src/HOL/Metis_Examples/Abstraction.thy
author blanchet
Fri, 18 Nov 2011 11:47:12 +0100
changeset 45563 94ebb64b0433
parent 45562 e8fab4786b3c
child 45572 08970468f99b
permissions -rw-r--r--
example cleanup
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
33027
9cf389429f6d modernized session Metis_Examples;
wenzelm
parents: 32864
diff changeset
     1
(*  Title:      HOL/Metis_Examples/Abstraction.thy
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
     2
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
41144
509e51b7509a example tuning
blanchet
parents: 38991
diff changeset
     3
    Author:     Jasmin Blanchette, TU Muenchen
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
     4
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
     5
Example featuring Metis's support for lambda-abstractions.
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
     6
*)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
     7
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
     8
header {* Example Featuring Metis's Support for Lambda-Abstractions *}
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
     9
27368
9f90ac19e32b established Plain theory and image
haftmann
parents: 26819
diff changeset
    10
theory Abstraction
41413
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41144
diff changeset
    11
imports Main "~~/src/HOL/Library/FuncSet"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    12
begin
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    13
42103
6066a35f6678 Metis examples use the new Skolemizer to test it
blanchet
parents: 41413
diff changeset
    14
declare [[metis_new_skolemizer]]
6066a35f6678 Metis examples use the new Skolemizer to test it
blanchet
parents: 41413
diff changeset
    15
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    16
(* For Christoph Benzmüller *)
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    17
lemma "x < 1 \<and> ((op =) = (op =)) \<Longrightarrow> ((op =) = (op =)) \<and> x < (2::nat)"
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    18
by (metis nat_1_add_1 trans_less_add2)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    19
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    20
lemma "(op = ) = (%x y. y = x)"
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    21
by metis
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    22
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    23
consts
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    24
  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    25
  pset  :: "'a set => 'a set"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    26
  order :: "'a set => ('a * 'a) set"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    27
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    28
lemma (*Collect_triv:*) "a \<in> {x. P x} ==> P a"
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    29
proof -
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    30
  assume "a \<in> {x. P x}"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    31
  hence "a \<in> P" by (metis Collect_def)
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    32
  thus "P a" by (metis mem_def)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    33
qed
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    34
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    35
lemma Collect_triv: "a \<in> {x. P x} ==> P a"
23756
14008ce7df96 Adapted to changes in Predicate theory.
berghofe
parents: 23519
diff changeset
    36
by (metis mem_Collect_eq)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    37
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    38
lemma "a \<in> {x. P x --> Q x} ==> a \<in> {x. P x} ==> a \<in> {x. Q x}"
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    39
by (metis Collect_imp_eq ComplD UnE)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    40
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    41
lemma "(a, b) \<in> Sigma A B ==> a \<in> A & b \<in> B a"
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    42
proof -
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    43
  assume A1: "(a, b) \<in> Sigma A B"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    44
  hence F1: "b \<in> B a" by (metis mem_Sigma_iff)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    45
  have F2: "a \<in> A" by (metis A1 mem_Sigma_iff)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    46
  have "b \<in> B a" by (metis F1)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    47
  thus "a \<in> A \<and> b \<in> B a" by (metis F2)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    48
qed
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    49
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    50
lemma Sigma_triv: "(a,b) \<in> Sigma A B ==> a \<in> A & b \<in> B a"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    51
by (metis SigmaD1 SigmaD2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    52
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    53
lemma "(a, b) \<in> (SIGMA x:A. {y. x = f y}) \<Longrightarrow> a \<in> A \<and> a = f b"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    54
(* Metis says this is satisfiable!
