | done | 
| 660 | ||
| 661 | lemma (in real_vector) independent_empty[intro]: "independent {}"
 | |
| 662 | by (simp add: dependent_def) | |
| 663 | ||
| 664 | lemma dependent_single[simp]: | |
| 665 |   "dependent {x} \<longleftrightarrow> x = 0"
 | |
| 666 | unfolding dependent_def by auto | |
| 667 | ||
| 668 | lemma (in real_vector) independent_mono: "independent A \<Longrightarrow> B \<subseteq> A ==> independent B" | |
| 669 | apply (clarsimp simp add: dependent_def span_mono) | |
| 670 |   apply (subgoal_tac "span (B - {a}) \<le> span (A - {a})")
 | |
| 671 | apply force | |
| 672 | apply (rule span_mono) | |
| 673 | apply auto | |
| 674 | done | |
| 675 | ||
| 676 | lemma (in real_vector) span_subspace: "A \<subseteq> B \<Longrightarrow> B \<le> span A \<Longrightarrow> subspace B \<Longrightarrow> span A = B" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 677 | by (metis order_antisym span_def hull_minimal) | 
| 44133 | 678 | |
| 679 | lemma (in real_vector) span_induct': assumes SP: "\<forall>x \<in> S. P x" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 680 |   and P: "subspace {x. P x}" shows "\<forall>x \<in> span S. P x"
 | 
| 44133 | 681 | using span_induct SP P by blast | 
| 682 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 683 | inductive_set (in real_vector) span_induct_alt_help for S:: "'a set" | 
| 44133 | 684 | where | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 685 | span_induct_alt_help_0: "0 \<in> span_induct_alt_help S" | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 686 | | span_induct_alt_help_S: "x \<in> S \<Longrightarrow> z \<in> span_induct_alt_help S \<Longrightarrow> (c *\<^sub>R x + z) \<in> span_induct_alt_help S" | 
| 44133 | 687 | |
| 688 | lemma span_induct_alt': | |
| 689 | assumes h0: "h 0" and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" shows "\<forall>x \<in> span S. h x" | |
| 690 | proof- | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 691 |   {fix x:: "'a" assume x: "x \<in> span_induct_alt_help S"
 | 
| 44133 | 692 | have "h x" | 
| 693 | apply (rule span_induct_alt_help.induct[OF x]) | |
| 694 | apply (rule h0) | |
| 695 | apply (rule hS, assumption, assumption) | |
| 696 | done} | |
| 697 | note th0 = this | |
| 698 |   {fix x assume x: "x \<in> span S"
 | |
| 699 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 700 | have "x \<in> span_induct_alt_help S" | 
| 44133 | 701 | proof(rule span_induct[where x=x and S=S]) | 
| 702 | show "x \<in> span S" using x . | |
| 703 | next | |
| 704 | fix x assume xS : "x \<in> S" | |
| 705 | from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1] | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 706 | show "x \<in> span_induct_alt_help S" by simp | 
| 44133 | 707 | next | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 708 | have "0 \<in> span_induct_alt_help S" by (rule span_induct_alt_help_0) | 
| 44133 | 709 | moreover | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 710 |         {fix x y assume h: "x \<in> span_induct_alt_help S" "y \<in> span_induct_alt_help S"
 | 
| 44133 | 711 | from h | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 712 | have "(x + y) \<in> span_induct_alt_help S" | 
| 44133 | 713 | apply (induct rule: span_induct_alt_help.induct) | 
| 714 | apply simp | |
| 715 | unfolding add_assoc | |
| 716 | apply (rule span_induct_alt_help_S) | |
| 717 | apply assumption | |
| 718 | apply simp | |
| 719 | done} | |
| 720 | moreover | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 721 |         {fix c x assume xt: "x \<in> span_induct_alt_help S"
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 722 | then have "(c *\<^sub>R x) \<in> span_induct_alt_help S" | 
| 44133 | 723 | apply (induct rule: span_induct_alt_help.induct) | 
| 724 | apply (simp add: span_induct_alt_help_0) | |
| 725 | apply (simp add: scaleR_right_distrib) | |
| 726 | apply (rule span_induct_alt_help_S) | |
| 727 | apply assumption | |
| 728 | apply simp | |
| 729 | done | |
| 730 | } | |
| 731 | ultimately show "subspace (span_induct_alt_help S)" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 732 | unfolding subspace_def Ball_def by blast | 
| 44133 | 733 | qed} | 
| 734 | with th0 show ?thesis by blast | |
| 735 | qed | |
| 736 | ||
| 737 | lemma span_induct_alt: | |
| 738 | assumes h0: "h 0" and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" and x: "x \<in> span S" | |
| 739 | shows "h x" | |
| 740 | using span_induct_alt'[of h S] h0 hS x by blast | |
| 741 | ||
| 742 | text {* Individual closure properties. *}
 | |
| 743 | ||
| 744 | lemma span_span: "span (span A) = span A" | |
| 745 | unfolding span_def hull_hull .. | |
| 746 | ||
| 747 | lemma (in real_vector) span_superset: "x \<in> S ==> x \<in> span S" by (metis span_clauses(1)) | |
| 748 | ||
| 749 | lemma (in real_vector) span_0: "0 \<in> span S" by (metis subspace_span subspace_0) | |
| 750 | ||
| 751 | lemma span_inc: "S \<subseteq> span S" | |
| 752 | by (metis subset_eq span_superset) | |
| 753 | ||
| 754 | lemma (in real_vector) dependent_0: assumes "0\<in>A" shows "dependent A" | |
| 755 | unfolding dependent_def apply(rule_tac x=0 in bexI) | |
| 756 | using assms span_0 by auto | |
| 757 | ||
| 758 | lemma (in real_vector) span_add: "x \<in> span S \<Longrightarrow> y \<in> span S ==> x + y \<in> span S" | |
| 759 | by (metis subspace_add subspace_span) | |
| 760 | ||
| 761 | lemma (in real_vector) span_mul: "x \<in> span S ==> (c *\<^sub>R x) \<in> span S" | |
| 762 | by (metis subspace_span subspace_mul) | |
| 763 | ||
| 764 | lemma span_neg: "x \<in> span S ==> - x \<in> span S" | |
| 765 | by (metis subspace_neg subspace_span) | |
| 766 | ||
| 767 | lemma span_sub: "x \<in> span S \<Longrightarrow> y \<in> span S ==> x - y \<in> span S" | |
| 768 | by (metis subspace_span subspace_sub) | |
| 769 | ||
| 770 | lemma (in real_vector) span_setsum: "finite A \<Longrightarrow> \<forall>x \<in> A. f x \<in> span S ==> setsum f A \<in> span S" | |
| 771 | by (rule subspace_setsum, rule subspace_span) | |
| 772 | ||
| 773 | lemma span_add_eq: "x \<in> span S \<Longrightarrow> x + y \<in> span S \<longleftrightarrow> y \<in> span S" | |
| 774 | apply (auto simp only: span_add span_sub) | |
| 775 | apply (subgoal_tac "(x + y) - x \<in> span S", simp) | |
| 776 | by (simp only: span_add span_sub) | |
| 777 | ||
| 778 | text {* Mapping under linear image. *}
 | |
| 779 | ||
| 44521 | 780 | lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B" | 
| 781 | by auto (* TODO: move *) | |
| 782 | ||
| 783 | lemma span_linear_image: | |
| 784 | assumes lf: "linear f" | |
| 44133 | 785 | shows "span (f ` S) = f ` (span S)" | 
| 44521 | 786 | proof (rule span_unique) | 
| 787 | show "f ` S \<subseteq> f ` span S" | |
| 788 | by (intro image_mono span_inc) | |
| 789 | show "subspace (f ` span S)" | |
| 790 | using lf subspace_span by (rule subspace_linear_image) | |
| 791 | next | |
| 792 | fix T assume "f ` S \<subseteq> T" and "subspace T" thus "f ` span S \<subseteq> T" | |
| 793 | unfolding image_subset_iff_subset_vimage | |
| 794 | by (intro span_minimal subspace_linear_vimage lf) | |
| 795 | qed | |
| 796 | ||
| 797 | lemma span_union: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)" | |
| 798 | proof (rule span_unique) | |
| 799 | show "A \<union> B \<subseteq> (\<lambda>(a, b). a + b) ` (span A \<times> span B)" | |
| 800 | by safe (force intro: span_clauses)+ | |
| 801 | next | |
| 802 | have "linear (\<lambda>(a, b). a + b)" | |
| 803 | by (simp add: linear_def scaleR_add_right) | |
| 804 | moreover have "subspace (span A \<times> span B)" | |
| 805 | by (intro subspace_Times subspace_span) | |
| 806 | ultimately show "subspace ((\<lambda>(a, b). a + b) ` (span A \<times> span B))" | |
| 807 | by (rule subspace_linear_image) | |
| 808 | next | |
| 809 | fix T assume "A \<union> B \<subseteq> T" and "subspace T" | |
| 810 | thus "(\<lambda>(a, b). a + b) ` (span A \<times> span B) \<subseteq> T" | |
| 811 | by (auto intro!: subspace_add elim: span_induct) | |
| 44133 | 812 | qed | 
| 813 | ||
| 814 | text {* The key breakdown property. *}
 | |
| 815 | ||
| 44521 | 816 | lemma span_singleton: "span {x} = range (\<lambda>k. k *\<^sub>R x)"
 | 
| 817 | proof (rule span_unique) | |
| 818 |   show "{x} \<subseteq> range (\<lambda>k. k *\<^sub>R x)"
 | |
| 819 | by (fast intro: scaleR_one [symmetric]) | |
| 820 | show "subspace (range (\<lambda>k. k *\<^sub>R x))" | |
| 821 | unfolding subspace_def | |
| 822 | by (auto intro: scaleR_add_left [symmetric]) | |
| 823 |   fix T assume "{x} \<subseteq> T" and "subspace T" thus "range (\<lambda>k. k *\<^sub>R x) \<subseteq> T"
 | |
| 824 | unfolding subspace_def by auto | |
| 825 | qed | |
| 826 | ||
| 827 | lemma span_insert: | |
| 828 |   "span (insert a S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
 | |
| 829 | proof - | |
| 830 |   have "span ({a} \<union> S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
 | |
| 831 | unfolding span_union span_singleton | |
| 832 | apply safe | |
| 833 | apply (rule_tac x=k in exI, simp) | |
| 834 | apply (erule rev_image_eqI [OF SigmaI [OF rangeI]]) | |
| 835 | apply simp | |
| 836 | apply (rule right_minus) | |
| 837 | done | |
| 838 | thus ?thesis by simp | |
| 839 | qed | |
| 840 | ||
| 44133 | 841 | lemma span_breakdown: | 
| 842 | assumes bS: "b \<in> S" and aS: "a \<in> span S" | |
| 44521 | 843 |   shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})"
 | 
| 844 |   using assms span_insert [of b "S - {b}"]
 | |
| 845 | by (simp add: insert_absorb) | |
| 44133 | 846 | |
| 847 | lemma span_breakdown_eq: | |
| 44521 | 848 | "x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. (x - k *\<^sub>R a) \<in> span S)" | 
| 849 | by (simp add: span_insert) | |
| 44133 | 850 | |
| 851 | text {* Hence some "reversal" results. *}
 | |
| 852 | ||
| 853 | lemma in_span_insert: | |
| 854 | assumes a: "a \<in> span (insert b S)" and na: "a \<notin> span S" | |
| 855 | shows "b \<in> span (insert a S)" | |
| 856 | proof- | |
| 857 | from span_breakdown[of b "insert b S" a, OF insertI1 a] | |
| 858 |   obtain k where k: "a - k*\<^sub>R b \<in> span (S - {b})" by auto
 | |
| 859 |   {assume k0: "k = 0"
 | |
| 860 | with k have "a \<in> span S" | |
| 861 | apply (simp) | |
| 862 | apply (rule set_rev_mp) | |
| 863 | apply assumption | |
| 864 | apply (rule span_mono) | |
| 865 | apply blast | |
| 866 | done | |
| 867 | with na have ?thesis by blast} | |
| 868 | moreover | |
| 869 |   {assume k0: "k \<noteq> 0"
 | |
| 870 | have eq: "b = (1/k) *\<^sub>R a - ((1/k) *\<^sub>R a - b)" by simp | |
| 871 | from k0 have eq': "(1/k) *\<^sub>R (a - k*\<^sub>R b) = (1/k) *\<^sub>R a - b" | |
| 872 | by (simp add: algebra_simps) | |
| 873 |     from k have "(1/k) *\<^sub>R (a - k*\<^sub>R b) \<in> span (S - {b})"
 | |
| 874 | by (rule span_mul) | |
| 875 |     hence th: "(1/k) *\<^sub>R a - b \<in> span (S - {b})"
 | |
| 876 | unfolding eq' . | |
| 877 | ||
| 878 | from k | |
| 879 | have ?thesis | |
| 880 | apply (subst eq) | |
| 881 | apply (rule span_sub) | |
| 882 | apply (rule span_mul) | |
| 883 | apply (rule span_superset) | |
| 884 | apply blast | |
| 885 | apply (rule set_rev_mp) | |
| 886 | apply (rule th) | |
| 887 | apply (rule span_mono) | |
| 888 | using na by blast} | |
| 889 | ultimately show ?thesis by blast | |
| 890 | qed | |
| 891 | ||
| 892 | lemma in_span_delete: | |
| 893 | assumes a: "a \<in> span S" | |
| 894 |   and na: "a \<notin> span (S-{b})"
 | |
| 895 |   shows "b \<in> span (insert a (S - {b}))"
 | |
| 896 | apply (rule in_span_insert) | |
| 897 | apply (rule set_rev_mp) | |
| 898 | apply (rule a) | |
| 899 | apply (rule span_mono) | |
| 900 | apply blast | |
| 901 | apply (rule na) | |
| 902 | done | |
| 903 | ||
| 904 | text {* Transitivity property. *}
 | |
| 905 | ||
| 44521 | 906 | lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S" | 
| 907 | unfolding span_def by (rule hull_redundant) | |
| 908 | ||
| 44133 | 909 | lemma span_trans: | 
| 910 | assumes x: "x \<in> span S" and y: "y \<in> span (insert x S)" | |
| 911 | shows "y \<in> span S" | |
| 44521 | 912 | using assms by (simp only: span_redundant) | 
| 44133 | 913 | |
| 914 | lemma span_insert_0[simp]: "span (insert 0 S) = span S" | |
| 44521 | 915 | by (simp only: span_redundant span_0) | 
| 44133 | 916 | |
| 917 | text {* An explicit expansion is sometimes needed. *}
 | |
| 918 | ||
| 919 | lemma span_explicit: | |
| 920 |   "span P = {y. \<exists>S u. finite S \<and> S \<subseteq> P \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = y}"
 | |
| 921 |   (is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \<exists>S u. ?Q S u y}")
 | |
| 922 | proof- | |
| 923 |   {fix x assume x: "x \<in> ?E"
 | |
| 924 | then obtain S u where fS: "finite S" and SP: "S\<subseteq>P" and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = x" | |
| 925 | by blast | |
| 926 | have "x \<in> span P" | |
| 927 | unfolding u[symmetric] | |
| 928 | apply (rule span_setsum[OF fS]) | |
| 929 | using span_mono[OF SP] | |
| 930 | by (auto intro: span_superset span_mul)} | |
| 931 | moreover | |
