| author | wenzelm | 
| Tue, 11 Oct 2016 10:43:27 +0200 | |
| changeset 64142 | 954451356017 | 
| parent 63924 | f91766530e13 | 
| child 64240 | eabf80376aab | 
| permissions | -rw-r--r-- | 
| 63489 | 1  | 
(* Title: HOL/GCD.thy  | 
2  | 
Author: Christophe Tabacznyj  | 
|
3  | 
Author: Lawrence C. Paulson  | 
|
4  | 
Author: Amine Chaieb  | 
|
5  | 
Author: Thomas M. Rasmussen  | 
|
6  | 
Author: Jeremy Avigad  | 
|
7  | 
Author: Tobias Nipkow  | 
|
| 31706 | 8  | 
|
| 32479 | 9  | 
This file deals with the functions gcd and lcm. Definitions and  | 
10  | 
lemmas are proved uniformly for the natural numbers and integers.  | 
|
| 31706 | 11  | 
|
12  | 
This file combines and revises a number of prior developments.  | 
|
13  | 
||
14  | 
The original theories "GCD" and "Primes" were by Christophe Tabacznyj  | 
|
| 58623 | 15  | 
and Lawrence C. Paulson, based on @{cite davenport92}. They introduced
 | 
| 31706 | 16  | 
gcd, lcm, and prime for the natural numbers.  | 
17  | 
||
18  | 
The original theory "IntPrimes" was by Thomas M. Rasmussen, and  | 
|
19  | 
extended gcd, lcm, primes to the integers. Amine Chaieb provided  | 
|
20  | 
another extension of the notions to the integers, and added a number  | 
|
21  | 
of results to "Primes" and "GCD". IntPrimes also defined and developed  | 
|
22  | 
the congruence relations on the integers. The notion was extended to  | 
|
| 34915 | 23  | 
the natural numbers by Chaieb.  | 
| 31706 | 24  | 
|
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
25  | 
Jeremy Avigad combined all of these, made everything uniform for the  | 
| 
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
26  | 
natural numbers and the integers, and added a number of new theorems.  | 
| 
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
27  | 
|
| 31798 | 28  | 
Tobias Nipkow cleaned up a lot.  | 
| 21256 | 29  | 
*)  | 
30  | 
||
| 60758 | 31  | 
section \<open>Greatest common divisor and least common multiple\<close>  | 
| 21256 | 32  | 
|
33  | 
theory GCD  | 
|
| 63489 | 34  | 
imports Main  | 
| 31706 | 35  | 
begin  | 
36  | 
||
| 63489 | 37  | 
|
| 62345 | 38  | 
subsection \<open>Abstract GCD and LCM\<close>  | 
| 31706 | 39  | 
|
| 31992 | 40  | 
class gcd = zero + one + dvd +  | 
| 41550 | 41  | 
fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  | 
42  | 
and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  | 
|
| 21256 | 43  | 
begin  | 
44  | 
||
| 60686 | 45  | 
abbreviation coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
46  | 
where "coprime x y \<equiv> gcd x y = 1"  | 
|
| 31706 | 47  | 
|
48  | 
end  | 
|
49  | 
||
| 60686 | 50  | 
class Gcd = gcd +  | 
| 63025 | 51  | 
fixes Gcd :: "'a set \<Rightarrow> 'a"  | 
52  | 
and Lcm :: "'a set \<Rightarrow> 'a"  | 
|
| 62350 | 53  | 
begin  | 
54  | 
||
| 63025 | 55  | 
abbreviation GREATEST_COMMON_DIVISOR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63489 | 56  | 
where "GREATEST_COMMON_DIVISOR A f \<equiv> Gcd (f ` A)"  | 
| 62350 | 57  | 
|
| 63025 | 58  | 
abbreviation LEAST_COMMON_MULTIPLE :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63489 | 59  | 
where "LEAST_COMMON_MULTIPLE A f \<equiv> Lcm (f ` A)"  | 
| 62350 | 60  | 
|
61  | 
end  | 
|
62  | 
||
63  | 
syntax  | 
|
| 63025 | 64  | 
  "_GCD1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3GCD _./ _)" [0, 10] 10)
 | 
65  | 
  "_GCD"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3GCD _\<in>_./ _)" [0, 0, 10] 10)
 | 
|
66  | 
  "_LCM1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3LCM _./ _)" [0, 10] 10)
 | 
|
67  | 
  "_LCM"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3LCM _\<in>_./ _)" [0, 0, 10] 10)
 | 
|
| 62350 | 68  | 
translations  | 
| 63025 | 69  | 
"GCD x y. B" \<rightleftharpoons> "GCD x. GCD y. B"  | 
70  | 
"GCD x. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR CONST UNIV (\<lambda>x. B)"  | 
|
71  | 
"GCD x. B" \<rightleftharpoons> "GCD x \<in> CONST UNIV. B"  | 
|
72  | 
"GCD x\<in>A. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR A (\<lambda>x. B)"  | 
|
73  | 
"LCM x y. B" \<rightleftharpoons> "LCM x. LCM y. B"  | 
|
74  | 
"LCM x. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE CONST UNIV (\<lambda>x. B)"  | 
|
75  | 
"LCM x. B" \<rightleftharpoons> "LCM x \<in> CONST UNIV. B"  | 
|
76  | 
"LCM x\<in>A. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE A (\<lambda>x. B)"  | 
|
| 62350 | 77  | 
|
78  | 
print_translation \<open>  | 
|
| 63025 | 79  | 
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax GREATEST_COMMON_DIVISOR} @{syntax_const "_GCD"},
 | 
80  | 
    Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax LEAST_COMMON_MULTIPLE} @{syntax_const "_LCM"}]
 | 
|
| 62350 | 81  | 
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>  | 
| 60686 | 82  | 
|
83  | 
class semiring_gcd = normalization_semidom + gcd +  | 
|
| 59008 | 84  | 
assumes gcd_dvd1 [iff]: "gcd a b dvd a"  | 
| 59977 | 85  | 
and gcd_dvd2 [iff]: "gcd a b dvd b"  | 
86  | 
and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b"  | 
|
| 60686 | 87  | 
and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b"  | 
88  | 
and lcm_gcd: "lcm a b = normalize (a * b) div gcd a b"  | 
|
| 63489 | 89  | 
begin  | 
90  | 
||
91  | 
lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c"  | 
|
| 60686 | 92  | 
by (blast intro!: gcd_greatest intro: dvd_trans)  | 
93  | 
||
| 63489 | 94  | 
lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c"  | 
| 60689 | 95  | 
by (rule dvd_trans) (rule gcd_dvd1)  | 
96  | 
||
| 63489 | 97  | 
lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c"  | 
| 60689 | 98  | 
by (rule dvd_trans) (rule gcd_dvd2)  | 
99  | 
||
| 63489 | 100  | 
lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b"  | 
| 62345 | 101  | 
using gcd_dvd1 [of b c] by (blast intro: dvd_trans)  | 
102  | 
||
| 63489 | 103  | 
lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c"  | 
| 62345 | 104  | 
using gcd_dvd2 [of b c] by (blast intro: dvd_trans)  | 
105  | 
||
| 63489 | 106  | 
lemma gcd_0_left [simp]: "gcd 0 a = normalize a"  | 
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
107  | 
by (rule associated_eqI) simp_all  | 
| 60686 | 108  | 
|
| 63489 | 109  | 
lemma gcd_0_right [simp]: "gcd a 0 = normalize a"  | 
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
110  | 
by (rule associated_eqI) simp_all  | 
| 63489 | 111  | 
|
112  | 
lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"  | 
|
113  | 
(is "?P \<longleftrightarrow> ?Q")  | 
|
| 60686 | 114  | 
proof  | 
| 63489 | 115  | 
assume ?P  | 
116  | 
then have "0 dvd gcd a b"  | 
|
117  | 
by simp  | 
|
118  | 
then have "0 dvd a" and "0 dvd b"  | 
|
119  | 
by (blast intro: dvd_trans)+  | 
|
120  | 
then show ?Q  | 
|
121  | 
by simp  | 
|
| 60686 | 122  | 
next  | 
| 63489 | 123  | 
assume ?Q  | 
124  | 
then show ?P  | 
|
125  | 
by simp  | 
|
| 60686 | 126  | 
qed  | 
127  | 
||
| 63489 | 128  | 
lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)"  | 
| 60686 | 129  | 
proof (cases "gcd a b = 0")  | 
| 63489 | 130  | 
case True  | 
131  | 
then show ?thesis by simp  | 
|
| 60686 | 132  | 
next  | 
133  | 
case False  | 
|
134  | 
have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b"  | 
|
135  | 
by (rule unit_factor_mult_normalize)  | 
|
136  | 
then have "unit_factor (gcd a b) * gcd a b = gcd a b"  | 
|
137  | 
by simp  | 
|
138  | 
then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b"  | 
|
139  | 
by simp  | 
|
| 63489 | 140  | 
with False show ?thesis  | 
141  | 
by simp  | 
|
| 60686 | 142  | 
qed  | 
143  | 
||
| 63489 | 144  | 
lemma is_unit_gcd [simp]: "is_unit (gcd a b) \<longleftrightarrow> coprime a b"  | 
| 60690 | 145  | 
by (cases "a = 0 \<and> b = 0") (auto simp add: unit_factor_gcd dest: is_unit_unit_factor)  | 
146  | 
||
| 61605 | 147  | 
sublocale gcd: abel_semigroup gcd  | 
| 60686 | 148  | 
proof  | 
149  | 
fix a b c  | 
|
150  | 
show "gcd a b = gcd b a"  | 
|
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
151  | 
by (rule associated_eqI) simp_all  | 
| 60686 | 152  | 
from gcd_dvd1 have "gcd (gcd a b) c dvd a"  | 
153  | 
by (rule dvd_trans) simp  | 
|
154  | 
moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b"  | 
|
155  | 
by (rule dvd_trans) simp  | 
|
156  | 
ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)"  | 
|
157  | 
by (auto intro!: gcd_greatest)  | 
|
158  | 
from gcd_dvd2 have "gcd a (gcd b c) dvd b"  | 
|
159  | 
by (rule dvd_trans) simp  | 
|
160  | 
moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c"  | 
|
161  | 
by (rule dvd_trans) simp  | 
|
162  | 
ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c"  | 
|
163  | 
by (auto intro!: gcd_greatest)  | 