29676
cfa3378decf7 Updated comments.
paulson
parents: 28592
diff changeset
    55
by (metis CollectD SigmaD1 SigmaD2)
cfa3378decf7 Updated comments.
paulson
parents: 28592
diff changeset
    56
*)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    57
by (meson CollectD SigmaD1 SigmaD2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    58
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    59
lemma "(a, b) \<in> (SIGMA x:A. {y. x = f y}) \<Longrightarrow> a \<in> A \<and> a = f b"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    60
by (metis mem_Sigma_iff singleton_conv2 vimage_Collect_eq vimage_singleton_eq)
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
    61
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    62
lemma "(a, b) \<in> (SIGMA x:A. {y. x = f y}) \<Longrightarrow> a \<in> A \<and> a = f b"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    63
proof -
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    64
  assume A1: "(a, b) \<in> (SIGMA x:A. {y. x = f y})"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    65
  hence F1: "a \<in> A" by (metis mem_Sigma_iff)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    66
  have "b \<in> {R. a = f R}" by (metis A1 mem_Sigma_iff)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    67
  hence F2: "b \<in> (\<lambda>R. a = f R)" by (metis Collect_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    68
  hence "a = f b" by (unfold mem_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    69
  thus "a \<in> A \<and> a = f b" by (metis F1)
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
    70
qed
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    71
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    72
lemma "(cl,f) \<in> CLF ==> CLF = (SIGMA cl: CL.{f. f \<in> pset cl}) ==> f \<in> pset cl"
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
    73
by (metis Collect_mem_eq SigmaD2)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    74
24742
73b8b42a36b6 removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
paulson
parents: 24632
diff changeset
    75
lemma "(cl,f) \<in> CLF ==> CLF = (SIGMA cl: CL.{f. f \<in> pset cl}) ==> f \<in> pset cl"
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    76
proof -
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    77
  assume A1: "(cl, f) \<in> CLF"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    78
  assume A2: "CLF = (SIGMA cl:CL. {f. f \<in> pset cl})"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    79
  have F1: "\<forall>v. (\<lambda>R. R \<in> v) = v" by (metis Collect_mem_eq Collect_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    80
  have "\<forall>v u. (u, v) \<in> CLF \<longrightarrow> v \<in> {R. R \<in> pset u}" by (metis A2 mem_Sigma_iff)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    81
  hence "\<forall>v u. (u, v) \<in> CLF \<longrightarrow> v \<in> pset u" by (metis F1 Collect_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    82
  hence "f \<in> pset cl" by (metis A1)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    83
  thus "f \<in> pset cl" by metis
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
    84
qed
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    85
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    86
lemma
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
    87
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    88
    f \<in> pset cl \<rightarrow> pset cl"
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    89
by (metis (no_types) Collect_def Sigma_triv mem_def)
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    90
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    91
lemma
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    92
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==>
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
    93
    f \<in> pset cl \<rightarrow> pset cl"
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    94
proof -
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    95
  assume A1: "(cl, f) \<in> (SIGMA cl:CL. {f. f \<in> pset cl \<rightarrow> pset cl})"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    96
  have F1: "\<forall>v. (\<lambda>R. R \<in> v) = v" by (metis Collect_mem_eq Collect_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    97
  have "f \<in> {R. R \<in> pset cl \<rightarrow> pset cl}" using A1 by simp
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    98
  hence "f \<in> pset cl \<rightarrow> pset cl" by (metis F1 Collect_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
    99
  thus "f \<in> pset cl \<rightarrow> pset cl" by metis
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
   100
qed
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   101
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   102
lemma
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   103
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   104
    f \<in> pset cl \<inter> cl"
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   105
by (metis (no_types) Collect_conj_eq Int_def Sigma_triv inf_idem)
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   106
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   107
lemma
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   108
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   109
    f \<in> pset cl \<inter> cl"
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   110
proof -
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   111
  assume A1: "(cl, f) \<in> (SIGMA cl:CL. {f. f \<in> pset cl \<inter> cl})"
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   112
  have F1: "\<forall>v. (\<lambda>R. R \<in> v) = v" by (metis Collect_mem_eq Collect_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   113
  have "f \<in> {R. R \<in> pset cl \<inter> cl}" using A1 by simp
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   114
  hence "f \<in> Id_on cl `` pset cl" by (metis F1 Int_commute Image_Id_on Collect_def)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   115
  hence "f \<in> Id_on cl `` pset cl" by metis
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   116
  hence "f \<in> cl \<inter> pset cl" by (metis Image_Id_on)
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   117
  thus "f \<in> pset cl \<inter> cl" by (metis Int_commute)