| 932 | have "\<forall>x \<in> span P. x \<in> ?E" | |
| 933 | proof(rule span_induct_alt') | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 934 | show "0 \<in> Collect ?h" | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 935 | unfolding mem_Collect_eq | 
| 44133 | 936 |       apply (rule exI[where x="{}"]) by simp
 | 
| 937 | next | |
| 938 | fix c x y | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 939 | assume x: "x \<in> P" and hy: "y \<in> Collect ?h" | 
| 44133 | 940 | from hy obtain S u where fS: "finite S" and SP: "S\<subseteq>P" | 
| 941 | and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y" by blast | |
| 942 | let ?S = "insert x S" | |
| 943 | let ?u = "\<lambda>y. if y = x then (if x \<in> S then u y + c else c) | |
| 944 | else u y" | |
| 945 | from fS SP x have th0: "finite (insert x S)" "insert x S \<subseteq> P" by blast+ | |
| 946 |     {assume xS: "x \<in> S"
 | |
| 947 |       have S1: "S = (S - {x}) \<union> {x}"
 | |
| 948 |         and Sss:"finite (S - {x})" "finite {x}" "(S -{x}) \<inter> {x} = {}" using xS fS by auto
 | |
| 949 |       have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S =(\<Sum>v\<in>S - {x}. u v *\<^sub>R v) + (u x + c) *\<^sub>R x"
 | |
| 950 | using xS | |
| 951 | by (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]] | |
| 952 | setsum_clauses(2)[OF fS] cong del: if_weak_cong) | |
| 953 | also have "\<dots> = (\<Sum>v\<in>S. u v *\<^sub>R v) + c *\<^sub>R x" | |
| 954 | apply (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]]) | |
| 955 | by (simp add: algebra_simps) | |
| 956 | also have "\<dots> = c*\<^sub>R x + y" | |
| 957 | by (simp add: add_commute u) | |
| 958 | finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = c*\<^sub>R x + y" . | |
| 959 | then have "?Q ?S ?u (c*\<^sub>R x + y)" using th0 by blast} | |
| 960 | moreover | |
| 961 |   {assume xS: "x \<notin> S"
 | |
| 962 | have th00: "(\<Sum>v\<in>S. (if v = x then c else u v) *\<^sub>R v) = y" | |
| 963 | unfolding u[symmetric] | |
| 964 | apply (rule setsum_cong2) | |
| 965 | using xS by auto | |
| 966 | have "?Q ?S ?u (c*\<^sub>R x + y)" using fS xS th0 | |
| 967 | by (simp add: th00 setsum_clauses add_commute cong del: if_weak_cong)} | |
| 968 | ultimately have "?Q ?S ?u (c*\<^sub>R x + y)" | |
| 969 | by (cases "x \<in> S", simp, simp) | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 970 | then show "(c*\<^sub>R x + y) \<in> Collect ?h" | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 971 | unfolding mem_Collect_eq | 
| 44133 | 972 | apply - | 
| 973 | apply (rule exI[where x="?S"]) | |
| 974 | apply (rule exI[where x="?u"]) by metis | |
| 975 | qed | |
| 976 | ultimately show ?thesis by blast | |
| 977 | qed | |
| 978 | ||
| 979 | lemma dependent_explicit: | |
| 980 | "dependent P \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> P \<and> (\<exists>v\<in>S. u v \<noteq> 0 \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = 0))" (is "?lhs = ?rhs") | |
| 981 | proof- | |
| 982 |   {assume dP: "dependent P"
 | |
| 983 | then obtain a S u where aP: "a \<in> P" and fS: "finite S" | |
| 984 |       and SP: "S \<subseteq> P - {a}" and ua: "setsum (\<lambda>v. u v *\<^sub>R v) S = a"
 | |
| 985 | unfolding dependent_def span_explicit by blast | |
| 986 | let ?S = "insert a S" | |
| 987 | let ?u = "\<lambda>y. if y = a then - 1 else u y" | |
| 988 | let ?v = a | |
| 989 | from aP SP have aS: "a \<notin> S" by blast | |
| 990 | from fS SP aP have th0: "finite ?S" "?S \<subseteq> P" "?v \<in> ?S" "?u ?v \<noteq> 0" by auto | |
| 991 | have s0: "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = 0" | |
| 992 | using fS aS | |
| 993 | apply (simp add: setsum_clauses field_simps) | |
| 994 | apply (subst (2) ua[symmetric]) | |
| 995 | apply (rule setsum_cong2) | |
| 996 | by auto | |
| 997 | with th0 have ?rhs | |
| 998 | apply - | |
| 999 | apply (rule exI[where x= "?S"]) | |
| 1000 | apply (rule exI[where x= "?u"]) | |
| 1001 | by clarsimp} | |
| 1002 | moreover | |
| 1003 |   {fix S u v assume fS: "finite S"
 | |
| 1004 | and SP: "S \<subseteq> P" and vS: "v \<in> S" and uv: "u v \<noteq> 0" | |
| 1005 | and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = 0" | |
| 1006 | let ?a = v | |
| 1007 |     let ?S = "S - {v}"
 | |
| 1008 | let ?u = "\<lambda>i. (- u i) / u v" | |
| 1009 | have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P" using fS SP vS by auto | |
| 1010 | have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = setsum (\<lambda>v. (- (inverse (u ?a))) *\<^sub>R (u v *\<^sub>R v)) S - ?u v *\<^sub>R v" | |
| 1011 | using fS vS uv | |
| 1012 | by (simp add: setsum_diff1 divide_inverse field_simps) | |
| 1013 | also have "\<dots> = ?a" | |
| 1014 | unfolding scaleR_right.setsum [symmetric] u | |
| 1015 | using uv by simp | |
| 1016 | finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = ?a" . | |
| 1017 | with th0 have ?lhs | |
| 1018 | unfolding dependent_def span_explicit | |
| 1019 | apply - | |
| 1020 | apply (rule bexI[where x= "?a"]) | |
| 1021 | apply (simp_all del: scaleR_minus_left) | |
| 1022 | apply (rule exI[where x= "?S"]) | |
| 1023 | by (auto simp del: scaleR_minus_left)} | |
| 1024 | ultimately show ?thesis by blast | |
| 1025 | qed | |
| 1026 | ||
| 1027 | ||
| 1028 | lemma span_finite: | |
| 1029 | assumes fS: "finite S" | |
| 1030 |   shows "span S = {y. \<exists>u. setsum (\<lambda>v. u v *\<^sub>R v) S = y}"
 | |
| 1031 | (is "_ = ?rhs") | |
| 1032 | proof- | |
| 1033 |   {fix y assume y: "y \<in> span S"
 | |
| 1034 | from y obtain S' u where fS': "finite S'" and SS': "S' \<subseteq> S" and | |
| 1035 | u: "setsum (\<lambda>v. u v *\<^sub>R v) S' = y" unfolding span_explicit by blast | |
| 1036 | let ?u = "\<lambda>x. if x \<in> S' then u x else 0" | |
| 1037 | have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = setsum (\<lambda>v. u v *\<^sub>R v) S'" | |
| 1038 | using SS' fS by (auto intro!: setsum_mono_zero_cong_right) | |
| 1039 | hence "setsum (\<lambda>v. ?u v *\<^sub>R v) S = y" by (metis u) | |
| 1040 | hence "y \<in> ?rhs" by auto} | |
| 1041 | moreover | |
| 1042 |   {fix y u assume u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y"
 | |
| 1043 | then have "y \<in> span S" using fS unfolding span_explicit by auto} | |
| 1044 | ultimately show ?thesis by blast | |
| 1045 | qed | |
| 1046 | ||
| 1047 | text {* This is useful for building a basis step-by-step. *}
 | |
| 1048 | ||
| 1049 | lemma independent_insert: | |
| 1050 | "independent(insert a S) \<longleftrightarrow> | |
| 1051 | (if a \<in> S then independent S | |
| 1052 | else independent S \<and> a \<notin> span S)" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1053 | proof- | |
| 1054 |   {assume aS: "a \<in> S"
 | |
| 1055 | hence ?thesis using insert_absorb[OF aS] by simp} | |
| 1056 | moreover | |
| 1057 |   {assume aS: "a \<notin> S"
 | |
| 1058 |     {assume i: ?lhs
 | |
| 1059 | then have ?rhs using aS | |
| 1060 | apply simp | |
| 1061 | apply (rule conjI) | |
| 1062 | apply (rule independent_mono) | |
| 1063 | apply assumption | |
| 1064 | apply blast | |
| 1065 | by (simp add: dependent_def)} | |
| 1066 | moreover | |
| 1067 |     {assume i: ?rhs
 | |
| 1068 | have ?lhs using i aS | |
| 1069 | apply simp | |
| 1070 | apply (auto simp add: dependent_def) | |
| 1071 | apply (case_tac "aa = a", auto) | |
| 1072 |         apply (subgoal_tac "insert a S - {aa} = insert a (S - {aa})")
 | |
| 1073 | apply simp | |
| 1074 |         apply (subgoal_tac "a \<in> span (insert aa (S - {aa}))")
 | |
| 1075 |         apply (subgoal_tac "insert aa (S - {aa}) = S")
 | |
| 1076 | apply simp | |
| 1077 | apply blast | |
| 1078 | apply (rule in_span_insert) | |
| 1079 | apply assumption | |
| 1080 | apply blast | |
| 1081 | apply blast | |
| 1082 | done} | |
| 1083 | ultimately have ?thesis by blast} | |
| 1084 | ultimately show ?thesis by blast | |
| 1085 | qed | |
| 1086 | ||
| 1087 | text {* The degenerate case of the Exchange Lemma. *}
 | |
| 1088 | ||
| 1089 | lemma mem_delete: "x \<in> (A - {a}) \<longleftrightarrow> x \<noteq> a \<and> x \<in> A"
 | |
| 1090 | by blast | |
| 1091 | ||
| 1092 | lemma spanning_subset_independent: | |
| 1093 | assumes BA: "B \<subseteq> A" and iA: "independent A" | |
| 1094 | and AsB: "A \<subseteq> span B" | |
| 1095 | shows "A = B" | |
| 1096 | proof | |
| 1097 | from BA show "B \<subseteq> A" . | |
| 1098 | next | |
| 1099 | from span_mono[OF BA] span_mono[OF AsB] | |
| 1100 | have sAB: "span A = span B" unfolding span_span by blast | |
| 1101 | ||
| 1102 |   {fix x assume x: "x \<in> A"
 | |
| 1103 |     from iA have th0: "x \<notin> span (A - {x})"
 | |
| 1104 | unfolding dependent_def using x by blast | |
| 1105 | from x have xsA: "x \<in> span A" by (blast intro: span_superset) | |
| 1106 |     have "A - {x} \<subseteq> A" by blast
 | |
| 1107 |     hence th1:"span (A - {x}) \<subseteq> span A" by (metis span_mono)
 | |
| 1108 |     {assume xB: "x \<notin> B"
 | |
| 1109 |       from xB BA have "B \<subseteq> A -{x}" by blast
 | |
| 1110 |       hence "span B \<subseteq> span (A - {x})" by (metis span_mono)
 | |
| 1111 | with th1 th0 sAB have "x \<notin> span A" by blast | |
| 1112 | with x have False by (metis span_superset)} | |
| 1113 | then have "x \<in> B" by blast} | |
| 1114 | then show "A \<subseteq> B" by blast | |
| 1115 | qed | |
| 1116 | ||
| 1117 | text {* The general case of the Exchange Lemma, the key to what follows. *}
 | |
| 1118 | ||
| 1119 | lemma exchange_lemma: | |
| 1120 | assumes f:"finite t" and i: "independent s" | |
| 1121 | and sp:"s \<subseteq> span t" | |
| 1122 | shows "\<exists>t'. (card t' = card t) \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" | |
| 1123 | using f i sp | |
| 1124 | proof(induct "card (t - s)" arbitrary: s t rule: less_induct) | |
| 1125 | case less | |
| 1126 | note ft = `finite t` and s = `independent s` and sp = `s \<subseteq> span t` | |
| 1127 | let ?P = "\<lambda>t'. (card t' = card t) \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" | |
| 1128 | let ?ths = "\<exists>t'. ?P t'" | |
| 1129 |   {assume st: "s \<subseteq> t"
 | |
| 1130 | from st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t]) | |
| 1131 | by (auto intro: span_superset)} | |
| 1132 | moreover | |
| 1133 |   {assume st: "t \<subseteq> s"
 | |
| 1134 | ||
| 1135 | from spanning_subset_independent[OF st s sp] | |
| 1136 | st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t]) | |
| 1137 | by (auto intro: span_superset)} | |
| 1138 | moreover | |
| 1139 |   {assume st: "\<not> s \<subseteq> t" "\<not> t \<subseteq> s"
 | |
| 1140 | from st(2) obtain b where b: "b \<in> t" "b \<notin> s" by blast | |
| 1141 |       from b have "t - {b} - s \<subset> t - s" by blast
 | |
| 1142 |       then have cardlt: "card (t - {b} - s) < card (t - s)" using ft
 | |
| 1143 | by (auto intro: psubset_card_mono) | |
| 1144 | from b ft have ct0: "card t \<noteq> 0" by auto | |
| 1145 |     {assume stb: "s \<subseteq> span(t -{b})"
 | |
| 1146 |       from ft have ftb: "finite (t -{b})" by auto
 | |
| 1147 | from less(1)[OF cardlt ftb s stb] | |
| 1148 |       obtain u where u: "card u = card (t-{b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u" and fu: "finite u" by blast
 | |
| 1149 | let ?w = "insert b u" | |
| 1150 | have th0: "s \<subseteq> insert b u" using u by blast | |
| 1151 | from u(3) b have "u \<subseteq> s \<union> t" by blast | |
| 1152 | then have th1: "insert b u \<subseteq> s \<union> t" using u b by blast | |
| 1153 | have bu: "b \<notin> u" using b u by blast | |
| 1154 | from u(1) ft b have "card u = (card t - 1)" by auto | |
| 1155 | then | |
| 1156 | have th2: "card (insert b u) = card t" | |
| 1157 | using card_insert_disjoint[OF fu bu] ct0 by auto | |
| 1158 | from u(4) have "s \<subseteq> span u" . | |
| 1159 | also have "\<dots> \<subseteq> span (insert b u)" apply (rule span_mono) by blast | |
| 1160 | finally have th3: "s \<subseteq> span (insert b u)" . | |
| 1161 | from th0 th1 th2 th3 fu have th: "?P ?w" by blast | |
| 1162 | from th have ?ths by blast} | |
| 1163 | moreover | |
| 1164 |     {assume stb: "\<not> s \<subseteq> span(t -{b})"
 | |
| 1165 |       from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})" by blast
 | |
| 1166 | have ab: "a \<noteq> b" using a b by blast | |
| 1167 |       have at: "a \<notin> t" using a ab span_superset[of a "t- {b}"] by auto
 | |
| 1168 |       have mlt: "card ((insert a (t - {b})) - s) < card (t - s)"
 | |
| 1169 | using cardlt ft a b by auto | |
| 1170 |       have ft': "finite (insert a (t - {b}))" using ft by auto
 | |
| 1171 |       {fix x assume xs: "x \<in> s"
 | |
| 1172 |         have t: "t \<subseteq> (insert b (insert a (t -{b})))" using b by auto
 | |
| 1173 | from b(1) have "b \<in> span t" by (simp add: span_superset) | |
| 1174 |         have bs: "b \<in> span (insert a (t - {b}))" apply(rule in_span_delete)
 | |
| 1175 | using a sp unfolding subset_eq by auto | |
| 1176 | from xs sp have "x \<in> span t" by blast | |
| 1177 | with span_mono[OF t] | |
| 1178 |         have x: "x \<in> span (insert b (insert a (t - {b})))" ..