|
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
164  | 
from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)"  | 
| 
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
165  | 
by (rule associated_eqI) simp_all  | 
| 60686 | 166  | 
qed  | 
167  | 
||
| 63489 | 168  | 
lemma gcd_self [simp]: "gcd a a = normalize a"  | 
| 60686 | 169  | 
proof -  | 
170  | 
have "a dvd gcd a a"  | 
|
171  | 
by (rule gcd_greatest) simp_all  | 
|
172  | 
then show ?thesis  | 
|
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
173  | 
by (auto intro: associated_eqI)  | 
| 60686 | 174  | 
qed  | 
| 61913 | 175  | 
|
| 63489 | 176  | 
lemma gcd_left_idem [simp]: "gcd a (gcd a b) = gcd a b"  | 
| 61913 | 177  | 
by (auto intro: associated_eqI)  | 
178  | 
||
| 63489 | 179  | 
lemma gcd_right_idem [simp]: "gcd (gcd a b) b = gcd a b"  | 
| 61913 | 180  | 
unfolding gcd.commute [of a] gcd.commute [of "gcd b a"] by simp  | 
181  | 
||
| 63489 | 182  | 
lemma coprime_1_left [simp]: "coprime 1 a"  | 
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
183  | 
by (rule associated_eqI) simp_all  | 
| 60686 | 184  | 
|
| 63489 | 185  | 
lemma coprime_1_right [simp]: "coprime a 1"  | 
| 60686 | 186  | 
using coprime_1_left [of a] by (simp add: ac_simps)  | 
187  | 
||
| 63489 | 188  | 
lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize c * gcd a b"  | 
| 60686 | 189  | 
proof (cases "c = 0")  | 
| 63489 | 190  | 
case True  | 
191  | 
then show ?thesis by simp  | 
|
| 60686 | 192  | 
next  | 
193  | 
case False  | 
|
| 63489 | 194  | 
then have *: "c * gcd a b dvd gcd (c * a) (c * b)"  | 
| 60686 | 195  | 
by (auto intro: gcd_greatest)  | 
| 63489 | 196  | 
moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b"  | 
| 60686 | 197  | 
by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute)  | 
198  | 
ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)"  | 
|
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
199  | 
by (auto intro: associated_eqI)  | 
| 63489 | 200  | 
then show ?thesis  | 
201  | 
by (simp add: normalize_mult)  | 
|
| 60686 | 202  | 
qed  | 
203  | 
||
| 63489 | 204  | 
lemma gcd_mult_right: "gcd (a * c) (b * c) = gcd b a * normalize c"  | 
| 60686 | 205  | 
using gcd_mult_left [of c a b] by (simp add: ac_simps)  | 
206  | 
||
| 63489 | 207  | 
lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)"  | 
| 60686 | 208  | 
by (simp add: gcd_mult_left mult.assoc [symmetric])  | 
209  | 
||
| 63489 | 210  | 
lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c"  | 
| 60686 | 211  | 
using mult_gcd_left [of c a b] by (simp add: ac_simps)  | 
212  | 
||
| 63489 | 213  | 
lemma dvd_lcm1 [iff]: "a dvd lcm a b"  | 
| 60686 | 214  | 
proof -  | 
215  | 
have "normalize (a * b) div gcd a b = normalize a * (normalize b div gcd a b)"  | 
|
216  | 
by (simp add: lcm_gcd normalize_mult div_mult_swap)  | 
|
217  | 
then show ?thesis  | 
|
218  | 
by (simp add: lcm_gcd)  | 
|
219  | 
qed  | 
|
| 63489 | 220  | 
|
221  | 
lemma dvd_lcm2 [iff]: "b dvd lcm a b"  | 
|
| 60686 | 222  | 
proof -  | 
223  | 
have "normalize (a * b) div gcd a b = normalize b * (normalize a div gcd a b)"  | 
|
224  | 
by (simp add: lcm_gcd normalize_mult div_mult_swap ac_simps)  | 
|
225  | 
then show ?thesis  | 
|
226  | 
by (simp add: lcm_gcd)  | 
|
227  | 
qed  | 
|
228  | 
||
| 63489 | 229  | 
lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c"  | 
230  | 
by (rule dvd_trans) (assumption, blast)  | 
|
231  | 
||
232  | 
lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c"  | 
|
| 60689 | 233  | 
by (rule dvd_trans) (assumption, blast)  | 
234  | 
||
| 63489 | 235  | 
lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c"  | 
| 62345 | 236  | 
using dvd_lcm1 [of a b] by (blast intro: dvd_trans)  | 
237  | 
||
| 63489 | 238  | 
lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c"  | 
| 62345 | 239  | 
using dvd_lcm2 [of a b] by (blast intro: dvd_trans)  | 
240  | 
||
| 60686 | 241  | 
lemma lcm_least:  | 
242  | 
assumes "a dvd c" and "b dvd c"  | 
|
243  | 
shows "lcm a b dvd c"  | 
|
244  | 
proof (cases "c = 0")  | 
|
| 63489 | 245  | 
case True  | 
246  | 
then show ?thesis by simp  | 
|
| 60686 | 247  | 
next  | 
| 63489 | 248  | 
case False  | 
249  | 
then have *: "is_unit (unit_factor c)"  | 
|
250  | 
by simp  | 
|
| 60686 | 251  | 
show ?thesis  | 
252  | 
proof (cases "gcd a b = 0")  | 
|
| 63489 | 253  | 
case True  | 
254  | 
with assms show ?thesis by simp  | 
|
| 60686 | 255  | 
next  | 
| 63489 | 256  | 
case False  | 
257  | 
then have "a \<noteq> 0 \<or> b \<noteq> 0"  | 
|
258  | 
by simp  | 
|
| 60686 | 259  | 
with \<open>c \<noteq> 0\<close> assms have "a * b dvd a * c" "a * b dvd c * b"  | 
260  | 
by (simp_all add: mult_dvd_mono)  | 
|
261  | 
then have "normalize (a * b) dvd gcd (a * c) (b * c)"  | 
|
262  | 
by (auto intro: gcd_greatest simp add: ac_simps)  | 
|
263  | 
then have "normalize (a * b) dvd gcd (a * c) (b * c) * unit_factor c"  | 
|
| 63489 | 264  | 
using * by (simp add: dvd_mult_unit_iff)  | 
| 60686 | 265  | 
then have "normalize (a * b) dvd gcd a b * c"  | 
266  | 
by (simp add: mult_gcd_right [of a b c])  | 
|
267  | 
then have "normalize (a * b) div gcd a b dvd c"  | 
|
268  | 
using False by (simp add: div_dvd_iff_mult ac_simps)  | 
|
| 63489 | 269  | 
then show ?thesis  | 
270  | 
by (simp add: lcm_gcd)  | 
|
| 60686 | 271  | 
qed  | 
272  | 
qed  | 
|
273  | 
||
| 63489 | 274  | 
lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c"  | 
| 60686 | 275  | 
by (blast intro!: lcm_least intro: dvd_trans)  | 
276  | 
||
| 63489 | 277  | 
lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b"  | 
| 60686 | 278  | 
by (simp add: lcm_gcd dvd_normalize_div)  | 
279  | 
||
| 63489 | 280  | 
lemma lcm_0_left [simp]: "lcm 0 a = 0"  | 
281  | 
by (simp add: lcm_gcd)  | 
|
282  | 
||
283  | 
lemma lcm_0_right [simp]: "lcm a 0 = 0"  | 
|
| 60686 | 284  | 
by (simp add: lcm_gcd)  | 
| 63489 | 285  | 
|
286  | 
lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"  | 
|
287  | 
(is "?P \<longleftrightarrow> ?Q")  | 
|
| 60686 | 288  | 
proof  | 
| 63489 | 289  | 
assume ?P  | 
290  | 
then have "0 dvd lcm a b"  | 
|
291  | 
by simp  | 
|
| 60686 | 292  | 
then have "0 dvd normalize (a * b) div gcd a b"  | 
293  | 
by (simp add: lcm_gcd)  | 
|
294  | 
then have "0 * gcd a b dvd normalize (a * b)"  | 
|
295  | 
using dvd_div_iff_mult [of "gcd a b" _ 0] by (cases "gcd a b = 0") simp_all  | 
|
296  | 
then have "normalize (a * b) = 0"  | 
|
297  | 
by simp  | 
|
| 63489 | 298  | 
then show ?Q  | 
299  | 
by simp  | 
|
| 60686 | 300  | 
next  | 
| 63489 | 301  | 
assume ?Q  | 
302  | 
then show ?P  | 
|
303  | 
by auto  | 
|
| 60686 | 304  | 
qed  | 
305  | 
||
| 63489 | 306  | 
lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b"  | 
| 61913 | 307  | 
by (auto intro: associated_eqI)  | 
308  | 
||
| 63489 | 309  | 
lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)"  | 
| 60686 | 310  | 
by (simp add: unit_factor_gcd dvd_unit_factor_div lcm_gcd)  | 
311  | 
||
| 61605 | 312  | 
sublocale lcm: abel_semigroup lcm  | 
| 60686 | 313  | 
proof  | 
314  | 
fix a b c  | 
|
315  | 
show "lcm a b = lcm b a"  | 
|
316  | 
by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div)  | 
|
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
317  | 
have "lcm (lcm a b) c dvd lcm a (lcm b c)"  | 
| 
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
318  | 
and "lcm a (lcm b c) dvd lcm (lcm a b) c"  | 
| 
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
319  | 
by (auto intro: lcm_least  | 
| 60686 | 320  | 
dvd_trans [of b "lcm b c" "lcm a (lcm b c)"]  | 
321  | 
dvd_trans [of c "lcm b c" "lcm a (lcm b c)"]  | 
|
322  | 
dvd_trans [of a "lcm a b" "lcm (lcm a b) c"]  | 
|
323  | 
dvd_trans [of b "lcm a b" "lcm (lcm a b) c"])  | 
|
324  | 
then show "lcm (lcm a b) c = lcm a (lcm b c)"  | 
|
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
325  | 
by (rule associated_eqI) simp_all  | 
| 60686 | 326  | 
qed  | 
327  | 
||
| 63489 | 328  | 
lemma lcm_self [simp]: "lcm a a = normalize a"  | 
| 60686 | 329  | 
proof -  | 
330  | 
have "lcm a a dvd a"  | 
|
331  | 
by (rule lcm_least) simp_all  | 
|
332  | 
then show ?thesis  | 
|
| 
60688
 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 
haftmann 
parents: 
60687 
diff
changeset
 | 
333  | 
by (auto intro: associated_eqI)  | 
| 60686 | 334  | 
qed  | 
335  | 
||
| 63489 | 336  | 
lemma lcm_left_idem [simp]: "lcm a (lcm a b) = lcm a b"  | 
| 61913 | 337  | 
by (auto intro: associated_eqI)  | 
338  | 
||
| 63489 | 339  | 
lemma lcm_right_idem [simp]: "lcm (lcm a b) b = lcm a b"  | 
| 61913 | 340  | 