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
   118
qed
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
   119
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   120
lemma
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   121
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)}) ==>
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   122
   (f \<in> pset cl \<rightarrow> pset cl)  &  (monotone f (pset cl) (order cl))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   123
by auto
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   124
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   125
lemma "(cl,f) \<in> CLF ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   126
   CLF \<subseteq> (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   127
   f \<in> pset cl \<inter> cl"
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
   128
by auto
27368
9f90ac19e32b established Plain theory and image
haftmann
parents: 26819
diff changeset
   129
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   130
lemma "(cl,f) \<in> CLF ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   131
   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   132
   f \<in> pset cl \<inter> cl"
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
   133
by auto
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   134
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   135
lemma
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   136
   "(cl,f) \<in> CLF ==>
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   137
    CLF \<subseteq> (SIGMA cl': CL. {f. f \<in> pset cl' \<rightarrow> pset cl'}) ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   138
    f \<in> pset cl \<rightarrow> pset cl"
31754
b5260f5272a4 tuned FuncSet
nipkow
parents: 29676
diff changeset
   139
by fast
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   140
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   141
lemma
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   142
  "(cl,f) \<in> CLF ==>
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   143
   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   144
   f \<in> pset cl \<rightarrow> pset cl"
24827
646bdc51eb7d combinator translation
paulson
parents: 24783
diff changeset
   145
by auto
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   146
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   147
lemma
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   148
  "(cl,f) \<in> CLF ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   149
   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)}) ==>
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   150
   (f \<in> pset cl \<rightarrow> pset cl)  &  (monotone f (pset cl) (order cl))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   151
by auto
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   152
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   153
lemma "map (%x. (f x, g x)) xs = zip (map f xs) (map g xs)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   154
apply (induct xs)
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   155
 apply (metis map.simps(1) zip_Nil)
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   156
by (metis (lam_lifting, no_types) map.simps(2) zip_Cons_Cons)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   157
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   158
lemma "map (%w. (w -> w, w \<times> w)) xs =
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   159
       zip (map (%w. w -> w) xs) (map (%w. w \<times> w) xs)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   160
apply (induct xs)
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   161
 apply (metis map.simps(1) zip_Nil)
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   162
by auto
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   163
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   164
lemma "(%x. Suc (f x)) ` {x. even x} <= A ==> \<forall>x. even x --> Suc (f x) \<in> A"
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   165
by (metis Collect_def image_eqI mem_def subsetD)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   166
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   167
lemma "(%x. f (f x)) ` ((%x. Suc(f x)) ` {x. even x}) <= A
45503
44790ec65f70 remove old-style semicolons
huffman
parents: 43197
diff changeset
   168
       ==> (\<forall>x. even x --> f (f (Suc(f x))) \<in> A)"
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   169
by (metis Collect_def imageI mem_def set_rev_mp)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   170
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   171
lemma "f \<in> (%u v. b \<times> u \<times> v) ` A ==> \<forall>u v. P (b \<times> u \<times> v) ==> P(f y)"
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   172
(* sledgehammer *)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   173
by auto
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   174
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   175
lemma image_TimesA: "(%(x,y). (f x, g y)) ` (A \<times> B) = (f`A) \<times> (g`B)"
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   176
by (metis map_pair_def map_pair_surj_on)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   177
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   178
lemma image_TimesB:
36566
f91342f218a9 redid some Sledgehammer/Metis proofs
blanchet
parents: 33027
diff changeset
   179
    "(%(x,y,z). (f x, g y, h z)) ` (A \<times> B \<times> C) = (f`A) \<times> (g`B) \<times> (h`C)"
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   180
(* sledgehammer *)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   181
by force
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   182
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   183
lemma image_TimesC:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   184
    "(%(x,y). (x \<rightarrow> x, y \<times> y)) ` (A \<times> B) =
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42757
diff changeset
   185
     ((%x. x \<rightarrow> x) ` A) \<times> ((%y. y \<times> y) ` B)"
45562
e8fab4786b3c example cleanup
blanchet
parents: 45503
diff changeset
   186
by (metis image_TimesA)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   187
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   188
end