 | |
| 1179 |         from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))"  .}
 | |
| 1180 |       then have sp': "s \<subseteq> span (insert a (t - {b}))" by blast
 | |
| 1181 | ||
| 1182 | from less(1)[OF mlt ft' s sp'] obtain u where | |
| 1183 |         u: "card u = card (insert a (t -{b}))" "finite u" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t -{b})"
 | |
| 1184 | "s \<subseteq> span u" by blast | |
| 1185 | from u a b ft at ct0 have "?P u" by auto | |
| 1186 | then have ?ths by blast } | |
| 1187 | ultimately have ?ths by blast | |
| 1188 | } | |
| 1189 | ultimately | |
| 1190 | show ?ths by blast | |
| 1191 | qed | |
| 1192 | ||
| 1193 | text {* This implies corresponding size bounds. *}
 | |
| 1194 | ||
| 1195 | lemma independent_span_bound: | |
| 1196 | assumes f: "finite t" and i: "independent s" and sp:"s \<subseteq> span t" | |
| 1197 | shows "finite s \<and> card s \<le> card t" | |
| 1198 | by (metis exchange_lemma[OF f i sp] finite_subset card_mono) | |
| 1199 | ||
| 1200 | ||
| 1201 | lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\<in> (UNIV::'a::finite set)}"
 | |
| 1202 | proof- | |
| 1203 |   have eq: "{f x |x. x\<in> UNIV} = f ` UNIV" by auto
 | |
| 1204 | show ?thesis unfolding eq | |
| 1205 | apply (rule finite_imageI) | |
| 1206 | apply (rule finite) | |
| 1207 | done | |
| 1208 | qed | |
| 1209 | ||
| 1210 | subsection{* Euclidean Spaces as Typeclass*}
 | |
| 1211 | ||
| 1212 | lemma independent_eq_inj_on: | |
| 1213 |   fixes D :: nat and f :: "nat \<Rightarrow> 'c::real_vector" assumes *: "inj_on f {..<D}"
 | |
| 1214 |   shows "independent (f ` {..<D}) \<longleftrightarrow> (\<forall>a u. a < D \<longrightarrow> (\<Sum>i\<in>{..<D}-{a}. u (f i) *\<^sub>R f i) \<noteq> f a)"
 | |
| 1215 | proof - | |
| 1216 |   from * have eq: "\<And>i. i < D \<Longrightarrow> f ` {..<D} - {f i} = f`({..<D} - {i})"
 | |
| 1217 |     and inj: "\<And>i. inj_on f ({..<D} - {i})"
 | |
| 1218 | by (auto simp: inj_on_def) | |
| 1219 |   have *: "\<And>i. finite (f ` {..<D} - {i})" by simp
 | |
| 1220 | show ?thesis unfolding dependent_def span_finite[OF *] | |
| 1221 | by (auto simp: eq setsum_reindex[OF inj]) | |
| 1222 | qed | |
| 1223 | ||
| 1224 | lemma independent_basis: | |
| 1225 |   "independent (basis ` {..<DIM('a)} :: 'a::euclidean_space set)"
 | |
| 1226 | unfolding independent_eq_inj_on [OF basis_inj] | |
| 1227 | apply clarify | |
| 1228 | apply (drule_tac f="inner (basis a)" in arg_cong) | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44176diff
changeset | 1229 | apply (simp add: inner_setsum_right dot_basis) | 
| 44133 | 1230 | done | 
| 1231 | ||
| 1232 | lemma (in euclidean_space) range_basis: | |
| 1233 |     "range basis = insert 0 (basis ` {..<DIM('a)})"
 | |
| 1234 | proof - | |
| 1235 |   have *: "UNIV = {..<DIM('a)} \<union> {DIM('a)..}" by auto
 | |
| 1236 | show ?thesis unfolding * image_Un basis_finite by auto | |
| 1237 | qed | |
| 1238 | ||
| 1239 | lemma (in euclidean_space) range_basis_finite[intro]: | |
| 1240 | "finite (range basis)" | |
| 1241 | unfolding range_basis by auto | |
| 1242 | ||
| 1243 | lemma span_basis: "span (range basis) = (UNIV :: 'a::euclidean_space set)" | |
| 1244 | proof - | |
| 1245 |   { fix x :: 'a
 | |
| 1246 |     have "(\<Sum>i<DIM('a). (x $$ i) *\<^sub>R basis i) \<in> span (range basis :: 'a set)"
 | |
| 1247 | by (simp add: span_setsum span_mul span_superset) | |
| 1248 | hence "x \<in> span (range basis)" | |
| 1249 | by (simp only: euclidean_representation [symmetric]) | |
| 1250 | } thus ?thesis by auto | |
| 1251 | qed | |
| 1252 | ||
| 1253 | lemma basis_representation: | |
| 1254 |   "\<exists>u. x = (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R (v\<Colon>'a\<Colon>euclidean_space))"
 | |
| 1255 | proof - | |
| 1256 | have "x\<in>UNIV" by auto from this[unfolded span_basis[THEN sym]] | |
| 1257 |   have "\<exists>u. (\<Sum>v\<in>basis ` {..<DIM('a)}. u v *\<^sub>R v) = x"
 | |
| 1258 | unfolding range_basis span_insert_0 apply(subst (asm) span_finite) by auto | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44750diff
changeset | 1259 | thus ?thesis by fastforce | 
| 44133 | 1260 | qed | 
| 1261 | ||
| 1262 | lemma span_basis'[simp]:"span ((basis::nat=>'a) ` {..<DIM('a::euclidean_space)}) = UNIV"
 | |
| 1263 | apply(subst span_basis[symmetric]) unfolding range_basis by auto | |
| 1264 | ||
| 1265 | lemma card_basis[simp]:"card ((basis::nat=>'a) ` {..<DIM('a::euclidean_space)}) = DIM('a)"
 | |
| 1266 | apply(subst card_image) using basis_inj by auto | |
| 1267 | ||
| 1268 | lemma in_span_basis: "(x::'a::euclidean_space) \<in> span (basis ` {..<DIM('a)})"
 | |
| 1269 | unfolding span_basis' .. | |
| 1270 | ||
| 1271 | lemma norm_bound_component_le: "norm (x::'a::euclidean_space) \<le> e \<Longrightarrow> \<bar>x$$i\<bar> <= e" | |
| 1272 | by (metis component_le_norm order_trans) | |
| 1273 | ||
| 1274 | lemma norm_bound_component_lt: "norm (x::'a::euclidean_space) < e \<Longrightarrow> \<bar>x$$i\<bar> < e" | |
| 1275 | by (metis component_le_norm basic_trans_rules(21)) | |
| 1276 | ||
| 1277 | lemma norm_le_l1: "norm (x::'a::euclidean_space) \<le> (\<Sum>i<DIM('a). \<bar>x $$ i\<bar>)"
 | |
| 1278 | apply (subst euclidean_representation[of x]) | |
| 44176 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 huffman parents: 
44170diff
changeset | 1279 | apply (rule order_trans[OF norm_setsum]) | 
| 44133 | 1280 | by (auto intro!: setsum_mono) | 
| 1281 | ||
| 1282 | lemma setsum_norm_allsubsets_bound: | |
| 1283 | fixes f:: "'a \<Rightarrow> 'n::euclidean_space" | |
| 1284 | assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e" | |
| 1285 |   shows "setsum (\<lambda>x. norm (f x)) P \<le> 2 * real DIM('n) *  e"
 | |
| 1286 | proof- | |
| 1287 |   let ?d = "real DIM('n)"
 | |
| 1288 | let ?nf = "\<lambda>x. norm (f x)" | |
| 1289 |   let ?U = "{..<DIM('n)}"
 | |
| 1290 | have th0: "setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $$ i\<bar>) ?U) P = setsum (\<lambda>i. setsum (\<lambda>x. \<bar>f x $$ i\<bar>) P) ?U" | |
| 1291 | by (rule setsum_commute) | |
| 1292 | have th1: "2 * ?d * e = of_nat (card ?U) * (2 * e)" by (simp add: real_of_nat_def) | |
| 1293 | have "setsum ?nf P \<le> setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $$ i\<bar>) ?U) P" | |
| 1294 | apply (rule setsum_mono) by (rule norm_le_l1) | |
| 1295 | also have "\<dots> \<le> 2 * ?d * e" | |
| 1296 | unfolding th0 th1 | |
| 1297 | proof(rule setsum_bounded) | |
| 1298 | fix i assume i: "i \<in> ?U" | |
| 1299 |     let ?Pp = "{x. x\<in> P \<and> f x $$ i \<ge> 0}"
 | |
| 1300 |     let ?Pn = "{x. x \<in> P \<and> f x $$ i < 0}"
 | |
| 1301 | have thp: "P = ?Pp \<union> ?Pn" by auto | |
| 1302 |     have thp0: "?Pp \<inter> ?Pn ={}" by auto
 | |
| 1303 | have PpP: "?Pp \<subseteq> P" and PnP: "?Pn \<subseteq> P" by blast+ | |
| 1304 | have Ppe:"setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pp \<le> e" | |
| 1305 | using component_le_norm[of "setsum (\<lambda>x. f x) ?Pp" i] fPs[OF PpP] | |
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44454diff
changeset | 1306 | by(auto intro: abs_le_D1) | 
| 44133 | 1307 | have Pne: "setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pn \<le> e" | 
| 1308 | using component_le_norm[of "setsum (\<lambda>x. - f x) ?Pn" i] fPs[OF PnP] | |
| 1309 | by(auto simp add: setsum_negf intro: abs_le_D1) | |
| 1310 | have "setsum (\<lambda>x. \<bar>f x $$ i\<bar>) P = setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pp + setsum (\<lambda>x. \<bar>f x $$ i\<bar>) ?Pn" | |
| 1311 | apply (subst thp) | |
| 1312 | apply (rule setsum_Un_zero) | |
| 1313 | using fP thp0 by auto | |
| 1314 | also have "\<dots> \<le> 2*e" using Pne Ppe by arith | |
| 1315 | finally show "setsum (\<lambda>x. \<bar>f x $$ i\<bar>) P \<le> 2*e" . | |
| 1316 | qed | |
| 1317 | finally show ?thesis . | |
| 1318 | qed | |
| 1319 | ||
| 1320 | lemma choice_iff': "(\<forall>x<d. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x<d. P x (f x))" by metis | |
| 1321 | ||
| 1322 | lemma lambda_skolem': "(\<forall>i<DIM('a::euclidean_space). \<exists>x. P i x) \<longleftrightarrow>
 | |
| 1323 |    (\<exists>x::'a. \<forall>i<DIM('a). P i (x$$i))" (is "?lhs \<longleftrightarrow> ?rhs")
 | |
| 1324 | proof- | |
| 1325 |   let ?S = "{..<DIM('a)}"
 | |
| 1326 |   {assume H: "?rhs"
 | |
| 1327 | then have ?lhs by auto} | |
| 1328 | moreover | |
| 1329 |   {assume H: "?lhs"
 | |
| 1330 |     then obtain f where f:"\<forall>i<DIM('a). P i (f i)" unfolding choice_iff' by metis
 | |
| 1331 | let ?x = "(\<chi>\<chi> i. (f i)) :: 'a" | |
| 1332 |     {fix i assume i:"i<DIM('a)"
 | |
| 1333 | with f have "P i (f i)" by metis | |
| 1334 | then have "P i (?x$$i)" using i by auto | |
| 1335 | } | |
| 1336 |     hence "\<forall>i<DIM('a). P i (?x$$i)" by metis
 | |
| 1337 | hence ?rhs by metis } | |
| 1338 | ultimately show ?thesis by metis | |
| 1339 | qed | |
| 1340 | ||
| 1341 | subsection {* Linearity and Bilinearity continued *}
 | |
| 1342 | ||
| 1343 | lemma linear_bounded: | |
| 1344 | fixes f:: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | |
| 1345 | assumes lf: "linear f" | |
| 1346 | shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" | |
| 1347 | proof- | |
| 1348 |   let ?S = "{..<DIM('a)}"
 | |
| 1349 | let ?B = "setsum (\<lambda>i. norm(f(basis i))) ?S" | |
| 1350 | have fS: "finite ?S" by simp | |
| 1351 |   {fix x:: "'a"
 | |
| 1352 | let ?g = "(\<lambda> i. (x$$i) *\<^sub>R (basis i) :: 'a)" | |
| 1353 | have "norm (f x) = norm (f (setsum (\<lambda>i. (x$$i) *\<^sub>R (basis i)) ?S))" | |
| 1354 | apply(subst euclidean_representation[of x]) .. | |
| 1355 | also have "\<dots> = norm (setsum (\<lambda> i. (x$$i) *\<^sub>R f (basis i)) ?S)" | |
| 1356 | using linear_setsum[OF lf fS, of ?g, unfolded o_def] linear_cmul[OF lf] by auto | |
| 1357 | finally have th0: "norm (f x) = norm (setsum (\<lambda>i. (x$$i) *\<^sub>R f (basis i))?S)" . | |
| 1358 |     {fix i assume i: "i \<in> ?S"
 | |
| 1359 | from component_le_norm[of x i] | |
| 1360 | have "norm ((x$$i) *\<^sub>R f (basis i :: 'a)) \<le> norm (f (basis i)) * norm x" | |
| 1361 | unfolding norm_scaleR | |
| 1362 | apply (simp only: mult_commute) | |
| 1363 | apply (rule mult_mono) | |
| 1364 | by (auto simp add: field_simps) } | |
| 1365 | then have th: "\<forall>i\<in> ?S. norm ((x$$i) *\<^sub>R f (basis i :: 'a)) \<le> norm (f (basis i)) * norm x" by metis | |
| 44176 
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
 huffman parents: 
44170diff
changeset | 1366 | from setsum_norm_le[of _ "\<lambda>i. (x$$i) *\<^sub>R (f (basis i))", OF th] | 
| 44133 | 1367 | have "norm (f x) \<le> ?B * norm x" unfolding th0 setsum_left_distrib by metis} | 
| 1368 | then show ?thesis by blast | |
| 1369 | qed | |
| 1370 | ||
| 1371 | lemma linear_bounded_pos: | |
| 1372 | fixes f:: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | |
| 1373 | assumes lf: "linear f" | |
| 1374 | shows "\<exists>B > 0. \<forall>x. norm (f x) \<le> B * norm x" | |
| 1375 | proof- | |
| 1376 | from linear_bounded[OF lf] obtain B where | |
| 1377 | B: "\<forall>x. norm (f x) \<le> B * norm x" by blast | |
| 1378 | let ?K = "\<bar>B\<bar> + 1" | |
| 1379 | have Kp: "?K > 0" by arith | |
| 1380 |     { assume C: "B < 0"
 | |
| 1381 | have "((\<chi>\<chi> i. 1)::'a) \<noteq> 0" unfolding euclidean_eq[where 'a='a] | |
| 44286 
8766839efb1b
declare euclidean_component_zero[simp] at the point it is proved
 huffman parents: 
44282diff
changeset | 1382 | by(auto intro!:exI[where x=0]) | 
| 44133 | 1383 | hence "norm ((\<chi>\<chi> i. 1)::'a) > 0" by auto | 
| 1384 | with C have "B * norm ((\<chi>\<chi> i. 1)::'a) < 0" | |
| 1385 | by (simp add: mult_less_0_iff) | |
| 1386 | with B[rule_format, of "(\<chi>\<chi> i. 1)::'a"] norm_ge_zero[of "f ((\<chi>\<chi> i. 1)::'a)"] have False by simp | |
| 1387 | } | |
| 1388 | then have Bp: "B \<ge> 0" by (metis not_leE) | |
| 1389 |     {fix x::"'a"
 | |
| 1390 | have "norm (f x) \<le> ?K * norm x" | |
| 1391 | using B[rule_format, of x] norm_ge_zero[of x] norm_ge_zero[of "f x"] Bp | |
| 1392 | apply (auto simp add: field_simps split add: abs_split) | |
| 1393 | apply (erule order_trans, simp) | |
| 1394 | done | |
| 1395 | } | |
| 1396 | then show ?thesis using Kp by blast | |
| 1397 | qed | |
| 1398 | ||
| 1399 | lemma linear_conv_bounded_linear: | |