unfolding lcm.commute [of a] lcm.commute [of "lcm b a"] by simp  | 
341  | 
||
| 63489 | 342  | 
lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b"  | 
| 60686 | 343  | 
by (simp add: lcm_gcd normalize_mult)  | 
344  | 
||
| 63489 | 345  | 
lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b"  | 
346  | 
using gcd_mult_lcm [of a b] by (simp add: ac_simps)  | 
|
| 60686 | 347  | 
|
348  | 
lemma gcd_lcm:  | 
|
349  | 
assumes "a \<noteq> 0" and "b \<noteq> 0"  | 
|
350  | 
shows "gcd a b = normalize (a * b) div lcm a b"  | 
|
351  | 
proof -  | 
|
352  | 
from assms have "lcm a b \<noteq> 0"  | 
|
353  | 
by (simp add: lcm_eq_0_iff)  | 
|
| 63489 | 354  | 
have "gcd a b * lcm a b = normalize a * normalize b"  | 
355  | 
by simp  | 
|
| 60686 | 356  | 
then have "gcd a b * lcm a b div lcm a b = normalize (a * b) div lcm a b"  | 
357  | 
by (simp_all add: normalize_mult)  | 
|
358  | 
with \<open>lcm a b \<noteq> 0\<close> show ?thesis  | 
|
359  | 
using nonzero_mult_divide_cancel_right [of "lcm a b" "gcd a b"] by simp  | 
|
360  | 
qed  | 
|
361  | 
||
| 63489 | 362  | 
lemma lcm_1_left [simp]: "lcm 1 a = normalize a"  | 
| 60686 | 363  | 
by (simp add: lcm_gcd)  | 
364  | 
||
| 63489 | 365  | 
lemma lcm_1_right [simp]: "lcm a 1 = normalize a"  | 
| 60686 | 366  | 
by (simp add: lcm_gcd)  | 
| 63489 | 367  | 
|
368  | 
lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize c * lcm a b"  | 
|
| 60686 | 369  | 
by (cases "c = 0")  | 
370  | 
(simp_all add: gcd_mult_right lcm_gcd div_mult_swap normalize_mult ac_simps,  | 
|
371  | 
simp add: dvd_div_mult2_eq mult.left_commute [of "normalize c", symmetric])  | 
|
372  | 
||
| 63489 | 373  | 
lemma lcm_mult_right: "lcm (a * c) (b * c) = lcm b a * normalize c"  | 
| 60686 | 374  | 
using lcm_mult_left [of c a b] by (simp add: ac_simps)  | 
375  | 
||
| 63489 | 376  | 
lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)"  | 
| 60686 | 377  | 
by (simp add: lcm_mult_left mult.assoc [symmetric])  | 
378  | 
||
| 63489 | 379  | 
lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c"  | 
| 60686 | 380  | 
using mult_lcm_left [of c a b] by (simp add: ac_simps)  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
381  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
382  | 
lemma gcdI:  | 
| 63489 | 383  | 
assumes "c dvd a" and "c dvd b"  | 
384  | 
and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
385  | 
and "normalize c = c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
386  | 
shows "c = gcd a b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
387  | 
by (rule associated_eqI) (auto simp: assms intro: gcd_greatest)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
388  | 
|
| 63489 | 389  | 
lemma gcd_unique:  | 
390  | 
"d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
391  | 
by rule (auto intro: gcdI simp: gcd_greatest)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
392  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
393  | 
lemma gcd_dvd_prod: "gcd a b dvd k * b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
394  | 
using mult_dvd_mono [of 1] by auto  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
395  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
396  | 
lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
397  | 
by (rule gcdI [symmetric]) simp_all  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
398  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
399  | 
lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
400  | 
by (rule gcdI [symmetric]) simp_all  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
401  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
402  | 
lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
403  | 
proof  | 
| 63489 | 404  | 
assume *: "gcd m n = normalize m"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
405  | 
show "m dvd n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
406  | 
proof (cases "m = 0")  | 
| 63489 | 407  | 
case True  | 
408  | 
with * show ?thesis by simp  | 
|
409  | 
next  | 
|
410  | 
case [simp]: False  | 
|
411  | 
from * have **: "m = gcd m n * unit_factor m"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
412  | 
by (simp add: unit_eq_div2)  | 
| 63489 | 413  | 
show ?thesis  | 
414  | 
by (subst **) (simp add: mult_unit_dvd_iff)  | 
|
415  | 
qed  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
416  | 
next  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
417  | 
assume "m dvd n"  | 
| 63489 | 418  | 
then show "gcd m n = normalize m"  | 
419  | 
by (rule gcd_proj1_if_dvd)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
420  | 
qed  | 
| 63489 | 421  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
422  | 
lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
423  | 
using gcd_proj1_iff [of n m] by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
424  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
425  | 
lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
426  | 
by (rule gcdI) (auto simp: normalize_mult gcd_greatest mult_dvd_mono gcd_mult_left[symmetric])  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
427  | 
|
| 63489 | 428  | 
lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
429  | 
proof-  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
430  | 
have "normalize k * gcd a b = gcd (k * a) (k * b)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
431  | 
by (simp add: gcd_mult_distrib')  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
432  | 
then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
433  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
434  | 
then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
435  | 
by (simp only: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
436  | 
then show ?thesis  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
437  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
438  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
439  | 
|
| 63489 | 440  | 
lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
441  | 
by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
442  | 
|
| 63489 | 443  | 
lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
444  | 
using lcm_mult_unit1 [of a c b] by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
445  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
446  | 
lemma lcm_div_unit1:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
447  | 
"is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c"  | 
| 63489 | 448  | 
by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1)  | 
449  | 
||
450  | 
lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
451  | 
by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
452  | 
|
| 63489 | 453  | 
lemma normalize_lcm_left [simp]: "lcm (normalize a) b = lcm a b"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
454  | 
proof (cases "a = 0")  | 
| 63489 | 455  | 
case True  | 
456  | 
then show ?thesis  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
457  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
458  | 
next  | 
| 63489 | 459  | 
case False  | 
460  | 
then have "is_unit (unit_factor a)"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
461  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
462  | 
moreover have "normalize a = a div unit_factor a"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
463  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
464  | 
ultimately show ?thesis  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
465  | 
by (simp only: lcm_div_unit1)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
466  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
467  | 
|
| 63489 | 468  | 
lemma normalize_lcm_right [simp]: "lcm a (normalize b) = lcm a b"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
469  | 
using normalize_lcm_left [of b a] by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
470  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
471  | 
lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
472  | 
apply (rule gcdI)  | 
| 63489 | 473  | 
apply simp_all  | 
474  | 
apply (rule dvd_trans)  | 
|
475  | 
apply (rule gcd_dvd1)  | 
|
476  | 
apply (simp add: unit_simps)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
477  | 
done  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
478  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
479  | 
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c"  | 
| 63489 | 480  | 
apply (subst gcd.commute)  | 
481  | 
apply (subst gcd_mult_unit1)  | 
|
482  | 
apply assumption  | 
|
483  | 
apply (rule gcd.commute)  | 
|
484  | 
done  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
485  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
486  | 
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
487  | 
by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
488  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
489  | 
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
490  | 
by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
491  | 
|
| 63489 | 492  | 
lemma normalize_gcd_left [simp]: "gcd (normalize a) b = gcd a b"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
493  | 
proof (cases "a = 0")  | 
| 63489 | 494  | 
case True  | 
495  | 
then show ?thesis  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
496  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
497  | 
next  | 
| 63489 | 498  | 
case False  | 
499  | 
then have "is_unit (unit_factor a)"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
500  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
501  | 
moreover have "normalize a = a div unit_factor a"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
502  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
503  | 
ultimately show ?thesis  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
504  | 
by (simp only: gcd_div_unit1)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
505  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
506  | 
|
| 63489 | 507  | 
lemma normalize_gcd_right [simp]: "gcd a (normalize b) = gcd a b"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
508  | 
using normalize_gcd_left [of b a] by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
509  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
510  | 
lemma comp_fun_idem_gcd: "comp_fun_idem gcd"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
511  | 
by standard (simp_all add: fun_eq_iff ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
512  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
513  | 
lemma comp_fun_idem_lcm: "comp_fun_idem lcm"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
514  | 
by standard (simp_all add: fun_eq_iff ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
515  | 
|
| 63489 | 516  | 
lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
517  | 
proof (rule gcdI)  | 
| 63489 | 518  | 
assume *: "gcd a b dvd gcd c d"  | 
519  | 
and **: "gcd c d dvd gcd a b"  | 
|
520  | 
have "gcd c d dvd c"  | 
|
521  | 
by simp  | 
|
522  | 
with * show "gcd a b dvd c"  | 
|
523  | 
by (rule dvd_trans)  | 
|
524  | 
have "gcd c d dvd d"  | 
|
525  | 
by simp  | 
|
526  | 
with * show "gcd a b dvd d"  | 
|
527  | 
by (rule dvd_trans)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
528  | 
show "normalize (gcd a b) = gcd a b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
529  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
530  | 
fix l assume "l dvd c" and "l dvd d"  | 
| 63489 | 531  | 
then have "l dvd gcd c d"  | 
532  | 
by (rule gcd_greatest)  | 
|
533  | 
from this and ** show "l dvd gcd a b"  | 
|
534  | 
by (rule dvd_trans)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
535  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
536  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
537  | 
lemma coprime_dvd_mult:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
538  | 
assumes "coprime a b" and "a dvd c * b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
539  | 
shows "a dvd c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
540  | 
proof (cases "c = 0")  | 
| 63489 | 541  | 
case True  | 
542  | 
then show ?thesis by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
543  | 
next  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
544  | 
case False  | 
| 63489 | 545  | 
then have unit: "is_unit (unit_factor c)"  | 
546  | 
by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
547  | 
from \<open>coprime a b\<close> mult_gcd_left [of c a b]  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
548  | 
have "gcd (c * a) (c * b) * unit_factor c = c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
549  | 
by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
550  | 
moreover from \<open>a dvd c * b\<close> have "a dvd gcd (c * a) (c * b) * unit_factor c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
551  | 
by (simp add: dvd_mult_unit_iff unit)  | 
| 63489 | 552  | 
ultimately show ?thesis  | 
553  | 
by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
554  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
555  | 
|
| 63489 | 556  | 
lemma coprime_dvd_mult_iff: "coprime a c \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd b"  | 
557  | 
by (auto intro: coprime_dvd_mult)  | 
|
558  | 
||
559  | 
lemma gcd_mult_cancel: "coprime c b \<Longrightarrow> gcd (c * a) b = gcd a b"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
560  | 
apply (rule associated_eqI)  | 
| 63489 | 561  | 
apply (rule gcd_greatest)  | 
562  | 
apply (rule_tac b = c in coprime_dvd_mult)  | 
|
563  | 
apply (simp add: gcd.assoc)  | 
|
564  | 
apply (simp_all add: ac_simps)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
565  | 
done  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
566  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
567  | 
lemma coprime_crossproduct:  | 
| 63489 | 568  | 
fixes a b c d :: 'a  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
569  | 
assumes "coprime a d" and "coprime b c"  | 
| 63489 | 570  | 
shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow>  | 
571  | 
normalize a = normalize b \<and> normalize c = normalize d"  | 
|
572  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
573  | 
proof  | 
| 63489 | 574  | 
assume ?rhs  | 
575  | 
then show ?lhs by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
576  | 
next  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
577  | 
assume ?lhs  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
578  | 
from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
579  | 
by (auto intro: dvdI dest: sym)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
580  | 
with \<open>coprime a d\<close> have "a dvd b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
581  | 
by (simp add: coprime_dvd_mult_iff normalize_mult [symmetric])  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
582  | 
from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
583  | 
by (auto intro: dvdI dest: sym)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
584  | 
with \<open>coprime b c\<close> have "b dvd a"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
585  | 
by (simp add: coprime_dvd_mult_iff normalize_mult [symmetric])  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
586  | 
from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
587  | 
by (auto intro: dvdI dest: sym simp add: mult.commute)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
588  | 
with \<open>coprime b c\<close> have "c dvd d"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
589  | 
by (simp add: coprime_dvd_mult_iff gcd.commute normalize_mult [symmetric])  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
590  | 
from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
591  | 
by (auto intro: dvdI dest: sym simp add: mult.commute)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
592  | 
with \<open>coprime a d\<close> have "d dvd c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
593  | 
by (simp add: coprime_dvd_mult_iff gcd.commute normalize_mult [symmetric])  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
594  | 
from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
595  | 
by (rule associatedI)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
596  | 
moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
597  | 
by (rule associatedI)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
598  | 
ultimately show ?rhs ..  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
599  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
600  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
601  | 
lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
602  | 
by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
603  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
604  | 
lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
605  | 
using gcd_add1 [of n m] by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
606  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
607  | 
lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
608  | 
by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
609  | 
|
| 63489 | 610  | 
lemma coprimeI: "(\<And>l. l dvd a \<Longrightarrow> l dvd b \<Longrightarrow> l dvd 1) \<Longrightarrow> gcd a b = 1"  | 