| 1400 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | |
| 1401 | shows "linear f \<longleftrightarrow> bounded_linear f" | |
| 1402 | proof | |
| 1403 | assume "linear f" | |
| 1404 | show "bounded_linear f" | |
| 1405 | proof | |
| 1406 | fix x y show "f (x + y) = f x + f y" | |
| 1407 | using `linear f` unfolding linear_def by simp | |
| 1408 | next | |
| 1409 | fix r x show "f (scaleR r x) = scaleR r (f x)" | |
| 1410 | using `linear f` unfolding linear_def by simp | |
| 1411 | next | |
| 1412 | have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" | |
| 1413 | using `linear f` by (rule linear_bounded) | |
| 1414 | thus "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | |
| 1415 | by (simp add: mult_commute) | |
| 1416 | qed | |
| 1417 | next | |
| 1418 | assume "bounded_linear f" | |
| 1419 | then interpret f: bounded_linear f . | |
| 1420 | show "linear f" | |
| 1421 | by (simp add: f.add f.scaleR linear_def) | |
| 1422 | qed | |
| 1423 | ||
| 1424 | lemma bounded_linearI': fixes f::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | |
| 1425 | assumes "\<And>x y. f (x + y) = f x + f y" "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x" | |
| 1426 | shows "bounded_linear f" unfolding linear_conv_bounded_linear[THEN sym] | |
| 1427 | by(rule linearI[OF assms]) | |
| 1428 | ||
| 1429 | ||
| 1430 | lemma bilinear_bounded: | |
| 1431 | fixes h:: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'k::real_normed_vector" | |
| 1432 | assumes bh: "bilinear h" | |
| 1433 | shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" | |
| 1434 | proof- | |
| 1435 |   let ?M = "{..<DIM('m)}"
 | |
| 1436 |   let ?N = "{..<DIM('n)}"
 | |
| 1437 | let ?B = "setsum (\<lambda>(i,j). norm (h (basis i) (basis j))) (?M \<times> ?N)" | |
| 1438 | have fM: "finite ?M" and fN: "finite ?N" by simp_all | |
| 1439 |   {fix x:: "'m" and  y :: "'n"
 | |
| 1440 | have "norm (h x y) = norm (h (setsum (\<lambda>i. (x$$i) *\<^sub>R basis i) ?M) (setsum (\<lambda>i. (y$$i) *\<^sub>R basis i) ?N))" | |
| 1441 | apply(subst euclidean_representation[where 'a='m]) | |
| 1442 | apply(subst euclidean_representation[where 'a='n]) .. | |
| 1443 | also have "\<dots> = norm (setsum (\<lambda> (i,j). h ((x$$i) *\<^sub>R basis i) ((y$$j) *\<^sub>R basis j)) (?M \<times> ?N))" | |
| 1444 | unfolding bilinear_setsum[OF bh fM fN] .. | |
| 1445 | finally have th: "norm (h x y) = \<dots>" . | |
| 1446 | have "norm (h x y) \<le> ?B * norm x * norm y" | |
| 1447 | apply (simp add: setsum_left_distrib th) | |
| 1448 | apply (rule setsum_norm_le) | |
| 1449 | using fN fM | |
| 1450 | apply simp | |
| 1451 | apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh] field_simps simp del: scaleR_scaleR) | |
| 1452 | apply (rule mult_mono) | |
| 1453 | apply (auto simp add: zero_le_mult_iff component_le_norm) | |
| 1454 | apply (rule mult_mono) | |
| 1455 | apply (auto simp add: zero_le_mult_iff component_le_norm) | |
| 1456 | done} | |
| 1457 | then show ?thesis by metis | |
| 1458 | qed | |
| 1459 | ||
| 1460 | lemma bilinear_bounded_pos: | |
| 1461 | fixes h:: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" | |
| 1462 | assumes bh: "bilinear h" | |
| 1463 | shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" | |
| 1464 | proof- | |
| 1465 | from bilinear_bounded[OF bh] obtain B where | |
| 1466 | B: "\<forall>x y. norm (h x y) \<le> B * norm x * norm y" by blast | |
| 1467 | let ?K = "\<bar>B\<bar> + 1" | |
| 1468 | have Kp: "?K > 0" by arith | |
| 1469 | have KB: "B < ?K" by arith | |
| 1470 |   {fix x::'a and y::'b
 | |
| 1471 | from KB Kp | |
| 1472 | have "B * norm x * norm y \<le> ?K * norm x * norm y" | |
| 1473 | apply - | |
| 1474 | apply (rule mult_right_mono, rule mult_right_mono) | |
| 1475 | by auto | |
| 1476 | then have "norm (h x y) \<le> ?K * norm x * norm y" | |
| 1477 | using B[rule_format, of x y] by simp} | |
| 1478 | with Kp show ?thesis by blast | |
| 1479 | qed | |
| 1480 | ||
| 1481 | lemma bilinear_conv_bounded_bilinear: | |
| 1482 | fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" | |
| 1483 | shows "bilinear h \<longleftrightarrow> bounded_bilinear h" | |
| 1484 | proof | |
| 1485 | assume "bilinear h" | |
| 1486 | show "bounded_bilinear h" | |
| 1487 | proof | |
| 1488 | fix x y z show "h (x + y) z = h x z + h y z" | |
| 1489 | using `bilinear h` unfolding bilinear_def linear_def by simp | |
| 1490 | next | |
| 1491 | fix x y z show "h x (y + z) = h x y + h x z" | |
| 1492 | using `bilinear h` unfolding bilinear_def linear_def by simp | |
| 1493 | next | |
| 1494 | fix r x y show "h (scaleR r x) y = scaleR r (h x y)" | |
| 1495 | using `bilinear h` unfolding bilinear_def linear_def | |
| 1496 | by simp | |
| 1497 | next | |
| 1498 | fix r x y show "h x (scaleR r y) = scaleR r (h x y)" | |
| 1499 | using `bilinear h` unfolding bilinear_def linear_def | |
| 1500 | by simp | |
| 1501 | next | |
| 1502 | have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" | |
| 1503 | using `bilinear h` by (rule bilinear_bounded) | |
| 1504 | thus "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K" | |
| 1505 | by (simp add: mult_ac) | |
| 1506 | qed | |
| 1507 | next | |
| 1508 | assume "bounded_bilinear h" | |
| 1509 | then interpret h: bounded_bilinear h . | |
| 1510 | show "bilinear h" | |
| 1511 | unfolding bilinear_def linear_conv_bounded_linear | |
| 1512 | using h.bounded_linear_left h.bounded_linear_right | |
| 1513 | by simp | |
| 1514 | qed | |
| 1515 | ||
| 1516 | subsection {* We continue. *}
 | |
| 1517 | ||
| 1518 | lemma independent_bound: | |
| 1519 |   fixes S:: "('a::euclidean_space) set"
 | |
| 1520 |   shows "independent S \<Longrightarrow> finite S \<and> card S <= DIM('a::euclidean_space)"
 | |
| 1521 |   using independent_span_bound[of "(basis::nat=>'a) ` {..<DIM('a)}" S] by auto
 | |
| 1522 | ||
| 1523 | lemma dependent_biggerset: "(finite (S::('a::euclidean_space) set) ==> card S > DIM('a)) ==> dependent S"
 | |
| 1524 | by (metis independent_bound not_less) | |
| 1525 | ||
| 1526 | text {* Hence we can create a maximal independent subset. *}
 | |
| 1527 | ||
| 1528 | lemma maximal_independent_subset_extend: | |
| 1529 |   assumes sv: "(S::('a::euclidean_space) set) \<subseteq> V" and iS: "independent S"
 | |
| 1530 | shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" | |
| 1531 | using sv iS | |
| 1532 | proof(induct "DIM('a) - card S" arbitrary: S rule: less_induct)
 | |
| 1533 | case less | |
| 1534 | note sv = `S \<subseteq> V` and i = `independent S` | |
| 1535 | let ?P = "\<lambda>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" | |
| 1536 | let ?ths = "\<exists>x. ?P x" | |
| 1537 |   let ?d = "DIM('a)"
 | |
| 1538 |   {assume "V \<subseteq> span S"
 | |
| 1539 | then have ?ths using sv i by blast } | |
| 1540 | moreover | |
| 1541 |   {assume VS: "\<not> V \<subseteq> span S"
 | |
| 1542 | from VS obtain a where a: "a \<in> V" "a \<notin> span S" by blast | |
| 1543 | from a have aS: "a \<notin> S" by (auto simp add: span_superset) | |
| 1544 | have th0: "insert a S \<subseteq> V" using a sv by blast | |
| 1545 | from independent_insert[of a S] i a | |
| 1546 | have th1: "independent (insert a S)" by auto | |
| 1547 | have mlt: "?d - card (insert a S) < ?d - card S" | |
| 1548 | using aS a independent_bound[OF th1] | |
| 1549 | by auto | |
| 1550 | ||
| 1551 | from less(1)[OF mlt th0 th1] | |
| 1552 | obtain B where B: "insert a S \<subseteq> B" "B \<subseteq> V" "independent B" " V \<subseteq> span B" | |
| 1553 | by blast | |
| 1554 | from B have "?P B" by auto | |
| 1555 | then have ?ths by blast} | |
| 1556 | ultimately show ?ths by blast | |
| 1557 | qed | |
| 1558 | ||
| 1559 | lemma maximal_independent_subset: | |
| 1560 |   "\<exists>(B:: ('a::euclidean_space) set). B\<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
 | |
| 1561 |   by (metis maximal_independent_subset_extend[of "{}:: ('a::euclidean_space) set"] empty_subsetI independent_empty)
 | |
| 1562 | ||
| 1563 | ||
| 1564 | text {* Notion of dimension. *}
 | |
| 1565 | ||
| 1566 | definition "dim V = (SOME n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n))" | |
| 1567 | ||
| 1568 | lemma basis_exists:  "\<exists>B. (B :: ('a::euclidean_space) set) \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = dim V)"
 | |
| 1569 | unfolding dim_def some_eq_ex[of "\<lambda>n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n)"] | |
| 1570 | using maximal_independent_subset[of V] independent_bound | |
| 1571 | by auto | |
| 1572 | ||
| 1573 | text {* Consequences of independence or spanning for cardinality. *}
 | |
| 1574 | ||
| 1575 | lemma independent_card_le_dim: | |
| 1576 |   assumes "(B::('a::euclidean_space) set) \<subseteq> V" and "independent B" shows "card B \<le> dim V"
 | |
| 1577 | proof - | |
| 1578 | from basis_exists[of V] `B \<subseteq> V` | |
| 1579 | obtain B' where "independent B'" and "B \<subseteq> span B'" and "card B' = dim V" by blast | |
| 1580 | with independent_span_bound[OF _ `independent B` `B \<subseteq> span B'`] independent_bound[of B'] | |
| 1581 | show ?thesis by auto | |
| 1582 | qed | |
| 1583 | ||
| 1584 | lemma span_card_ge_dim:  "(B::('a::euclidean_space) set) \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B"
 | |
| 1585 | by (metis basis_exists[of V] independent_span_bound subset_trans) | |
| 1586 | ||
| 1587 | lemma basis_card_eq_dim: | |
| 1588 |   "B \<subseteq> (V:: ('a::euclidean_space) set) \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B = dim V"
 | |
| 1589 | by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_bound) | |
| 1590 | ||
| 1591 | lemma dim_unique: "(B::('a::euclidean_space) set) \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = n \<Longrightarrow> dim V = n"
 | |
| 1592 | by (metis basis_card_eq_dim) | |
| 1593 | ||
| 1594 | text {* More lemmas about dimension. *}
 | |
| 1595 | ||
| 1596 | lemma dim_UNIV: "dim (UNIV :: ('a::euclidean_space) set) = DIM('a)"
 | |
| 1597 |   apply (rule dim_unique[of "(basis::nat=>'a) ` {..<DIM('a)}"])
 | |
| 1598 | using independent_basis by auto | |
| 1599 | ||
| 1600 | lemma dim_subset: | |
| 1601 |   "(S:: ('a::euclidean_space) set) \<subseteq> T \<Longrightarrow> dim S \<le> dim T"
 | |
| 1602 | using basis_exists[of T] basis_exists[of S] | |
| 1603 | by (metis independent_card_le_dim subset_trans) | |
| 1604 | ||
| 1605 | lemma dim_subset_UNIV: "dim (S:: ('a::euclidean_space) set) \<le> DIM('a)"
 | |
| 1606 | by (metis dim_subset subset_UNIV dim_UNIV) | |
| 1607 | ||
| 1608 | text {* Converses to those. *}
 | |
| 1609 | ||
| 1610 | lemma card_ge_dim_independent: | |
| 1611 |   assumes BV:"(B::('a::euclidean_space) set) \<subseteq> V" and iB:"independent B" and dVB:"dim V \<le> card B"
 | |
| 1612 | shows "V \<subseteq> span B" | |
| 1613 | proof- | |
| 1614 |   {fix a assume aV: "a \<in> V"
 | |
| 1615 |     {assume aB: "a \<notin> span B"
 | |
| 1616 | then have iaB: "independent (insert a B)" using iB aV BV by (simp add: independent_insert) | |
| 1617 | from aV BV have th0: "insert a B \<subseteq> V" by blast | |
| 1618 | from aB have "a \<notin>B" by (auto simp add: span_superset) | |
| 1619 | with independent_card_le_dim[OF th0 iaB] dVB independent_bound[OF iB] have False by auto } | |
| 1620 | then have "a \<in> span B" by blast} | |
| 1621 | then show ?thesis by blast | |
| 1622 | qed | |
| 1623 | ||
| 1624 | lemma card_le_dim_spanning: | |
| 1625 |   assumes BV: "(B:: ('a::euclidean_space) set) \<subseteq> V" and VB: "V \<subseteq> span B"
 | |
| 1626 | and fB: "finite B" and dVB: "dim V \<ge> card B" | |
| 1627 | shows "independent B" | |
| 1628 | proof- | |
| 1629 |   {fix a assume a: "a \<in> B" "a \<in> span (B -{a})"
 | |
| 1630 | from a fB have c0: "card B \<noteq> 0" by auto | |
| 1631 |     from a fB have cb: "card (B -{a}) = card B - 1" by auto
 | |
| 1632 |     from BV a have th0: "B -{a} \<subseteq> V" by blast
 | |
| 1633 |     {fix x assume x: "x \<in> V"
 | |
| 1634 |       from a have eq: "insert a (B -{a}) = B" by blast
 | |
| 1635 | from x VB have x': "x \<in> span B" by blast | |
| 1636 | from span_trans[OF a(2), unfolded eq, OF x'] | |
| 1637 |       have "x \<in> span (B -{a})" . }
 | |
| 1638 |     then have th1: "V \<subseteq> span (B -{a})" by blast
 | |
| 1639 |     have th2: "finite (B -{a})" using fB by auto
 | |
| 1640 | from span_card_ge_dim[OF th0 th1 th2] | |
| 1641 |     have c: "dim V \<le> card (B -{a})" .