611  | 
by (rule sym, rule gcdI) simp_all  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
612  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
613  | 
lemma coprime: "gcd a b = 1 \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> is_unit d)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
614  | 
by (auto intro: coprimeI gcd_greatest dvd_gcdD1 dvd_gcdD2)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
615  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
616  | 
lemma div_gcd_coprime:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
617  | 
assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
618  | 
shows "coprime (a div gcd a b) (b div gcd a b)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
619  | 
proof -  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
620  | 
let ?g = "gcd a b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
621  | 
let ?a' = "a div ?g"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
622  | 
let ?b' = "b div ?g"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
623  | 
let ?g' = "gcd ?a' ?b'"  | 
| 63489 | 624  | 
have dvdg: "?g dvd a" "?g dvd b"  | 
625  | 
by simp_all  | 
|
626  | 
have dvdg': "?g' dvd ?a'" "?g' dvd ?b'"  | 
|
627  | 
by simp_all  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
628  | 
from dvdg dvdg' obtain ka kb ka' kb' where  | 
| 63489 | 629  | 
kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
630  | 
unfolding dvd_def by blast  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
631  | 
from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
632  | 
by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"])  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
633  | 
then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"  | 
| 63489 | 634  | 
by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def)  | 
635  | 
have "?g \<noteq> 0"  | 
|
636  | 
using nz by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
637  | 
moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .  | 
| 63489 | 638  | 
ultimately show ?thesis  | 
639  | 
using dvd_times_left_cancel_iff [of "gcd a b" _ 1] by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
640  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
641  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
642  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
643  | 
lemma divides_mult:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
644  | 
assumes "a dvd c" and nr: "b dvd c" and "coprime a b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
645  | 
shows "a * b dvd c"  | 
| 63489 | 646  | 
proof -  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
647  | 
from \<open>b dvd c\<close> obtain b' where"c = b * b'" ..  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
648  | 
with \<open>a dvd c\<close> have "a dvd b' * b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
649  | 
by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
650  | 
with \<open>coprime a b\<close> have "a dvd b'"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
651  | 
by (simp add: coprime_dvd_mult_iff)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
652  | 
then obtain a' where "b' = a * a'" ..  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
653  | 
with \<open>c = b * b'\<close> have "c = (a * b) * a'"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
654  | 
by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
655  | 
then show ?thesis ..  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
656  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
657  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
658  | 
lemma coprime_lmult:  | 
| 63489 | 659  | 
assumes dab: "gcd d (a * b) = 1"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
660  | 
shows "gcd d a = 1"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
661  | 
proof (rule coprimeI)  | 
| 63489 | 662  | 
fix l  | 
663  | 
assume "l dvd d" and "l dvd a"  | 
|
664  | 
then have "l dvd a * b"  | 
|
665  | 
by simp  | 
|
666  | 
with \<open>l dvd d\<close> and dab show "l dvd 1"  | 
|
667  | 
by (auto intro: gcd_greatest)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
668  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
669  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
670  | 
lemma coprime_rmult:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
671  | 
assumes dab: "gcd d (a * b) = 1"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
672  | 
shows "gcd d b = 1"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
673  | 
proof (rule coprimeI)  | 
| 63489 | 674  | 
fix l  | 
675  | 
assume "l dvd d" and "l dvd b"  | 
|
676  | 
then have "l dvd a * b"  | 
|
677  | 
by simp  | 
|
678  | 
with \<open>l dvd d\<close> and dab show "l dvd 1"  | 
|
679  | 
by (auto intro: gcd_greatest)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
680  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
681  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
682  | 
lemma coprime_mult:  | 
| 63489 | 683  | 
assumes "coprime d a"  | 
684  | 
and "coprime d b"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
685  | 
shows "coprime d (a * b)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
686  | 
apply (subst gcd.commute)  | 
| 63489 | 687  | 
using assms(1) apply (subst gcd_mult_cancel)  | 
688  | 
apply (subst gcd.commute)  | 
|
689  | 
apply assumption  | 
|
690  | 
apply (subst gcd.commute)  | 
|
691  | 
apply (rule assms(2))  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
692  | 
done  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
693  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
694  | 
lemma coprime_mul_eq: "gcd d (a * b) = 1 \<longleftrightarrow> gcd d a = 1 \<and> gcd d b = 1"  | 
| 63489 | 695  | 
using coprime_rmult[of d a b] coprime_lmult[of d a b] coprime_mult[of d a b]  | 
696  | 
by blast  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
697  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
698  | 
lemma gcd_coprime:  | 
| 63489 | 699  | 
assumes c: "gcd a b \<noteq> 0"  | 
700  | 
and a: "a = a' * gcd a b"  | 
|
701  | 
and b: "b = b' * gcd a b"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
702  | 
shows "gcd a' b' = 1"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
703  | 
proof -  | 
| 63489 | 704  | 
from c have "a \<noteq> 0 \<or> b \<noteq> 0"  | 
705  | 
by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
706  | 
with div_gcd_coprime have "gcd (a div gcd a b) (b div gcd a b) = 1" .  | 
| 63489 | 707  | 
also from assms have "a div gcd a b = a'"  | 
708  | 
using dvd_div_eq_mult local.gcd_dvd1 by blast  | 
|
709  | 
also from assms have "b div gcd a b = b'"  | 
|
710  | 
using dvd_div_eq_mult local.gcd_dvd1 by blast  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
711  | 
finally show ?thesis .  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
712  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
713  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
714  | 
lemma coprime_power:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
715  | 
assumes "0 < n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
716  | 
shows "gcd a (b ^ n) = 1 \<longleftrightarrow> gcd a b = 1"  | 
| 63489 | 717  | 
using assms  | 
718  | 
proof (induct n)  | 
|
719  | 
case 0  | 
|
720  | 
then show ?case by simp  | 
|
721  | 
next  | 
|
722  | 
case (Suc n)  | 
|
723  | 
then show ?case  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
724  | 
by (cases n) (simp_all add: coprime_mul_eq)  | 
| 63489 | 725  | 
qed  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
726  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
727  | 
lemma gcd_coprime_exists:  | 
| 63489 | 728  | 
assumes "gcd a b \<noteq> 0"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
729  | 
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> gcd a' b' = 1"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
730  | 
apply (rule_tac x = "a div gcd a b" in exI)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
731  | 
apply (rule_tac x = "b div gcd a b" in exI)  | 
| 63489 | 732  | 
using assms  | 
733  | 
apply (auto intro: div_gcd_coprime)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
734  | 
done  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
735  | 
|
| 63489 | 736  | 
lemma coprime_exp: "gcd d a = 1 \<Longrightarrow> gcd d (a^n) = 1"  | 
737  | 
by (induct n) (simp_all add: coprime_mult)  | 
|
738  | 
||
739  | 
lemma coprime_exp_left: "coprime a b \<Longrightarrow> coprime (a ^ n) b"  | 
|
740  | 
by (induct n) (simp_all add: gcd_mult_cancel)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
741  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
742  | 
lemma coprime_exp2:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
743  | 
assumes "coprime a b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
744  | 
shows "coprime (a ^ n) (b ^ m)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
745  | 
proof (rule coprime_exp_left)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
746  | 
from assms show "coprime a (b ^ m)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
747  | 
by (induct m) (simp_all add: gcd_mult_cancel gcd.commute [of a])  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
748  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
749  | 
|
| 63489 | 750  | 
lemma gcd_exp: "gcd (a ^ n) (b ^ n) = gcd a b ^ n"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
751  | 
proof (cases "a = 0 \<and> b = 0")  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
752  | 
case True  | 
| 63489 | 753  | 
then show ?thesis  | 
754  | 
by (cases n) simp_all  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
755  | 
next  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
756  | 
case False  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
757  | 
then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
758  | 
using coprime_exp2[OF div_gcd_coprime[of a b], of n n, symmetric] by simp  | 
| 63489 | 759  | 
then have "gcd a b ^ n = gcd a b ^ n * \<dots>"  | 
760  | 
by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
761  | 
also note gcd_mult_distrib  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
762  | 
also have "unit_factor (gcd a b ^ n) = 1"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
763  | 
using False by (auto simp add: unit_factor_power unit_factor_gcd)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
764  | 
also have "(gcd a b)^n * (a div gcd a b)^n = a^n"  | 
| 63489 | 765  | 
apply (subst ac_simps)  | 
766  | 
apply (subst div_power)  | 
|
767  | 
apply simp  | 
|
768  | 
apply (rule dvd_div_mult_self)  | 
|
769  | 
apply (rule dvd_power_same)  | 
|
770  | 
apply simp  | 
|
771  | 
done  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
772  | 
also have "(gcd a b)^n * (b div gcd a b)^n = b^n"  | 
| 63489 | 773  | 
apply (subst ac_simps)  | 
774  | 
apply (subst div_power)  | 
|
775  | 
apply simp  | 
|
776  | 
apply (rule dvd_div_mult_self)  | 
|
777  | 
apply (rule dvd_power_same)  | 
|
778  | 
apply simp  | 
|
779  | 
done  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
780  | 
finally show ?thesis by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
781  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
782  | 
|
| 63489 | 783  | 
lemma coprime_common_divisor: "gcd a b = 1 \<Longrightarrow> a dvd a \<Longrightarrow> a dvd b \<Longrightarrow> is_unit a"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
784  | 
apply (subgoal_tac "a dvd gcd a b")  | 
| 63489 | 785  | 
apply simp  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
786  | 
apply (erule (1) gcd_greatest)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
787  | 
done  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
788  | 
|
| 63489 | 789  | 
lemma division_decomp:  | 
790  | 
assumes "a dvd b * c"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
791  | 
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
792  | 
proof (cases "gcd a b = 0")  | 
| 63489 | 793  | 
case True  | 
794  | 
then have "a = 0 \<and> b = 0"  | 
|
795  | 
by simp  | 
|
796  | 
then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c"  | 
|
797  | 
by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
798  | 
then show ?thesis by blast  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
799  | 
next  | 
| 63489 | 800  | 
case False  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
801  | 
let ?d = "gcd a b"  | 
| 63489 | 802  | 
from gcd_coprime_exists [OF False]  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
803  | 
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
804  | 
by blast  | 
| 63489 | 805  | 
from ab'(1) have "a' dvd a"  | 
806  | 
unfolding dvd_def by blast  | 
|
807  | 
with assms have "a' dvd b * c"  | 
|
808  | 
using dvd_trans[of a' a "b*c"] by simp  | 
|
809  | 
from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c"  | 
|
810  | 
by simp  | 
|
811  | 
then have "?d * a' dvd ?d * (b' * c)"  | 
|
812  | 
by (simp add: mult_ac)  | 
|
813  | 
with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c"  | 
|
814  | 
by simp  | 
|
815  | 
with coprime_dvd_mult[OF ab'(3)] have "a' dvd c"  | 
|
816  | 
by (subst (asm) ac_simps) blast  | 
|
817  | 
with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c"  | 
|
818  | 
by (simp add: mult_ac)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
819  | 
then show ?thesis by blast  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
820  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
821  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
822  | 
lemma pow_divs_pow:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
823  | 
assumes ab: "a ^ n dvd b ^ n" and n: "n \<noteq> 0"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
824  | 
shows "a dvd b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
825  | 
proof (cases "gcd a b = 0")  | 
| 63489 | 826  | 
case True  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
827  | 
then show ?thesis by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
828  | 
next  | 
| 63489 | 829  | 
case False  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
830  | 
let ?d = "gcd a b"  | 
| 63489 | 831  | 
from n obtain m where m: "n = Suc m"  | 
832  | 
by (cases n) simp_all  | 
|
833  | 
from False have zn: "?d ^ n \<noteq> 0"  | 
|
834  | 
by (rule power_not_zero)  | 
|
835  | 
from gcd_coprime_exists [OF False]  | 
|
836  | 
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
837  | 
by blast  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
838  | 
from ab have "(a' * ?d) ^ n dvd (b' * ?d) ^ n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
839  | 
by (simp add: ab'(1,2)[symmetric])  | 
| 63489 | 840  | 
then have "?d^n * a'^n dvd ?d^n * b'^n"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
841  | 
by (simp only: power_mult_distrib ac_simps)  | 
| 63489 | 842  | 
with zn have "a'^n dvd b'^n"  | 
843  | 
by simp  | 
|
844  | 
then have "a' dvd b'^n"  | 
|
845  | 
using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m)  | 
|
846  | 
then have "a' dvd b'^m * b'"  | 
|
847  | 
by (simp add: m ac_simps)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
848  | 
with coprime_dvd_mult[OF coprime_exp[OF ab'(3), of m]]  | 
| 63489 | 849  | 
have "a' dvd b'" by (subst (asm) ac_simps) blast  | 
850  | 
then have "a' * ?d dvd b' * ?d"  | 
|
851  | 
by (rule mult_dvd_mono) simp  | 
|
852  | 
with ab'(1,2) show ?thesis  | 
|
853  | 
by simp  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
854  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
855  | 
|
| 63489 | 856  | 
lemma pow_divs_eq [simp]: "n \<noteq> 0 \<Longrightarrow> a ^ n dvd b ^ n \<longleftrightarrow> a dvd b"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
857  | 
by (auto intro: pow_divs_pow dvd_power_same)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
858  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
859  | 
lemma coprime_plus_one [simp]: "gcd (n + 1) n = 1"  | 
| 63489 | 860  | 
by (subst add_commute) simp  | 
861  | 
||
862  | 
lemma setprod_coprime [rule_format]: "(\<forall>i\<in>A. gcd (f i) a = 1) \<longrightarrow> gcd (\<Prod>i\<in>A. f i) a = 1"  | 
|
| 63915 | 863  | 
by (induct A rule: infinite_finite_induct) (auto simp add: gcd_mult_cancel)  | 
| 63489 | 864  | 
|
| 
63882
 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 
nipkow 
parents: 
63489 
diff
changeset
 | 
865  | 
lemma prod_list_coprime: "(\<And>x. x \<in> set xs \<Longrightarrow> coprime x y) \<Longrightarrow> coprime (prod_list xs) y"  | 
| 63489 | 866  | 
by (induct xs) (simp_all add: gcd_mult_cancel)  | 
867  | 
||
868  | 
lemma coprime_divisors:  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
869  | 
assumes "d dvd a" "e dvd b" "gcd a b = 1"  | 
| 63489 | 870  | 
shows "gcd d e = 1"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
871  | 
proof -  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
872  | 
from assms obtain k l where "a = d * k" "b = e * l"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
873  | 
unfolding dvd_def by blast  | 
| 63489 | 874  | 
with assms have "gcd (d * k) (e * l) = 1"  | 
875  | 
by simp  | 
|
876  | 
then have "gcd (d * k) e = 1"  | 
|
877  | 
by (rule coprime_lmult)  | 