 | |
| 1642 | from c c0 dVB cb have False by simp} | |
| 1643 | then show ?thesis unfolding dependent_def by blast | |
| 1644 | qed | |
| 1645 | ||
| 1646 | lemma card_eq_dim: "(B:: ('a::euclidean_space) set) \<subseteq> V \<Longrightarrow> card B = dim V \<Longrightarrow> finite B \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B"
 | |
| 1647 | by (metis order_eq_iff card_le_dim_spanning | |
| 1648 | card_ge_dim_independent) | |
| 1649 | ||
| 1650 | text {* More general size bound lemmas. *}
 | |
| 1651 | ||
| 1652 | lemma independent_bound_general: | |
| 1653 |   "independent (S:: ('a::euclidean_space) set) \<Longrightarrow> finite S \<and> card S \<le> dim S"
 | |
| 1654 | by (metis independent_card_le_dim independent_bound subset_refl) | |
| 1655 | ||
| 1656 | lemma dependent_biggerset_general: "(finite (S:: ('a::euclidean_space) set) \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S"
 | |
| 1657 | using independent_bound_general[of S] by (metis linorder_not_le) | |
| 1658 | ||
| 1659 | lemma dim_span: "dim (span (S:: ('a::euclidean_space) set)) = dim S"
 | |
| 1660 | proof- | |
| 1661 | have th0: "dim S \<le> dim (span S)" | |
| 1662 | by (auto simp add: subset_eq intro: dim_subset span_superset) | |
| 1663 | from basis_exists[of S] | |
| 1664 | obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast | |
| 1665 | from B have fB: "finite B" "card B = dim S" using independent_bound by blast+ | |
| 1666 | have bSS: "B \<subseteq> span S" using B(1) by (metis subset_eq span_inc) | |
| 1667 | have sssB: "span S \<subseteq> span B" using span_mono[OF B(3)] by (simp add: span_span) | |
| 1668 | from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis | |
| 1669 | using fB(2) by arith | |
| 1670 | qed | |
| 1671 | ||
| 1672 | lemma subset_le_dim: "(S:: ('a::euclidean_space) set) \<subseteq> span T \<Longrightarrow> dim S \<le> dim T"
 | |
| 1673 | by (metis dim_span dim_subset) | |
| 1674 | ||
| 1675 | lemma span_eq_dim: "span (S:: ('a::euclidean_space) set) = span T ==> dim S = dim T"
 | |
| 1676 | by (metis dim_span) | |
| 1677 | ||
| 1678 | lemma spans_image: | |
| 1679 | assumes lf: "linear f" and VB: "V \<subseteq> span B" | |
| 1680 | shows "f ` V \<subseteq> span (f ` B)" | |
| 1681 | unfolding span_linear_image[OF lf] | |
| 1682 | by (metis VB image_mono) | |
| 1683 | ||
| 1684 | lemma dim_image_le: | |
| 1685 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | |
| 1686 | assumes lf: "linear f" shows "dim (f ` S) \<le> dim (S)" | |
| 1687 | proof- | |
| 1688 | from basis_exists[of S] obtain B where | |
| 1689 | B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast | |
| 1690 | from B have fB: "finite B" "card B = dim S" using independent_bound by blast+ | |
| 1691 | have "dim (f ` S) \<le> card (f ` B)" | |
| 1692 | apply (rule span_card_ge_dim) | |
| 1693 | using lf B fB by (auto simp add: span_linear_image spans_image subset_image_iff) | |
| 1694 | also have "\<dots> \<le> dim S" using card_image_le[OF fB(1)] fB by simp | |
| 1695 | finally show ?thesis . | |
| 1696 | qed | |
| 1697 | ||
| 1698 | text {* Relation between bases and injectivity/surjectivity of map. *}
 | |
| 1699 | ||
| 1700 | lemma spanning_surjective_image: | |
| 1701 | assumes us: "UNIV \<subseteq> span S" | |
| 1702 | and lf: "linear f" and sf: "surj f" | |
| 1703 | shows "UNIV \<subseteq> span (f ` S)" | |
| 1704 | proof- | |
| 1705 | have "UNIV \<subseteq> f ` UNIV" using sf by (auto simp add: surj_def) | |
| 1706 | also have " \<dots> \<subseteq> span (f ` S)" using spans_image[OF lf us] . | |
| 1707 | finally show ?thesis . | |
| 1708 | qed | |
| 1709 | ||
| 1710 | lemma independent_injective_image: | |
| 1711 | assumes iS: "independent S" and lf: "linear f" and fi: "inj f" | |
| 1712 | shows "independent (f ` S)" | |
| 1713 | proof- | |
| 1714 |   {fix a assume a: "a \<in> S" "f a \<in> span (f ` S - {f a})"
 | |
| 1715 |     have eq: "f ` S - {f a} = f ` (S - {a})" using fi
 | |
| 1716 | by (auto simp add: inj_on_def) | |
| 1717 |     from a have "f a \<in> f ` span (S -{a})"
 | |
| 1718 |       unfolding eq span_linear_image[OF lf, of "S - {a}"]  by blast
 | |
| 1719 |     hence "a \<in> span (S -{a})" using fi by (auto simp add: inj_on_def)
 | |
| 1720 | with a(1) iS have False by (simp add: dependent_def) } | |
| 1721 | then show ?thesis unfolding dependent_def by blast | |
| 1722 | qed | |
| 1723 | ||
| 1724 | text {* Picking an orthogonal replacement for a spanning set. *}
 | |
| 1725 | ||
| 1726 | (* FIXME : Move to some general theory ?*) | |
| 1727 | definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)" | |
| 1728 | ||
| 1729 | lemma vector_sub_project_orthogonal: "(b::'a::euclidean_space) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *\<^sub>R b) = 0" | |
| 1730 | unfolding inner_simps by auto | |
| 1731 | ||
| 44528 | 1732 | lemma pairwise_orthogonal_insert: | 
| 1733 | assumes "pairwise orthogonal S" | |
| 1734 | assumes "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y" | |
| 1735 | shows "pairwise orthogonal (insert x S)" | |
| 1736 | using assms unfolding pairwise_def | |
| 1737 | by (auto simp add: orthogonal_commute) | |
| 1738 | ||
| 44133 | 1739 | lemma basis_orthogonal: | 
| 44528 | 1740 |   fixes B :: "('a::real_inner) set"
 | 
| 44133 | 1741 | assumes fB: "finite B" | 
| 1742 | shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C" | |
| 1743 | (is " \<exists>C. ?P B C") | |
| 1744 | proof(induct rule: finite_induct[OF fB]) | |
| 1745 |   case 1 thus ?case apply (rule exI[where x="{}"]) by (auto simp add: pairwise_def)
 | |
| 1746 | next | |
| 1747 | case (2 a B) | |
| 1748 | note fB = `finite B` and aB = `a \<notin> B` | |
| 1749 | from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C` | |
| 1750 | obtain C where C: "finite C" "card C \<le> card B" | |
| 1751 | "span C = span B" "pairwise orthogonal C" by blast | |
| 1752 | let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x) C" | |
| 1753 | let ?C = "insert ?a C" | |
| 1754 | from C(1) have fC: "finite ?C" by simp | |
| 1755 | from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" by (simp add: card_insert_if) | |
| 1756 |   {fix x k
 | |
| 1757 | have th0: "\<And>(a::'a) b c. a - (b - c) = c + (a - b)" by (simp add: field_simps) | |
| 1758 | have "x - k *\<^sub>R (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x)) \<in> span C \<longleftrightarrow> x - k *\<^sub>R a \<in> span C" | |
| 1759 | apply (simp only: scaleR_right_diff_distrib th0) | |
| 1760 | apply (rule span_add_eq) | |
| 1761 | apply (rule span_mul) | |
| 1762 | apply (rule span_setsum[OF C(1)]) | |
| 1763 | apply clarify | |
| 1764 | apply (rule span_mul) | |
| 1765 | by (rule span_superset)} | |
| 1766 | then have SC: "span ?C = span (insert a B)" | |
| 1767 | unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto | |
| 44528 | 1768 |   { fix y assume yC: "y \<in> C"
 | 
| 1769 |     hence Cy: "C = insert y (C - {y})" by blast
 | |
| 1770 |     have fth: "finite (C - {y})" using C by simp
 | |
| 1771 | have "orthogonal ?a y" | |
| 1772 | unfolding orthogonal_def | |
| 1773 | unfolding inner_diff inner_setsum_left diff_eq_0_iff_eq | |
| 1774 | unfolding setsum_diff1' [OF `finite C` `y \<in> C`] | |
| 1775 | apply (clarsimp simp add: inner_commute[of y a]) | |
| 1776 | apply (rule setsum_0') | |
| 1777 | apply clarsimp | |
| 1778 | apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format]) | |
| 1779 | using `y \<in> C` by auto } | |
| 1780 | with `pairwise orthogonal C` have CPO: "pairwise orthogonal ?C" | |
| 1781 | by (rule pairwise_orthogonal_insert) | |
| 44133 | 1782 | from fC cC SC CPO have "?P (insert a B) ?C" by blast | 
| 1783 | then show ?case by blast | |
| 1784 | qed | |
| 1785 | ||
| 1786 | lemma orthogonal_basis_exists: | |
| 1787 |   fixes V :: "('a::euclidean_space) set"
 | |
| 1788 | shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and> (card B = dim V) \<and> pairwise orthogonal B" | |
| 1789 | proof- | |
| 1790 | from basis_exists[of V] obtain B where B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "card B = dim V" by blast | |
| 1791 | from B have fB: "finite B" "card B = dim V" using independent_bound by auto | |
| 1792 | from basis_orthogonal[OF fB(1)] obtain C where | |
| 1793 | C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C" by blast | |
| 1794 | from C B | |
| 1795 | have CSV: "C \<subseteq> span V" by (metis span_inc span_mono subset_trans) | |
| 1796 | from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C" by (simp add: span_span) | |
| 1797 | from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB | |
| 1798 | have iC: "independent C" by (simp add: dim_span) | |
| 1799 | from C fB have "card C \<le> dim V" by simp | |
| 1800 | moreover have "dim V \<le> card C" using span_card_ge_dim[OF CSV SVC C(1)] | |
| 1801 | by (simp add: dim_span) | |
| 1802 | ultimately have CdV: "card C = dim V" using C(1) by simp | |
| 1803 | from C B CSV CdV iC show ?thesis by auto | |
| 1804 | qed | |
| 1805 | ||
| 1806 | lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S" | |
| 1807 | using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"] | |
| 1808 | by(auto simp add: span_span) | |
| 1809 | ||
| 1810 | text {* Low-dimensional subset is in a hyperplane (weak orthogonal complement). *}
 | |
| 1811 | ||
| 1812 | lemma span_not_univ_orthogonal: fixes S::"('a::euclidean_space) set"
 | |
| 1813 | assumes sU: "span S \<noteq> UNIV" | |
| 1814 | shows "\<exists>(a::'a). a \<noteq>0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)" | |
| 1815 | proof- | |
| 1816 | from sU obtain a where a: "a \<notin> span S" by blast | |
| 1817 | from orthogonal_basis_exists obtain B where | |
| 1818 | B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B" "card B = dim S" "pairwise orthogonal B" | |
| 1819 | by blast | |
| 1820 | from B have fB: "finite B" "card B = dim S" using independent_bound by auto | |
| 1821 | from span_mono[OF B(2)] span_mono[OF B(3)] | |
| 1822 | have sSB: "span S = span B" by (simp add: span_span) | |
| 1823 | let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B" | |
| 1824 | have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B \<in> span S" | |
| 1825 | unfolding sSB | |
| 1826 | apply (rule span_setsum[OF fB(1)]) | |
| 1827 | apply clarsimp | |
| 1828 | apply (rule span_mul) | |
| 1829 | by (rule span_superset) | |
| 1830 | with a have a0:"?a \<noteq> 0" by auto | |
| 1831 | have "\<forall>x\<in>span B. ?a \<bullet> x = 0" | |
| 1832 | proof(rule span_induct') | |
| 44454 | 1833 |     show "subspace {x. ?a \<bullet> x = 0}" by (auto simp add: subspace_def inner_add)
 | 
| 44133 | 1834 | next | 
| 1835 |     {fix x assume x: "x \<in> B"
 | |
| 1836 |       from x have B': "B = insert x (B - {x})" by blast
 | |
| 1837 |       have fth: "finite (B - {x})" using fB by simp
 | |
| 1838 | have "?a \<bullet> x = 0" | |
| 1839 | apply (subst B') using fB fth | |
| 1840 | unfolding setsum_clauses(2)[OF fth] | |
| 1841 | apply simp unfolding inner_simps | |
| 44527 
bf8014b4f933
remove dot_lsum and dot_rsum in favor of inner_setsum_{left,right}
 huffman parents: 
44521diff
changeset | 1842 | apply (clarsimp simp add: inner_add inner_setsum_left) | 
| 44133 | 1843 | apply (rule setsum_0', rule ballI) | 
| 1844 | unfolding inner_commute | |
| 1845 | by (auto simp add: x field_simps intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])} | |
| 1846 | then show "\<forall>x \<in> B. ?a \<bullet> x = 0" by blast | |
| 1847 | qed | |
| 1848 | with a0 show ?thesis unfolding sSB by (auto intro: exI[where x="?a"]) | |
| 1849 | qed | |
| 1850 | ||
| 1851 | lemma span_not_univ_subset_hyperplane: | |
| 1852 |   assumes SU: "span S \<noteq> (UNIV ::('a::euclidean_space) set)"
 | |
| 1853 |   shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
 | |
| 1854 | using span_not_univ_orthogonal[OF SU] by auto | |
| 1855 | ||
| 1856 | lemma lowdim_subset_hyperplane: fixes S::"('a::euclidean_space) set"
 | |
| 1857 |   assumes d: "dim S < DIM('a)"
 | |
| 1858 |   shows "\<exists>(a::'a). a  \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
 | |
| 1859 | proof- | |
| 1860 |   {assume "span S = UNIV"
 | |
| 1861 |     hence "dim (span S) = dim (UNIV :: ('a) set)" by simp
 | |
| 1862 |     hence "dim S = DIM('a)" by (simp add: dim_span dim_UNIV)
 | |
| 1863 | with d have False by arith} | |
| 1864 | hence th: "span S \<noteq> UNIV" by blast | |
| 1865 | from span_not_univ_subset_hyperplane[OF th] show ?thesis . | |
| 1866 | qed | |
| 1867 | ||
| 1868 | text {* We can extend a linear basis-basis injection to the whole set. *}
 | |
| 1869 | ||
| 1870 | lemma linear_indep_image_lemma: | |
| 1871 | assumes lf: "linear f" and fB: "finite B" | |
| 1872 | and ifB: "independent (f ` B)" | |
| 1873 | and fi: "inj_on f B" and xsB: "x \<in> span B" | |
| 1874 | and fx: "f x = 0" | |
| 1875 | shows "x = 0" | |
| 1876 | using fB ifB fi xsB fx | |
| 1877 | proof(induct arbitrary: x rule: finite_induct[OF fB]) | |
| 44142 | 1878 | case 1 thus ?case by auto | 
| 44133 | 1879 | next | 
| 1880 | case (2 a b x) | |
| 1881 | have fb: "finite b" using "2.prems" by simp | |
| 1882 | have th0: "f ` b \<subseteq> f ` (insert a b)" | |
| 1883 | apply (rule image_mono) by blast | |
| 1884 | from independent_mono[ OF "2.prems"(2) th0] | |
| 1885 | have ifb: "independent (f ` b)" . | |
| 1886 | have fib: "inj_on f b" | |
| 1887 | apply (rule subset_inj_on [OF "2.prems"(3)]) | |
| 1888 | by blast | |
| 1889 | from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)] | |
| 1890 |   obtain k where k: "x - k*\<^sub>R a \<in> span (b -{a})" by blast
 | |
| 1891 | have "f (x - k*\<^sub>R a) \<in> span (f ` b)" | |
| 1892 | unfolding span_linear_image[OF lf] | |
| 1893 | apply (rule imageI) | |
| 1894 |     using k span_mono[of "b-{a}" b] by blast
 | |
| 1895 | hence "f x - k*\<^sub>R f a \<in> span (f ` b)" | |
| 1896 | by (simp add: linear_sub[OF lf] linear_cmul[OF lf]) | |
| 1897 | hence th: "-k *\<^sub>R f a \<in> span (f ` b)" | |
| 1898 | using "2.prems"(5) by simp | |
| 1899 |   {assume k0: "k = 0"
 | |
| 1900 |     from k0 k have "x \<in> span (b -{a})" by simp
 | |
| 1901 |     then have "x \<in> span b" using span_mono[of "b-{a}" b]
 | |
| 1902 | by blast} | |
| 1903 | moreover | |
| 1904 |   {assume k0: "k \<noteq> 0"
 | |
| 1905 | from span_mul[OF th, of "- 1/ k"] k0 | |
| 1906 | have th1: "f a \<in> span (f ` b)" | |
| 1907 | by auto | |
| 1908 |     from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric]
 | |
| 1909 |     have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast
 | |
| 1910 | from "2.prems"(2) [unfolded dependent_def bex_simps(8), rule_format, of "f a"] | |
| 1911 | have "f a \<notin> span (f ` b)" using tha | |
| 1912 | using "2.hyps"(2) | |
| 1913 | "2.prems"(3) by auto | |
| 1914 | with th1 have False by blast | |
| 1915 | then have "x \<in> span b" by blast} | |
| 1916 | ultimately have xsb: "x \<in> span b" by blast | |
| 1917 | from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] | |
| 1918 | show "x = 0" . | |
| 1919 | qed | |
| 1920 | ||
| 1921 | text {* We can extend a linear mapping from basis. *}
 | |
| 1922 | ||
| 1923 | lemma linear_independent_extend_lemma: | |
| 1924 | fixes f :: "'a::real_vector \<Rightarrow> 'b::real_vector" | |
| 1925 | assumes fi: "finite B" and ib: "independent B" | |
| 1926 | shows "\<exists>g. (\<forall>x\<in> span B. \<forall>y\<in> span B. g (x + y) = g x + g y) | |
| 1927 | \<and> (\<forall>x\<in> span B. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) | |
| 1928 | \<and> (\<forall>x\<in> B. g x = f x)" | |
| 1929 | using ib fi | |
| 1930 | proof(induct rule: finite_induct[OF fi]) | |
| 44142 | 1931 | case 1 thus ?case by auto | 
| 44133 | 1932 | next | 
| 1933 | case (2 a b) | |
| 1934 | from "2.prems" "2.hyps" have ibf: "independent b" "finite b" | |
| 1935 | by (simp_all add: independent_insert) | |
| 1936 | from "2.hyps"(3)[OF ibf] obtain g where | |
| 1937 | g: "\<forall>x\<in>span b. \<forall>y\<in>span b. g (x + y) = g x + g y" | |
| 1938 | "\<forall>x\<in>span b. \<forall>c. g (c *\<^sub>R x) = c *\<^sub>R g x" "\<forall>x\<in>b. g x = f x" by blast | |
| 1939 | let ?h = "\<lambda>z. SOME k. (z - k *\<^sub>R a) \<in> span b" | |
| 1940 |   {fix z assume z: "z \<in> span (insert a b)"
 | |
| 1941 | have th0: "z - ?h z *\<^sub>R a \<in> span b" | |
| 1942 | apply (rule someI_ex) | |
| 1943 | unfolding span_breakdown_eq[symmetric] | |
| 1944 | using z . | |
| 1945 |     {fix k assume k: "z - k *\<^sub>R a \<in> span b"
 | |
| 1946 | have eq: "z - ?h z *\<^sub>R a - (z - k*\<^sub>R a) = (k - ?h z) *\<^sub>R a" | |
| 1947 | by (simp add: field_simps scaleR_left_distrib [symmetric]) | |
| 1948 | from span_sub[OF th0 k] | |
| 1949 | have khz: "(k - ?h z) *\<^sub>R a \<in> span b" by (simp add: eq) | |
| 1950 |       {assume "k \<noteq> ?h z" hence k0: "k - ?h z \<noteq> 0" by simp
 | |
| 1951 | from k0 span_mul[OF khz, of "1 /(k - ?h z)"] | |
| 1952 | have "a \<in> span b" by simp | |
| 1953 | with "2.prems"(1) "2.hyps"(2) have False | |
| 1954 | by (auto simp add: dependent_def)} | |
| 1955 | then have "k = ?h z" by blast} | |
| 1956 | with th0 have "z - ?h z *\<^sub>R a \<in> span b \<and> (\<forall>k. z - k *\<^sub>R a \<in> span b \<longrightarrow> k = ?h z)" by blast} | |
| 1957 | note h = this | |
| 1958 | let ?g = "\<lambda>z. ?h z *\<^sub>R f a + g (z - ?h z *\<^sub>R a)" | |
| 1959 |   {fix x y assume x: "x \<in> span (insert a b)" and y: "y \<in> span (insert a b)"
 | |
| 1960 | have tha: "\<And>(x::'a) y a k l. (x + y) - (k + l) *\<^sub>R a = (x - k *\<^sub>R a) + (y - l *\<^sub>R a)" | |
| 1961 | by (simp add: algebra_simps) | |
| 1962 | have addh: "?h (x + y) = ?h x + ?h y" | |
| 1963 | apply (rule conjunct2[OF h, rule_format, symmetric]) | |
| 1964 | apply (rule span_add[OF x y]) | |
| 1965 | unfolding tha | |
| 1966 | by (metis span_add x y conjunct1[OF h, rule_format]) | |
| 1967 | have "?g (x + y) = ?g x + ?g y" | |
| 1968 | unfolding addh tha | |
| 1969 | g(1)[rule_format,OF conjunct1[OF h, OF x] conjunct1[OF h, OF y]] | |
| 1970 | by (simp add: scaleR_left_distrib)} | |
| 1971 | moreover | |
| 1972 |   {fix x:: "'a" and c:: real  assume x: "x \<in> span (insert a b)"
 | |
| 1973 | have tha: "\<And>(x::'a) c k a. c *\<^sub>R x - (c * k) *\<^sub>R a = c *\<^sub>R (x - k *\<^sub>R a)" | |
| 1974 | by (simp add: algebra_simps) | |
| 1975 | have hc: "?h (c *\<^sub>R x) = c * ?h x" | |
| 1976 | apply (rule conjunct2[OF h, rule_format, symmetric]) | |
| 1977 | apply (metis span_mul x) | |
| 1978 | by (metis tha span_mul x conjunct1[OF h]) | |
| 1979 | have "?g (c *\<^sub>R x) = c*\<^sub>R ?g x" | |
| 1980 | unfolding hc tha g(2)[rule_format, OF conjunct1[OF h, OF x]] | |
| 1981 | by (simp add: algebra_simps)} | |
| 1982 | moreover | |
| 1983 |   {fix x assume x: "x \<in> (insert a b)"
 | |
| 1984 |     {assume xa: "x = a"
 | |
| 1985 | have ha1: "1 = ?h a" | |
| 1986 | apply (rule conjunct2[OF h, rule_format]) | |
| 1987 | apply (metis span_superset insertI1) | |
| 1988 | using conjunct1[OF h, OF span_superset, OF insertI1] | |
| 1989 | by (auto simp add: span_0) | |
| 1990 | ||
| 1991 | from xa ha1[symmetric] have "?g x = f x" | |
| 1992 | apply simp | |
| 1993 | using g(2)[rule_format, OF span_0, of 0] | |
| 1994 | by simp} | |
| 1995 | moreover | |
| 1996 |     {assume xb: "x \<in> b"
 | |
| 1997 | have h0: "0 = ?h x" | |
| 1998 | apply (rule conjunct2[OF h, rule_format]) | |
| 1999 | apply (metis span_superset x) | |
| 2000 | apply simp | |
| 2001 | apply (metis span_superset xb) | |
| 2002 | done | |
| 2003 | have "?g x = f x" | |
| 2004 | by (simp add: h0[symmetric] g(3)[rule_format, OF xb])} | |
| 2005 | ultimately have "?g x = f x" using x by blast } | |
| 2006 | ultimately show ?case apply - apply (rule exI[where x="?g"]) by blast | |
| 2007 | qed | |
| 2008 | ||
| 2009 | lemma linear_independent_extend: | |
| 2010 |   assumes iB: "independent (B:: ('a::euclidean_space) set)"
 | |
| 2011 | shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)" | |
| 2012 | proof- | |
| 2013 | from maximal_independent_subset_extend[of B UNIV] iB | |
| 2014 | obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C" by auto | |
| 2015 | ||
| 2016 | from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f] | |
| 2017 | obtain g where g: "(\<forall>x\<in> span C. \<forall>y\<in> span C. g (x + y) = g x + g y) | |
| 2018 | \<and> (\<forall>x\<in> span C. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) | |
| 2019 | \<and> (\<forall>x\<in> C. g x = f x)" by blast | |
| 2020 | from g show ?thesis unfolding linear_def using C | |
| 2021 | apply clarsimp by blast | |
| 2022 | qed | |
| 2023 | ||
| 2024 | text {* Can construct an isomorphism between spaces of same dimension. *}
 | |
| 2025 | ||
| 2026 | lemma card_le_inj: assumes fA: "finite A" and fB: "finite B" | |
| 2027 | and c: "card A \<le> card B" shows "(\<exists>f. f ` A \<subseteq> B \<and> inj_on f A)" | |
| 2028 | using fB c | |
| 2029 | proof(induct arbitrary: B rule: finite_induct[OF fA]) | |
| 2030 | case 1 thus ?case by simp | |
| 2031 | next | |
| 2032 | case (2 x s t) | |
| 2033 | thus ?case | |
| 2034 | proof(induct rule: finite_induct[OF "2.prems"(1)]) | |
| 2035 | case 1 then show ?case by simp | |
| 2036 | next | |
| 2037 | case (2 y t) | |
| 2038 | from "2.prems"(1,2,5) "2.hyps"(1,2) have cst:"card s \<le> card t" by simp | |
| 2039 | from "2.prems"(3) [OF "2.hyps"(1) cst] obtain f where | |
| 2040 | f: "f ` s \<subseteq> t \<and> inj_on f s" by blast | |
| 2041 | from f "2.prems"(2) "2.hyps"(2) show ?case | |
| 2042 | apply - | |
| 2043 | apply (rule exI[where x = "\<lambda>z. if z = x then y else f z"]) | |
| 2044 | by (auto simp add: inj_on_def) | |
| 2045 | qed | |
| 2046 | qed | |
| 2047 | ||
| 2048 | lemma card_subset_eq: assumes fB: "finite B" and AB: "A \<subseteq> B" and | |
| 2049 | c: "card A = card B" | |
| 2050 | shows "A = B" | |
| 2051 | proof- | |
| 2052 | from fB AB have fA: "finite A" by (auto intro: finite_subset) | |
| 2053 | from fA fB have fBA: "finite (B - A)" by auto | |
| 2054 |   have e: "A \<inter> (B - A) = {}" by blast
 | |
| 2055 | have eq: "A \<union> (B - A) = B" using AB by blast | |
| 2056 | from card_Un_disjoint[OF fA fBA e, unfolded eq c] | |
| 2057 | have "card (B - A) = 0" by arith | |
| 2058 |   hence "B - A = {}" unfolding card_eq_0_iff using fA fB by simp
 | |
| 2059 | with AB show "A = B" by blast | |
| 2060 | qed | |
| 2061 | ||
| 2062 | lemma subspace_isomorphism: | |
| 2063 |   assumes s: "subspace (S:: ('a::euclidean_space) set)"
 | |
| 2064 |   and t: "subspace (T :: ('b::euclidean_space) set)"
 | |
| 2065 | and d: "dim S = dim T" | |
| 2066 | shows "\<exists>f. linear f \<and> f ` S = T \<and> inj_on f S" | |
| 2067 | proof- | |
| 2068 | from basis_exists[of S] independent_bound obtain B where | |
| 2069 | B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" and fB: "finite B" by blast | |
| 2070 | from basis_exists[of T] independent_bound obtain C where | |
| 2071 | C: "C \<subseteq> T" "independent C" "T \<subseteq> span C" "card C = dim T" and fC: "finite C" by blast | |
| 2072 | from B(4) C(4) card_le_inj[of B C] d obtain f where | |
| 2073 | f: "f ` B \<subseteq> C" "inj_on f B" using `finite B` `finite C` by auto | |
| 2074 | from linear_independent_extend[OF B(2)] obtain g where | |
| 2075 | g: "linear g" "\<forall>x\<in> B. g x = f x" by blast | |
| 2076 | from inj_on_iff_eq_card[OF fB, of f] f(2) | |
| 2077 | have "card (f ` B) = card B" by simp | |
| 2078 | with B(4) C(4) have ceq: "card (f ` B) = card C" using d | |
| 2079 | by simp | |
| 2080 | have "g ` B = f ` B" using g(2) | |
| 2081 | by (auto simp add: image_iff) | |
| 2082 | also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] . | |
| 2083 | finally have gBC: "g ` B = C" . | |
| 2084 | have gi: "inj_on g B" using f(2) g(2) | |
| 2085 | by (auto simp add: inj_on_def) | |
| 2086 | note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi] | |
| 2087 |   {fix x y assume x: "x \<in> S" and y: "y \<in> S" and gxy:"g x = g y"
 | |
| 2088 | from B(3) x y have x': "x \<in> span B" and y': "y \<in> span B" by blast+ | |
| 2089 | from gxy have th0: "g (x - y) = 0" by (simp add: linear_sub[OF g(1)]) | |
| 2090 | have th1: "x - y \<in> span B" using x' y' by (metis span_sub) | |
| 2091 | have "x=y" using g0[OF th1 th0] by simp } | |
| 2092 | then have giS: "inj_on g S" | |
| 2093 | unfolding inj_on_def by blast | |
| 2094 | from span_subspace[OF B(1,3) s] | |
| 2095 | have "g ` S = span (g ` B)" by (simp add: span_linear_image[OF g(1)]) | |
| 2096 | also have "\<dots> = span C" unfolding gBC .. | |
| 2097 | also have "\<dots> = T" using span_subspace[OF C(1,3) t] . | |
| 2098 | finally have gS: "g ` S = T" . | |
| 2099 | from g(1) gS giS show ?thesis by blast | |
| 2100 | qed | |
| 2101 | ||
| 2102 | text {* Linear functions are equal on a subspace if they are on a spanning set. *}
 | |
| 2103 | ||
| 2104 | lemma subspace_kernel: | |
| 2105 | assumes lf: "linear f" | |
| 2106 |   shows "subspace {x. f x = 0}"
 | |
| 2107 | apply (simp add: subspace_def) | |
| 2108 | by (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf]) | |
| 2109 | ||
| 2110 | lemma linear_eq_0_span: | |
| 2111 | assumes lf: "linear f" and f0: "\<forall>x\<in>B. f x = 0" | |
| 2112 | shows "\<forall>x \<in> span B. f x = 0" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2113 | using f0 subspace_kernel[OF lf] | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2114 | by (rule span_induct') | 
| 44133 | 2115 | |
| 2116 | lemma linear_eq_0: | |
| 2117 | assumes lf: "linear f" and SB: "S \<subseteq> span B" and f0: "\<forall>x\<in>B. f x = 0" | |
| 2118 | shows "\<forall>x \<in> S. f x = 0" | |
| 2119 | by (metis linear_eq_0_span[OF lf] subset_eq SB f0) | |
| 2120 | ||
| 2121 | lemma linear_eq: | |
| 2122 | assumes lf: "linear f" and lg: "linear g" and S: "S \<subseteq> span B" | |
| 2123 | and fg: "\<forall> x\<in> B. f x = g x" | |
| 2124 | shows "\<forall>x\<in> S. f x = g x" | |
| 2125 | proof- | |
| 2126 | let ?h = "\<lambda>x. f x - g x" | |
| 2127 | from fg have fg': "\<forall>x\<in> B. ?h x = 0" by simp | |
| 2128 | from linear_eq_0[OF linear_compose_sub[OF lf lg] S fg'] | |
| 2129 | show ?thesis by simp | |
| 2130 | qed | |
| 2131 | ||
| 2132 | lemma linear_eq_stdbasis: | |
| 2133 | assumes lf: "linear (f::'a::euclidean_space \<Rightarrow> _)" and lg: "linear g" | |
| 2134 |   and fg: "\<forall>i<DIM('a::euclidean_space). f (basis i) = g(basis i)"
 | |
| 2135 | shows "f = g" | |
| 2136 | proof- | |
| 2137 |   let ?U = "{..<DIM('a)}"
 | |
| 2138 |   let ?I = "(basis::nat=>'a) ` {..<DIM('a)}"
 | |
| 2139 |   {fix x assume x: "x \<in> (UNIV :: 'a set)"
 | |
| 2140 | from equalityD2[OF span_basis'[where 'a='a]] | |
| 2141 | have IU: " (UNIV :: 'a set) \<subseteq> span ?I" by blast | |
| 2142 | have "f x = g x" apply(rule linear_eq[OF lf lg IU,rule_format]) using fg x by auto } | |
| 44454 | 2143 | then show ?thesis by auto | 
| 44133 | 2144 | qed | 
| 2145 | ||
| 2146 | text {* Similar results for bilinear functions. *}
 | |
| 2147 | ||
| 2148 | lemma bilinear_eq: | |
| 2149 | assumes bf: "bilinear f" | |
| 2150 | and bg: "bilinear g" | |
| 2151 | and SB: "S \<subseteq> span B" and TC: "T \<subseteq> span C" | |
| 2152 | and fg: "\<forall>x\<in> B. \<forall>y\<in> C. f x y = g x y" | |
| 2153 | shows "\<forall>x\<in>S. \<forall>y\<in>T. f x y = g x y " | |
| 2154 | proof- | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2155 |   let ?P = "{x. \<forall>y\<in> span C. f x y = g x y}"
 | 
| 44133 | 2156 | from bf bg have sp: "subspace ?P" | 
| 2157 | unfolding bilinear_def linear_def subspace_def bf bg | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2158 | by(auto simp add: span_0 bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf]) | 
| 44133 | 2159 | |
| 2160 | have "\<forall>x \<in> span B. \<forall>y\<in> span C. f x y = g x y" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2161 | apply (rule span_induct' [OF _ sp]) | 
| 44133 | 2162 | apply (rule ballI) | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2163 | apply (rule span_induct') | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2164 | apply (simp add: fg) | 
| 44133 | 2165 | apply (auto simp add: subspace_def) | 
| 2166 | using bf bg unfolding bilinear_def linear_def | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2167 | by(auto simp add: span_0 bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf]) | 
| 44454 | 2168 | then show ?thesis using SB TC by auto | 
| 44133 | 2169 | qed | 
| 2170 | ||
| 2171 | lemma bilinear_eq_stdbasis: fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> _" | |
| 2172 | assumes bf: "bilinear f" | |
| 2173 | and bg: "bilinear g" | |
| 2174 |   and fg: "\<forall>i<DIM('a). \<forall>j<DIM('b). f (basis i) (basis j) = g (basis i) (basis j)"
 | |
| 2175 | shows "f = g" | |
| 2176 | proof- | |
| 2177 |   from fg have th: "\<forall>x \<in> (basis ` {..<DIM('a)}). \<forall>y\<in> (basis ` {..<DIM('b)}). f x y = g x y" by blast
 | |
| 2178 | from bilinear_eq[OF bf bg equalityD2[OF span_basis'] equalityD2[OF span_basis'] th] | |