|
878  | 
also have "gcd (d * k) e = gcd e (d * k)"  | 
|
879  | 
by (simp add: ac_simps)  | 
|
880  | 
finally have "gcd e d = 1"  | 
|
881  | 
by (rule coprime_lmult)  | 
|
882  | 
then show ?thesis  | 
|
883  | 
by (simp add: ac_simps)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
884  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
885  | 
|
| 63489 | 886  | 
lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
887  | 
by (simp add: lcm_gcd)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
888  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
889  | 
declare unit_factor_lcm [simp]  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
890  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
891  | 
lemma lcmI:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
892  | 
assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
893  | 
and "normalize c = c"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
894  | 
shows "c = lcm a b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
895  | 
by (rule associated_eqI) (auto simp: assms intro: lcm_least)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
896  | 
|
| 63489 | 897  | 
lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
898  | 
using gcd_dvd2 by (rule dvd_lcmI2)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
899  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
900  | 
lemmas lcm_0 = lcm_0_right  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
901  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
902  | 
lemma lcm_unique:  | 
| 63489 | 903  | 
"a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
904  | 
by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
905  | 
|
| 63489 | 906  | 
lemma lcm_coprime: "gcd a b = 1 \<Longrightarrow> lcm a b = normalize (a * b)"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
907  | 
by (subst lcm_gcd) simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
908  | 
|
| 63489 | 909  | 
lemma lcm_proj1_if_dvd: "b dvd a \<Longrightarrow> lcm a b = normalize a"  | 
910  | 
apply (cases "a = 0")  | 
|
911  | 
apply simp  | 
|
912  | 
apply (rule sym)  | 
|
913  | 
apply (rule lcmI)  | 
|
914  | 
apply simp_all  | 
|
915  | 
done  | 
|
916  | 
||
917  | 
lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
918  | 
using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
919  | 
|
| 63489 | 920  | 
lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
921  | 
proof  | 
| 63489 | 922  | 
assume *: "lcm m n = normalize m"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
923  | 
show "n dvd m"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
924  | 
proof (cases "m = 0")  | 
| 63489 | 925  | 
case True  | 
926  | 
then show ?thesis by simp  | 
|
927  | 
next  | 
|
928  | 
case [simp]: False  | 
|
929  | 
from * have **: "m = lcm m n * unit_factor m"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
930  | 
by (simp add: unit_eq_div2)  | 
| 63489 | 931  | 
show ?thesis by (subst **) simp  | 
932  | 
qed  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
933  | 
next  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
934  | 
assume "n dvd m"  | 
| 63489 | 935  | 
then show "lcm m n = normalize m"  | 
936  | 
by (rule lcm_proj1_if_dvd)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
937  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
938  | 
|
| 63489 | 939  | 
lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
940  | 
using lcm_proj1_iff [of n m] by (simp add: ac_simps)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
941  | 
|
| 63924 | 942  | 
lemma dvd_productE:  | 
943  | 
assumes "p dvd (a * b)"  | 
|
944  | 
obtains x y where "p = x * y" "x dvd a" "y dvd b"  | 
|
945  | 
proof (cases "a = 0")  | 
|
946  | 
case True  | 
|
947  | 
thus ?thesis by (intro that[of p 1]) simp_all  | 
|
948  | 
next  | 
|
949  | 
case False  | 
|
950  | 
define x y where "x = gcd a p" and "y = p div x"  | 
|
951  | 
have "p = x * y" by (simp add: x_def y_def)  | 
|
952  | 
moreover have "x dvd a" by (simp add: x_def)  | 
|
953  | 
moreover from assms have "p dvd gcd (b * a) (b * p)"  | 
|
954  | 
by (intro gcd_greatest) (simp_all add: mult.commute)  | 
|
955  | 
hence "p dvd b * gcd a p" by (simp add: gcd_mult_distrib)  | 
|
956  | 
with False have "y dvd b"  | 
|
957  | 
by (simp add: x_def y_def div_dvd_iff_mult assms)  | 
|
958  | 
ultimately show ?thesis by (rule that)  | 
|
959  | 
qed  | 
|
960  | 
||
| 60686 | 961  | 
end  | 
962  | 
||
| 62345 | 963  | 
class ring_gcd = comm_ring_1 + semiring_gcd  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
964  | 
begin  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
965  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
966  | 
lemma coprime_minus_one: "coprime (n - 1) n"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
967  | 
using coprime_plus_one[of "n - 1"] by (simp add: gcd.commute)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
968  | 
|
| 63489 | 969  | 
lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b"  | 
970  | 
by (rule sym, rule gcdI) (simp_all add: gcd_greatest)  | 
|
971  | 
||
972  | 
lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b"  | 
|
973  | 
by (rule sym, rule gcdI) (simp_all add: gcd_greatest)  | 
|
974  | 
||
975  | 
lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
976  | 
by (fact gcd_neg1)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
977  | 
|
| 63489 | 978  | 
lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
979  | 
by (fact gcd_neg2)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
980  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
981  | 
lemma gcd_diff1: "gcd (m - n) n = gcd m n"  | 
| 63489 | 982  | 
by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp)  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
983  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
984  | 
lemma gcd_diff2: "gcd (n - m) n = gcd m n"  | 
| 63489 | 985  | 
by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1)  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
986  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
987  | 
lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b"  | 
| 63489 | 988  | 
by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff)  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
989  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
990  | 
lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b"  | 
| 63489 | 991  | 
by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff)  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
992  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
993  | 
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
994  | 
by (fact lcm_neg1)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
995  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
996  | 
lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
997  | 
by (fact lcm_neg2)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
998  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
999  | 
end  | 
| 62345 | 1000  | 
|
| 60686 | 1001  | 
class semiring_Gcd = semiring_gcd + Gcd +  | 
1002  | 
assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a"  | 
|
1003  | 
and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A"  | 
|
1004  | 
and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A"  | 
|
| 62345 | 1005  | 
assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A"  | 
1006  | 
and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a"  | 
|
1007  | 
and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A"  | 
|
| 60686 | 1008  | 
begin  | 
1009  | 
||
| 63489 | 1010  | 
lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}"
 | 
| 62345 | 1011  | 
by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least)  | 
1012  | 
||
| 63489 | 1013  | 
lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}"
 | 
| 62345 | 1014  | 
by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least)  | 
1015  | 
||
| 63489 | 1016  | 
lemma Gcd_empty [simp]: "Gcd {} = 0"
 | 
| 60686 | 1017  | 
by (rule dvd_0_left, rule Gcd_greatest) simp  | 
1018  | 
||
| 63489 | 1019  | 
lemma Lcm_empty [simp]: "Lcm {} = 1"
 | 
| 62345 | 1020  | 
by (auto intro: associated_eqI Lcm_least)  | 
1021  | 
||
| 63489 | 1022  | 
lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)"  | 
| 62345 | 1023  | 
proof -  | 
1024  | 
have "Gcd (insert a A) dvd gcd a (Gcd A)"  | 
|
1025  | 
by (auto intro: Gcd_dvd Gcd_greatest)  | 
|
1026  | 
moreover have "gcd a (Gcd A) dvd Gcd (insert a A)"  | 
|
1027  | 
proof (rule Gcd_greatest)  | 
|
1028  | 
fix b  | 
|
1029  | 
assume "b \<in> insert a A"  | 