| 44454 | 2179 | show ?thesis by blast | 
| 44133 | 2180 | qed | 
| 2181 | ||
| 2182 | text {* Detailed theorems about left and right invertibility in general case. *}
 | |
| 2183 | ||
| 2184 | lemma linear_injective_left_inverse: fixes f::"'a::euclidean_space => 'b::euclidean_space" | |
| 2185 | assumes lf: "linear f" and fi: "inj f" | |
| 2186 | shows "\<exists>g. linear g \<and> g o f = id" | |
| 2187 | proof- | |
| 2188 | from linear_independent_extend[OF independent_injective_image, OF independent_basis, OF lf fi] | |
| 2189 | obtain h:: "'b => 'a" where h: "linear h" | |
| 2190 |     " \<forall>x \<in> f ` basis ` {..<DIM('a)}. h x = inv f x" by blast
 | |
| 2191 | from h(2) | |
| 2192 |   have th: "\<forall>i<DIM('a). (h \<circ> f) (basis i) = id (basis i)"
 | |
| 2193 | using inv_o_cancel[OF fi, unfolded fun_eq_iff id_def o_def] | |
| 2194 | by auto | |
| 2195 | ||
| 2196 | from linear_eq_stdbasis[OF linear_compose[OF lf h(1)] linear_id th] | |
| 2197 | have "h o f = id" . | |
| 2198 | then show ?thesis using h(1) by blast | |
| 2199 | qed | |
| 2200 | ||
| 2201 | lemma linear_surjective_right_inverse: fixes f::"'a::euclidean_space => 'b::euclidean_space" | |
| 2202 | assumes lf: "linear f" and sf: "surj f" | |
| 2203 | shows "\<exists>g. linear g \<and> f o g = id" | |
| 2204 | proof- | |
| 2205 | from linear_independent_extend[OF independent_basis[where 'a='b],of "inv f"] | |
| 2206 | obtain h:: "'b \<Rightarrow> 'a" where | |
| 2207 |     h: "linear h" "\<forall> x\<in> basis ` {..<DIM('b)}. h x = inv f x" by blast
 | |
| 2208 | from h(2) | |
| 2209 |   have th: "\<forall>i<DIM('b). (f o h) (basis i) = id (basis i)"
 | |
| 2210 | using sf by(auto simp add: surj_iff_all) | |
| 2211 | from linear_eq_stdbasis[OF linear_compose[OF h(1) lf] linear_id th] | |
| 2212 | have "f o h = id" . | |
| 2213 | then show ?thesis using h(1) by blast | |
| 2214 | qed | |
| 2215 | ||
| 2216 | text {* An injective map @{typ "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"} is also surjective. *}
 | |
| 2217 | ||
| 2218 | lemma linear_injective_imp_surjective: fixes f::"'a::euclidean_space => 'a::euclidean_space" | |
| 2219 | assumes lf: "linear f" and fi: "inj f" | |
| 2220 | shows "surj f" | |
| 2221 | proof- | |
| 2222 | let ?U = "UNIV :: 'a set" | |
| 2223 | from basis_exists[of ?U] obtain B | |
| 2224 | where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "card B = dim ?U" | |
| 2225 | by blast | |
| 2226 | from B(4) have d: "dim ?U = card B" by simp | |
| 2227 | have th: "?U \<subseteq> span (f ` B)" | |
| 2228 | apply (rule card_ge_dim_independent) | |
| 2229 | apply blast | |
| 2230 | apply (rule independent_injective_image[OF B(2) lf fi]) | |
| 2231 | apply (rule order_eq_refl) | |
| 2232 | apply (rule sym) | |
| 2233 | unfolding d | |
| 2234 | apply (rule card_image) | |
| 2235 | apply (rule subset_inj_on[OF fi]) | |
| 2236 | by blast | |
| 2237 | from th show ?thesis | |
| 2238 | unfolding span_linear_image[OF lf] surj_def | |
| 2239 | using B(3) by blast | |
| 2240 | qed | |
| 2241 | ||
| 2242 | text {* And vice versa. *}
 | |
| 2243 | ||
| 2244 | lemma surjective_iff_injective_gen: | |
| 2245 | assumes fS: "finite S" and fT: "finite T" and c: "card S = card T" | |
| 2246 | and ST: "f ` S \<subseteq> T" | |
| 2247 | shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 2248 | proof- | |
| 2249 |   {assume h: "?lhs"
 | |
| 2250 |     {fix x y assume x: "x \<in> S" and y: "y \<in> S" and f: "f x = f y"
 | |
| 2251 | from x fS have S0: "card S \<noteq> 0" by auto | |
| 2252 |       {assume xy: "x \<noteq> y"
 | |
| 2253 |         have th: "card S \<le> card (f ` (S - {y}))"
 | |
| 2254 | unfolding c | |
| 2255 | apply (rule card_mono) | |
| 2256 | apply (rule finite_imageI) | |
| 2257 | using fS apply simp | |
| 2258 | using h xy x y f unfolding subset_eq image_iff | |
| 2259 | apply auto | |
| 2260 | apply (case_tac "xa = f x") | |
| 2261 | apply (rule bexI[where x=x]) | |
| 2262 | apply auto | |
| 2263 | done | |
| 2264 |         also have " \<dots> \<le> card (S -{y})"
 | |
| 2265 | apply (rule card_image_le) | |
| 2266 | using fS by simp | |
| 2267 | also have "\<dots> \<le> card S - 1" using y fS by simp | |
| 2268 | finally have False using S0 by arith } | |
| 2269 | then have "x = y" by blast} | |
| 2270 | then have ?rhs unfolding inj_on_def by blast} | |
| 2271 | moreover | |
| 2272 |   {assume h: ?rhs
 | |
| 2273 | have "f ` S = T" | |
| 2274 | apply (rule card_subset_eq[OF fT ST]) | |
| 2275 | unfolding card_image[OF h] using c . | |
| 2276 | then have ?lhs by blast} | |
| 2277 | ultimately show ?thesis by blast | |
| 2278 | qed | |
| 2279 | ||
| 2280 | lemma linear_surjective_imp_injective: fixes f::"'a::euclidean_space => 'a::euclidean_space" | |
| 2281 | assumes lf: "linear f" and sf: "surj f" | |
| 2282 | shows "inj f" | |
| 2283 | proof- | |
| 2284 | let ?U = "UNIV :: 'a set" | |
| 2285 | from basis_exists[of ?U] obtain B | |
| 2286 | where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" and d: "card B = dim ?U" | |
| 2287 | by blast | |
| 2288 |   {fix x assume x: "x \<in> span B" and fx: "f x = 0"
 | |
| 2289 | from B(2) have fB: "finite B" using independent_bound by auto | |
| 2290 | have fBi: "independent (f ` B)" | |
| 2291 | apply (rule card_le_dim_spanning[of "f ` B" ?U]) | |
| 2292 | apply blast | |
| 2293 | using sf B(3) | |
| 2294 | unfolding span_linear_image[OF lf] surj_def subset_eq image_iff | |
| 2295 | apply blast | |
| 2296 | using fB apply blast | |
| 2297 | unfolding d[symmetric] | |
| 2298 | apply (rule card_image_le) | |
| 2299 | apply (rule fB) | |
| 2300 | done | |
| 2301 | have th0: "dim ?U \<le> card (f ` B)" | |
| 2302 | apply (rule span_card_ge_dim) | |
| 2303 | apply blast | |
| 2304 | unfolding span_linear_image[OF lf] | |
| 2305 | apply (rule subset_trans[where B = "f ` UNIV"]) | |
| 2306 | using sf unfolding surj_def apply blast | |
| 2307 | apply (rule image_mono) | |
| 2308 | apply (rule B(3)) | |
| 2309 | apply (metis finite_imageI fB) | |
| 2310 | done | |
| 2311 | ||
| 2312 | moreover have "card (f ` B) \<le> card B" | |
| 2313 | by (rule card_image_le, rule fB) | |
| 2314 | ultimately have th1: "card B = card (f ` B)" unfolding d by arith | |
| 2315 | have fiB: "inj_on f B" | |
| 2316 | unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric] by blast | |
| 2317 | from linear_indep_image_lemma[OF lf fB fBi fiB x] fx | |
| 2318 | have "x = 0" by blast} | |
| 2319 | note th = this | |
| 2320 | from th show ?thesis unfolding linear_injective_0[OF lf] | |
| 2321 | using B(3) by blast | |
| 2322 | qed | |
| 2323 | ||
| 2324 | text {* Hence either is enough for isomorphism. *}
 | |
| 2325 | ||
| 2326 | lemma left_right_inverse_eq: | |
| 2327 | assumes fg: "f o g = id" and gh: "g o h = id" | |
| 2328 | shows "f = h" | |
| 2329 | proof- | |
| 2330 | have "f = f o (g o h)" unfolding gh by simp | |
| 2331 | also have "\<dots> = (f o g) o h" by (simp add: o_assoc) | |
| 2332 | finally show "f = h" unfolding fg by simp | |
| 2333 | qed | |
| 2334 | ||
| 2335 | lemma isomorphism_expand: | |
| 2336 | "f o g = id \<and> g o f = id \<longleftrightarrow> (\<forall>x. f(g x) = x) \<and> (\<forall>x. g(f x) = x)" | |
| 2337 | by (simp add: fun_eq_iff o_def id_def) | |
| 2338 | ||
| 2339 | lemma linear_injective_isomorphism: fixes f::"'a::euclidean_space => 'a::euclidean_space" | |
| 2340 | assumes lf: "linear f" and fi: "inj f" | |
| 2341 | shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" | |
| 2342 | unfolding isomorphism_expand[symmetric] | |
| 2343 | using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]] linear_injective_left_inverse[OF lf fi] | |
| 2344 | by (metis left_right_inverse_eq) | |
| 2345 | ||
| 2346 | lemma linear_surjective_isomorphism: fixes f::"'a::euclidean_space => 'a::euclidean_space" | |
| 2347 | assumes lf: "linear f" and sf: "surj f" | |
| 2348 | shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" | |
| 2349 | unfolding isomorphism_expand[symmetric] | |
| 2350 | using linear_surjective_right_inverse[OF lf sf] linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]] | |
| 2351 | by (metis left_right_inverse_eq) | |
| 2352 | ||
| 2353 | text {* Left and right inverses are the same for @{typ "'a::euclidean_space => 'a::euclidean_space"}. *}
 | |
| 2354 | ||
| 2355 | lemma linear_inverse_left: fixes f::"'a::euclidean_space => 'a::euclidean_space" | |
| 2356 | assumes lf: "linear f" and lf': "linear f'" | |
| 2357 | shows "f o f' = id \<longleftrightarrow> f' o f = id" | |
| 2358 | proof- | |
| 2359 |   {fix f f':: "'a => 'a"
 | |
| 2360 | assume lf: "linear f" "linear f'" and f: "f o f' = id" | |
| 2361 | from f have sf: "surj f" | |
| 2362 | apply (auto simp add: o_def id_def surj_def) | |
| 2363 | by metis | |
| 2364 | from linear_surjective_isomorphism[OF lf(1) sf] lf f | |
| 2365 | have "f' o f = id" unfolding fun_eq_iff o_def id_def | |
| 2366 | by metis} | |
| 2367 | then show ?thesis using lf lf' by metis | |
| 2368 | qed | |
| 2369 | ||
| 2370 | text {* Moreover, a one-sided inverse is automatically linear. *}
 | |
| 2371 | ||
| 2372 | lemma left_inverse_linear: fixes f::"'a::euclidean_space => 'a::euclidean_space" | |
| 2373 | assumes lf: "linear f" and gf: "g o f = id" | |
| 2374 | shows "linear g" | |
| 2375 | proof- | |
| 2376 | from gf have fi: "inj f" apply (auto simp add: inj_on_def o_def id_def fun_eq_iff) | |
| 2377 | by metis | |
| 2378 | from linear_injective_isomorphism[OF lf fi] | |
| 2379 | obtain h:: "'a \<Rightarrow> 'a" where | |
| 2380 | h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" by blast | |
| 2381 | have "h = g" apply (rule ext) using gf h(2,3) | |
| 2382 | apply (simp add: o_def id_def fun_eq_iff) | |
| 2383 | by metis | |
| 2384 | with h(1) show ?thesis by blast | |
| 2385 | qed | |
| 2386 | ||
| 2387 | subsection {* Infinity norm *}
 | |
| 2388 | ||
| 2389 | definition "infnorm (x::'a::euclidean_space) = Sup {abs(x$$i) |i. i<DIM('a)}"
 | |
| 2390 | ||
| 2391 | lemma numseg_dimindex_nonempty: "\<exists>i. i \<in> (UNIV :: 'n set)" | |
| 2392 | by auto | |
| 2393 | ||
| 2394 | lemma infnorm_set_image: | |
| 2395 |   "{abs((x::'a::euclidean_space)$$i) |i. i<DIM('a)} =
 | |
| 2396 |   (\<lambda>i. abs(x$$i)) ` {..<DIM('a)}" by blast
 | |
| 2397 | ||
| 2398 | lemma infnorm_set_lemma: | |
| 2399 |   shows "finite {abs((x::'a::euclidean_space)$$i) |i. i<DIM('a)}"
 | |
| 2400 |   and "{abs(x$$i) |i. i<DIM('a::euclidean_space)} \<noteq> {}"
 | |
| 2401 | unfolding infnorm_set_image | |
| 2402 | by auto | |
| 2403 | ||
| 2404 | lemma infnorm_pos_le: "0 \<le> infnorm (x::'a::euclidean_space)" | |
| 2405 | unfolding infnorm_def | |
| 2406 | unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma] | |
| 2407 | unfolding infnorm_set_image | |
| 2408 | by auto | |
| 2409 | ||
| 2410 | lemma infnorm_triangle: "infnorm ((x::'a::euclidean_space) + y) \<le> infnorm x + infnorm y" | |
| 2411 | proof- | |
| 2412 | have th: "\<And>x y (z::real). x - y <= z \<longleftrightarrow> x - z <= y" by arith | |
| 2413 |   have th1: "\<And>S f. f ` S = { f i| i. i \<in> S}" by blast
 | |
| 2414 | have th2: "\<And>x (y::real). abs(x + y) - abs(x) <= abs(y)" by arith | |
| 2415 |   have *:"\<And>i. i \<in> {..<DIM('a)} \<longleftrightarrow> i <DIM('a)" by auto
 | |
| 2416 | show ?thesis | |
| 2417 | unfolding infnorm_def unfolding Sup_finite_le_iff[ OF infnorm_set_lemma[where 'a='a]] | |
| 2418 | apply (subst diff_le_eq[symmetric]) | |
| 2419 | unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma] | |
| 2420 | unfolding infnorm_set_image bex_simps | |
| 2421 | apply (subst th) | |
| 2422 | unfolding th1 * | |
| 2423 | unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma[where 'a='a]] | |
| 2424 | unfolding infnorm_set_image ball_simps bex_simps | |
| 2425 | unfolding euclidean_simps by (metis th2) | |
| 2426 | qed | |
| 2427 | ||
| 2428 | lemma infnorm_eq_0: "infnorm x = 0 \<longleftrightarrow> (x::_::euclidean_space) = 0" | |
| 2429 | proof- | |
| 2430 | have "infnorm x <= 0 \<longleftrightarrow> x = 0" | |
| 2431 | unfolding infnorm_def | |
| 2432 | unfolding Sup_finite_le_iff[OF infnorm_set_lemma] | |
| 2433 | unfolding infnorm_set_image ball_simps | |
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44454diff
changeset | 2434 | apply(subst (1) euclidean_eq) | 
| 44133 | 2435 | by auto | 
| 2436 | then show ?thesis using infnorm_pos_le[of x] by simp | |
| 2437 | qed | |
| 2438 | ||
| 2439 | lemma infnorm_0: "infnorm 0 = 0" | |
| 2440 | by (simp add: infnorm_eq_0) | |
| 2441 | ||
| 2442 | lemma infnorm_neg: "infnorm (- x) = infnorm x" | |
| 2443 | unfolding infnorm_def | |
| 2444 | apply (rule cong[of "Sup" "Sup"]) | |
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44454diff
changeset | 2445 | apply blast by auto | 
| 44133 | 2446 | |
| 2447 | lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)" | |
| 2448 | proof- | |
| 2449 | have "y - x = - (x - y)" by simp | |
| 2450 | then show ?thesis by (metis infnorm_neg) | |
| 2451 | qed | |
| 2452 | ||
| 2453 | lemma real_abs_sub_infnorm: "\<bar> infnorm x - infnorm y\<bar> \<le> infnorm (x - y)" | |
| 2454 | proof- | |
| 2455 | have th: "\<And>(nx::real) n ny. nx <= n + ny \<Longrightarrow> ny <= n + nx ==> \<bar>nx - ny\<bar> <= n" | |
| 2456 | by arith | |
| 2457 | from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"] | |
| 2458 | have ths: "infnorm x \<le> infnorm (x - y) + infnorm y" | |
| 2459 | "infnorm y \<le> infnorm (x - y) + infnorm x" | |
| 44454 | 2460 | by (simp_all add: field_simps infnorm_neg) | 
| 44133 | 2461 | from th[OF ths] show ?thesis . | 
| 2462 | qed | |
| 2463 | ||
| 2464 | lemma real_abs_infnorm: " \<bar>infnorm x\<bar> = infnorm x" | |
| 2465 | using infnorm_pos_le[of x] by arith | |
| 2466 | ||
| 2467 | lemma component_le_infnorm: | |
| 2468 | shows "\<bar>x$$i\<bar> \<le> infnorm (x::'a::euclidean_space)" | |
| 2469 | proof(cases "i<DIM('a)")
 | |
| 2470 | case False thus ?thesis using infnorm_pos_le by auto | |
| 2471 | next case True | |
| 2472 |   let ?U = "{..<DIM('a)}"
 | |
| 2473 |   let ?S = "{\<bar>x$$i\<bar> |i. i<DIM('a)}"
 | |
| 2474 | have fS: "finite ?S" unfolding image_Collect[symmetric] | |
| 2475 | apply (rule finite_imageI) by simp | |
| 2476 |   have S0: "?S \<noteq> {}" by blast
 | |
| 2477 |   have th1: "\<And>S f. f ` S = { f i| i. i \<in> S}" by blast
 | |
| 2478 | show ?thesis unfolding infnorm_def | |
| 2479 | apply(subst Sup_finite_ge_iff) using Sup_finite_in[OF fS S0] | |
| 2480 | using infnorm_set_image using True by auto | |
| 2481 | qed | |
| 2482 | ||
| 2483 | lemma infnorm_mul_lemma: "infnorm(a *\<^sub>R x) <= \<bar>a\<bar> * infnorm x" | |
| 2484 | apply (subst infnorm_def) | |
| 2485 | unfolding Sup_finite_le_iff[OF infnorm_set_lemma] | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44176diff
changeset | 2486 | unfolding infnorm_set_image ball_simps euclidean_component_scaleR abs_mult | 
| 44133 | 2487 | using component_le_infnorm[of x] by(auto intro: mult_mono) | 
| 2488 | ||
| 2489 | lemma infnorm_mul: "infnorm(a *\<^sub>R x) = abs a * infnorm x" | |
| 2490 | proof- | |
| 2491 |   {assume a0: "a = 0" hence ?thesis by (simp add: infnorm_0) }
 | |
| 2492 | moreover | |
| 2493 |   {assume a0: "a \<noteq> 0"
 | |
| 2494 | from a0 have th: "(1/a) *\<^sub>R (a *\<^sub>R x) = x" by simp | |
| 2495 | from a0 have ap: "\<bar>a\<bar> > 0" by arith | |
| 2496 | from infnorm_mul_lemma[of "1/a" "a *\<^sub>R x"] | |
| 2497 | have "infnorm x \<le> 1/\<bar>a\<bar> * infnorm (a*\<^sub>R x)" | |
| 2498 | unfolding th by simp | |
| 2499 | with ap have "\<bar>a\<bar> * infnorm x \<le> \<bar>a\<bar> * (1/\<bar>a\<bar> * infnorm (a *\<^sub>R x))" by (simp add: field_simps) | |
| 2500 | then have "\<bar>a\<bar> * infnorm x \<le> infnorm (a*\<^sub>R x)" | |
| 2501 | using ap by (simp add: field_simps) | |
| 2502 | with infnorm_mul_lemma[of a x] have ?thesis by arith } | |
| 2503 | ultimately show ?thesis by blast | |
| 2504 | qed | |
| 2505 | ||
| 2506 | lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0" | |
| 2507 | using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith | |
| 2508 | ||
| 2509 | text {* Prove that it differs only up to a bound from Euclidean norm. *}
 | |
| 2510 | ||
| 2511 | lemma infnorm_le_norm: "infnorm x \<le> norm x" | |
| 2512 | unfolding infnorm_def Sup_finite_le_iff[OF infnorm_set_lemma] | |
| 2513 | unfolding infnorm_set_image ball_simps | |
| 2514 | by (metis component_le_norm) | |
| 2515 | ||
| 2516 | lemma norm_le_infnorm: "norm(x) <= sqrt(real DIM('a)) * infnorm(x::'a::euclidean_space)"
 | |
| 2517 | proof- | |
| 2518 |   let ?d = "DIM('a)"
 | |
| 2519 | have "real ?d \<ge> 0" by simp | |
| 2520 | hence d2: "(sqrt (real ?d))^2 = real ?d" | |
| 2521 | by (auto intro: real_sqrt_pow2) | |
| 2522 | have th: "sqrt (real ?d) * infnorm x \<ge> 0" | |
| 2523 | by (simp add: zero_le_mult_iff infnorm_pos_le) | |
| 2524 | have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)^2" | |
| 2525 | unfolding power_mult_distrib d2 | |
| 2526 | unfolding real_of_nat_def apply(subst euclidean_inner) | |
| 2527 | apply (subst power2_abs[symmetric]) | |
| 2528 | apply(rule order_trans[OF setsum_bounded[where K="\<bar>infnorm x\<bar>\<twosuperior>"]]) | |
| 2529 | apply(auto simp add: power2_eq_square[symmetric]) | |
| 2530 | apply (subst power2_abs[symmetric]) | |
| 2531 | apply (rule power_mono) | |
| 2532 | unfolding infnorm_def Sup_finite_ge_iff[OF infnorm_set_lemma] | |
| 2533 | unfolding infnorm_set_image bex_simps apply(rule_tac x=i in bexI) by auto | |
| 2534 | from real_le_lsqrt[OF inner_ge_zero th th1] | |
| 2535 | show ?thesis unfolding norm_eq_sqrt_inner id_def . | |
| 2536 | qed | |
| 2537 | ||
| 44646 | 2538 | lemma tendsto_infnorm [tendsto_intros]: | 
| 2539 | assumes "(f ---> a) F" shows "((\<lambda>x. infnorm (f x)) ---> infnorm a) F" | |
| 2540 | proof (rule tendsto_compose [OF LIM_I assms]) | |
| 2541 | fix r :: real assume "0 < r" | |
| 2542 | thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (infnorm x - infnorm a) < r" | |
| 2543 | by (metis real_norm_def le_less_trans real_abs_sub_infnorm infnorm_le_norm) | |
| 2544 | qed | |
| 2545 | ||
| 44133 | 2546 | text {* Equality in Cauchy-Schwarz and triangle inequalities. *}
 | 
| 2547 | ||
| 2548 | lemma norm_cauchy_schwarz_eq: "x \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 2549 | proof- | |
| 2550 |   {assume h: "x = 0"
 | |
| 2551 | hence ?thesis by simp} | |
| 2552 | moreover | |
| 2553 |   {assume h: "y = 0"
 | |
| 2554 | hence ?thesis by simp} | |
| 2555 | moreover | |
| 2556 |   {assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
 | |
| 2557 | from inner_eq_zero_iff[of "norm y *\<^sub>R x - norm x *\<^sub>R y"] | |
| 2558 | have "?rhs \<longleftrightarrow> (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) = 0)" | |
| 2559 | using x y | |
| 2560 | unfolding inner_simps | |
| 2561 | unfolding power2_norm_eq_inner[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: inner_commute) | |
| 2562 | apply (simp add: field_simps) by metis | |
| 2563 | also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y | |
| 2564 | by (simp add: field_simps inner_commute) | |
| 2565 | also have "\<dots> \<longleftrightarrow> ?lhs" using x y | |
| 2566 | apply simp | |
| 2567 | by metis | |
| 2568 | finally have ?thesis by blast} | |
| 2569 | ultimately show ?thesis by blast | |
| 2570 | qed | |
| 2571 | ||
| 2572 | lemma norm_cauchy_schwarz_abs_eq: | |
| 2573 | shows "abs(x \<bullet> y) = norm x * norm y \<longleftrightarrow> | |
| 2574 | norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm(x) *\<^sub>R y = - norm y *\<^sub>R x" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 2575 | proof- | |
| 2576 | have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> abs x = a \<longleftrightarrow> x = a \<or> x = - a" by arith | |
| 2577 | have "?rhs \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm (- x) *\<^sub>R y = norm y *\<^sub>R (- x)" | |
| 2578 | by simp | |
| 2579 | also have "\<dots> \<longleftrightarrow>(x \<bullet> y = norm x * norm y \<or> | |
| 2580 | (-x) \<bullet> y = norm x * norm y)" | |
| 2581 | unfolding norm_cauchy_schwarz_eq[symmetric] | |
| 2582 | unfolding norm_minus_cancel norm_scaleR .. | |
| 2583 | also have "\<dots> \<longleftrightarrow> ?lhs" | |
| 2584 | unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps by auto | |
| 2585 | finally show ?thesis .. | |
| 2586 | qed | |
| 2587 | ||
| 2588 | lemma norm_triangle_eq: | |
| 2589 | fixes x y :: "'a::real_inner" | |
| 2590 | shows "norm(x + y) = norm x + norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" | |
| 2591 | proof- | |
| 2592 |   {assume x: "x =0 \<or> y =0"
 | |
| 2593 | hence ?thesis by (cases "x=0", simp_all)} | |
| 2594 | moreover | |
| 2595 |   {assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
 | |
| 2596 | hence "norm x \<noteq> 0" "norm y \<noteq> 0" | |
| 2597 | by simp_all | |
| 2598 | hence n: "norm x > 0" "norm y > 0" | |
| 2599 | using norm_ge_zero[of x] norm_ge_zero[of y] | |
| 2600 | by arith+ | |
| 2601 | have th: "\<And>(a::real) b c. a + b + c \<noteq> 0 ==> (a = b + c \<longleftrightarrow> a^2 = (b + c)^2)" by algebra | |
| 2602 | have "norm(x + y) = norm x + norm y \<longleftrightarrow> norm(x + y)^ 2 = (norm x + norm y) ^2" | |
| 2603 | apply (rule th) using n norm_ge_zero[of "x + y"] | |
| 2604 | by arith | |
| 2605 | also have "\<dots> \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" | |
| 2606 | unfolding norm_cauchy_schwarz_eq[symmetric] | |
| 2607 | unfolding power2_norm_eq_inner inner_simps | |
| 2608 | by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps) | |
| 2609 | finally have ?thesis .} | |
| 2610 | ultimately show ?thesis by blast | |
| 2611 | qed | |
| 2612 | ||
| 2613 | subsection {* Collinearity *}
 | |
| 2614 | ||
| 2615 | definition | |
| 2616 | collinear :: "'a::real_vector set \<Rightarrow> bool" where | |
| 2617 | "collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u)" | |
| 2618 | ||
| 2619 | lemma collinear_empty:  "collinear {}" by (simp add: collinear_def)
 | |
| 2620 | ||
| 2621 | lemma collinear_sing: "collinear {x}"
 | |
| 2622 | by (simp add: collinear_def) | |
| 2623 | ||
| 2624 | lemma collinear_2: "collinear {x, y}"
 | |
| 2625 | apply (simp add: collinear_def) | |
| 2626 | apply (rule exI[where x="x - y"]) | |
| 2627 | apply auto | |
| 2628 | apply (rule exI[where x=1], simp) | |
| 2629 | apply (rule exI[where x="- 1"], simp) | |
| 2630 | done | |
| 2631 | ||
| 2632 | lemma collinear_lemma: "collinear {0,x,y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)" (is "?lhs \<longleftrightarrow> ?rhs")
 | |
| 2633 | proof- | |
| 2634 |   {assume "x=0 \<or> y = 0" hence ?thesis
 | |
| 2635 | by (cases "x = 0", simp_all add: collinear_2 insert_commute)} | |
| 2636 | moreover | |
| 2637 |   {assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
 | |
| 2638 |     {assume h: "?lhs"
 | |
| 2639 |       then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *\<^sub>R u" unfolding collinear_def by blast
 | |
| 2640 | from u[rule_format, of x 0] u[rule_format, of y 0] | |
| 2641 | obtain cx and cy where | |
| 2642 | cx: "x = cx *\<^sub>R u" and cy: "y = cy *\<^sub>R u" | |
| 2643 | by auto | |
| 2644 | from cx x have cx0: "cx \<noteq> 0" by auto | |
| 2645 | from cy y have cy0: "cy \<noteq> 0" by auto | |
| 2646 | let ?d = "cy / cx" | |
| 2647 | from cx cy cx0 have "y = ?d *\<^sub>R x" | |
| 2648 | by simp | |
| 2649 | hence ?rhs using x y by blast} | |
| 2650 | moreover | |
| 2651 |     {assume h: "?rhs"
 | |
| 2652 | then obtain c where c: "y = c *\<^sub>R x" using x y by blast | |
| 2653 | have ?lhs unfolding collinear_def c | |
| 2654 | apply (rule exI[where x=x]) | |
| 2655 | apply auto | |
| 2656 | apply (rule exI[where x="- 1"], simp) | |
| 2657 | apply (rule exI[where x= "-c"], simp) | |
| 2658 | apply (rule exI[where x=1], simp) | |
| 2659 | apply (rule exI[where x="1 - c"], simp add: scaleR_left_diff_distrib) | |
| 2660 | apply (rule exI[where x="c - 1"], simp add: scaleR_left_diff_distrib) | |
| 2661 | done} | |
| 2662 | ultimately have ?thesis by blast} | |
| 2663 | ultimately show ?thesis by blast | |
| 2664 | qed | |
| 2665 | ||
| 2666 | lemma norm_cauchy_schwarz_equal: | |
| 2667 |   shows "abs(x \<bullet> y) = norm x * norm y \<longleftrightarrow> collinear {0,x,y}"
 | |
| 2668 | unfolding norm_cauchy_schwarz_abs_eq | |
| 2669 | apply (cases "x=0", simp_all add: collinear_2) | |
| 2670 | apply (cases "y=0", simp_all add: collinear_2 insert_commute) | |
| 2671 | unfolding collinear_lemma | |
| 2672 | apply simp | |
| 2673 | apply (subgoal_tac "norm x \<noteq> 0") | |
| 2674 | apply (subgoal_tac "norm y \<noteq> 0") | |
| 2675 | apply (rule iffI) | |
| 2676 | apply (cases "norm x *\<^sub>R y = norm y *\<^sub>R x") | |
| 2677 | apply (rule exI[where x="(1/norm x) * norm y"]) | |
| 2678 | apply (drule sym) | |
| 2679 | unfolding scaleR_scaleR[symmetric] | |
| 2680 | apply (simp add: field_simps) | |
| 2681 | apply (rule exI[where x="(1/norm x) * - norm y"]) | |
| 2682 | apply clarify | |
| 2683 | apply (drule sym) | |
| 2684 | unfolding scaleR_scaleR[symmetric] | |
| 2685 | apply (simp add: field_simps) | |
| 2686 | apply (erule exE) | |
| 2687 | apply (erule ssubst) | |
| 2688 | unfolding scaleR_scaleR | |
| 2689 | unfolding norm_scaleR | |
| 2690 | apply (subgoal_tac "norm x * c = \<bar>c\<bar> * norm x \<or> norm x * c = - \<bar>c\<bar> * norm x") | |
| 2691 | apply (case_tac "c <= 0", simp add: field_simps) | |
| 2692 | apply (simp add: field_simps) | |
| 2693 | apply (case_tac "c <= 0", simp add: field_simps) | |
| 2694 | apply (simp add: field_simps) | |
| 2695 | apply simp | |
| 2696 | apply simp | |
| 2697 | done | |
| 2698 | ||
| 44529 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2699 | subsection {* An ordering on euclidean spaces that will allow us to talk about intervals *}
 | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2700 | |
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2701 | class ordered_euclidean_space = ord + euclidean_space + | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2702 |   assumes eucl_le: "x \<le> y \<longleftrightarrow> (\<forall>i < DIM('a). x $$ i \<le> y $$ i)"
 | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2703 |   and eucl_less: "x < y \<longleftrightarrow> (\<forall>i < DIM('a). x $$ i < y $$ i)"
 | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2704 | |
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2705 | lemma eucl_less_not_refl[simp, intro!]: "\<not> x < (x::'a::ordered_euclidean_space)" | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2706 | unfolding eucl_less[where 'a='a] by auto | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2707 | |
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2708 | lemma euclidean_trans[trans]: | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2709 | fixes x y z :: "'a::ordered_euclidean_space" | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2710 | shows "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2711 | and "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2712 | and "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2713 | unfolding eucl_less[where 'a='a] eucl_le[where 'a='a] | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2714 | by (fast intro: less_trans, fast intro: le_less_trans, | 
| 
d4d9ea33703c
arrange everything related to ordered_euclidean_space class together
 huffman parents: 
44528diff
changeset | 2715 | fast intro: order_trans) | 
| 44133 | 2716 | |
| 2717 | lemma basis_real_range: "basis ` {..<1} = {1::real}" by auto
 | |
| 2718 | ||
| 2719 | instance real::ordered_euclidean_space | |
| 2720 | by default (auto simp add: euclidean_component_def) | |
| 2721 | ||
| 2722 | lemma Eucl_real_simps[simp]: | |
| 2723 | "(x::real) $$ 0 = x" | |
| 2724 | "(\<chi>\<chi> i. f i) = ((f 0)::real)" | |
| 2725 | "\<And>i. i > 0 \<Longrightarrow> x $$ i = 0" | |
| 2726 | defer apply(subst euclidean_eq) apply safe | |
| 2727 | unfolding euclidean_lambda_beta' | |
| 2728 | unfolding euclidean_component_def by auto | |
| 2729 | ||
| 2730 | lemma complex_basis[simp]: | |
| 2731 | shows "basis 0 = (1::complex)" and "basis 1 = ii" and "basis (Suc 0) = ii" | |
| 2732 | unfolding basis_complex_def by auto | |
| 2733 | ||
| 2734 | lemma DIM_prod[simp]: "DIM('a \<times> 'b) = DIM('b::euclidean_space) + DIM('a::euclidean_space)"
 | |
| 2735 |   (* FIXME: why this orientation? Why not "DIM('a) + DIM('b)" ? *)
 | |
| 2736 | unfolding dimension_prod_def by (rule add_commute) | |
| 2737 | ||
| 2738 | instantiation prod :: (ordered_euclidean_space, ordered_euclidean_space) ordered_euclidean_space | |
| 2739 | begin | |
| 2740 | ||
| 2741 | definition "x \<le> (y::('a\<times>'b)) \<longleftrightarrow> (\<forall>i<DIM('a\<times>'b). x $$ i \<le> y $$ i)"
 | |
| 2742 | definition "x < (y::('a\<times>'b)) \<longleftrightarrow> (\<forall>i<DIM('a\<times>'b). x $$ i < y $$ i)"
 | |
| 2743 | ||
| 2744 | instance proof qed (auto simp: less_prod_def less_eq_prod_def) | |
| 2745 | end | |
| 2746 | ||
| 2747 | end |