|
1030  | 
then show "gcd a (Gcd A) dvd b"  | 
|
1031  | 
proof  | 
|
| 63489 | 1032  | 
assume "b = a"  | 
1033  | 
then show ?thesis  | 
|
1034  | 
by simp  | 
|
| 62345 | 1035  | 
next  | 
1036  | 
assume "b \<in> A"  | 
|
| 63489 | 1037  | 
then have "Gcd A dvd b"  | 
1038  | 
by (rule Gcd_dvd)  | 
|
1039  | 
moreover have "gcd a (Gcd A) dvd Gcd A"  | 
|
1040  | 
by simp  | 
|
1041  | 
ultimately show ?thesis  | 
|
1042  | 
by (blast intro: dvd_trans)  | 
|
| 62345 | 1043  | 
qed  | 
1044  | 
qed  | 
|
1045  | 
ultimately show ?thesis  | 
|
1046  | 
by (auto intro: associated_eqI)  | 
|
1047  | 
qed  | 
|
1048  | 
||
| 63489 | 1049  | 
lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)"  | 
| 62345 | 1050  | 
proof (rule sym)  | 
1051  | 
have "lcm a (Lcm A) dvd Lcm (insert a A)"  | 
|
1052  | 
by (auto intro: dvd_Lcm Lcm_least)  | 
|
1053  | 
moreover have "Lcm (insert a A) dvd lcm a (Lcm A)"  | 
|
1054  | 
proof (rule Lcm_least)  | 
|
1055  | 
fix b  | 
|
1056  | 
assume "b \<in> insert a A"  | 
|
1057  | 
then show "b dvd lcm a (Lcm A)"  | 
|
1058  | 
proof  | 
|
| 63489 | 1059  | 
assume "b = a"  | 
1060  | 
then show ?thesis by simp  | 
|
| 62345 | 1061  | 
next  | 
1062  | 
assume "b \<in> A"  | 
|
| 63489 | 1063  | 
then have "b dvd Lcm A"  | 
1064  | 
by (rule dvd_Lcm)  | 
|
1065  | 
moreover have "Lcm A dvd lcm a (Lcm A)"  | 
|
1066  | 
by simp  | 
|
1067  | 
ultimately show ?thesis  | 
|
1068  | 
by (blast intro: dvd_trans)  | 
|
| 62345 | 1069  | 
qed  | 
1070  | 
qed  | 
|
1071  | 
ultimately show "lcm a (Lcm A) = Lcm (insert a A)"  | 
|
1072  | 
by (rule associated_eqI) (simp_all add: lcm_eq_0_iff)  | 
|
1073  | 
qed  | 
|
1074  | 
||
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1075  | 
lemma LcmI:  | 
| 63489 | 1076  | 
assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b"  | 
1077  | 
and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c"  | 
|
1078  | 
and "normalize b = b"  | 
|
1079  | 
shows "b = Lcm A"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1080  | 
by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1081  | 
|
| 63489 | 1082  | 
lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1083  | 
by (blast intro: Lcm_least dvd_Lcm)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1084  | 
|
| 63489 | 1085  | 
lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1086  | 
apply (rule lcmI)  | 
| 63489 | 1087  | 
apply (blast intro: Lcm_subset)  | 
1088  | 
apply (blast intro: Lcm_subset)  | 
|
1089  | 
apply (intro Lcm_least ballI, elim UnE)  | 
|
1090  | 
apply (rule dvd_trans, erule dvd_Lcm, assumption)  | 
|
1091  | 
apply (rule dvd_trans, erule dvd_Lcm, assumption)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1092  | 
apply simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1093  | 
done  | 
| 63489 | 1094  | 
|
1095  | 
lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
 | 
|
1096  | 
(is "?P \<longleftrightarrow> ?Q")  | 
|
| 60686 | 1097  | 
proof  | 
1098  | 
assume ?P  | 
|
1099  | 
show ?Q  | 
|
1100  | 
proof  | 
|
1101  | 
fix a  | 
|
1102  | 
assume "a \<in> A"  | 
|
| 63489 | 1103  | 
then have "Gcd A dvd a"  | 
1104  | 
by (rule Gcd_dvd)  | 
|
1105  | 
with \<open>?P\<close> have "a = 0"  | 
|
1106  | 
by simp  | 
|
1107  | 
    then show "a \<in> {0}"
 | 
|
1108  | 
by simp  | 
|
| 60686 | 1109  | 
qed  | 
1110  | 
next  | 
|
1111  | 
assume ?Q  | 
|
1112  | 
have "0 dvd Gcd A"  | 
|
1113  | 
proof (rule Gcd_greatest)  | 
|
1114  | 
fix a  | 
|
1115  | 
assume "a \<in> A"  | 
|
| 63489 | 1116  | 
with \<open>?Q\<close> have "a = 0"  | 
1117  | 
by auto  | 
|
1118  | 
then show "0 dvd a"  | 
|
1119  | 
by simp  | 
|
| 60686 | 1120  | 
qed  | 
| 63489 | 1121  | 
then show ?P  | 
1122  | 
by simp  | 
|
| 60686 | 1123  | 
qed  | 
1124  | 
||
| 63489 | 1125  | 
lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)"  | 
1126  | 
(is "?P \<longleftrightarrow> ?Q")  | 
|
| 60686 | 1127  | 
proof  | 
1128  | 
assume ?P  | 
|
1129  | 
show ?Q  | 
|
1130  | 
proof  | 
|
1131  | 
fix a  | 
|
1132  | 
assume "a \<in> A"  | 
|
1133  | 
then have "a dvd Lcm A"  | 
|
1134  | 
by (rule dvd_Lcm)  | 
|
1135  | 
with \<open>?P\<close> show "is_unit a"  | 
|
1136  | 
by simp  | 
|
1137  | 
qed  | 
|
1138  | 
next  | 
|
1139  | 
assume ?Q  | 
|
1140  | 
then have "is_unit (Lcm A)"  | 
|
1141  | 
by (blast intro: Lcm_least)  | 
|
1142  | 
then have "normalize (Lcm A) = 1"  | 
|
1143  | 
by (rule is_unit_normalize)  | 
|
1144  | 
then show ?P  | 
|
1145  | 
by simp  | 
|
1146  | 
qed  | 
|
1147  | 
||
| 63489 | 1148  | 
lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)"  | 
| 62345 | 1149  | 
proof (cases "Lcm A = 0")  | 
| 63489 | 1150  | 
case True  | 
1151  | 
then show ?thesis  | 
|
1152  | 
by simp  | 
|
| 62345 | 1153  | 
next  | 
1154  | 
case False  | 
|
1155  | 
with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1"  | 
|
1156  | 
by blast  | 
|
1157  | 
with False show ?thesis  | 
|
1158  | 
by simp  | 
|
1159  | 
qed  | 
|
1160  | 
||
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1161  | 
lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)"  | 
| 63489 | 1162  | 
by (simp add: Gcd_Lcm unit_factor_Lcm)  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1163  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1164  | 
lemma GcdI:  | 
| 63489 | 1165  | 
assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a"  | 
1166  | 
and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1167  | 
and "normalize b = b"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1168  | 
shows "b = Gcd A"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1169  | 
by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1170  | 
|
| 62345 | 1171  | 
lemma Gcd_eq_1_I:  | 
1172  | 
assumes "is_unit a" and "a \<in> A"  | 
|
1173  | 
shows "Gcd A = 1"  | 
|
1174  | 
proof -  | 
|
1175  | 
from assms have "is_unit (Gcd A)"  | 
|
1176  | 
by (blast intro: Gcd_dvd dvd_unit_imp_unit)  | 
|
1177  | 
then have "normalize (Gcd A) = 1"  | 
|
1178  | 
by (rule is_unit_normalize)  | 
|
1179  | 
then show ?thesis  | 
|
1180  | 
by simp  | 
|
1181  | 
qed  | 
|
1182  | 
||
| 60686 | 1183  | 
lemma Lcm_eq_0_I:  | 
1184  | 
assumes "0 \<in> A"  | 
|
1185  | 
shows "Lcm A = 0"  | 
|
1186  | 
proof -  | 
|
1187  | 
from assms have "0 dvd Lcm A"  | 
|
1188  | 
by (rule dvd_Lcm)  | 
|
1189  | 
then show ?thesis  | 
|
1190  | 
by simp  | 
|
1191  | 
qed  | 
|
1192  | 
||
| 63489 | 1193  | 
lemma Gcd_UNIV [simp]: "Gcd UNIV = 1"  | 
| 62345 | 1194  | 
using dvd_refl by (rule Gcd_eq_1_I) simp  | 
1195  | 
||
| 63489 | 1196  | 
lemma Lcm_UNIV [simp]: "Lcm UNIV = 0"  | 
| 61929 | 1197  | 
by (rule Lcm_eq_0_I) simp  | 
| 60686 | 1198  | 
|
| 61929 | 1199  | 
lemma Lcm_0_iff:  | 
1200  | 
assumes "finite A"  | 
|
1201  | 
shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A"  | 
|
1202  | 
proof (cases "A = {}")
 | 
|
| 63489 | 1203  | 
case True  | 
1204  | 
then show ?thesis by simp  | 
|
| 61929 | 1205  | 
next  | 
| 63489 | 1206  | 
case False  | 
1207  | 
with assms show ?thesis  | 
|
1208  | 
by (induct A rule: finite_ne_induct) (auto simp add: lcm_eq_0_iff)  | 
|
| 60686 | 1209  | 
qed  | 
| 61929 | 1210  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1211  | 
lemma Gcd_finite:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1212  | 
assumes "finite A"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1213  | 
shows "Gcd A = Finite_Set.fold gcd 0 A"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1214  | 
by (induct rule: finite.induct[OF \<open>finite A\<close>])  | 
| 63489 | 1215  | 
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_gcd])  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1216  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1217  | 
lemma Gcd_set [code_unfold]: "Gcd (set as) = foldl gcd 0 as"  | 
| 63489 | 1218  | 
by (simp add: Gcd_finite comp_fun_idem.fold_set_fold[OF comp_fun_idem_gcd]  | 
1219  | 
foldl_conv_fold gcd.commute)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1220  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1221  | 
lemma Lcm_finite:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1222  | 
assumes "finite A"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1223  | 
shows "Lcm A = Finite_Set.fold lcm 1 A"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1224  | 
by (induct rule: finite.induct[OF \<open>finite A\<close>])  | 
| 63489 | 1225  | 
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_lcm])  | 
1226  | 
||
1227  | 
lemma Lcm_set [code_unfold]: "Lcm (set as) = foldl lcm 1 as"  | 
|
1228  | 
by (simp add: Lcm_finite comp_fun_idem.fold_set_fold[OF comp_fun_idem_lcm]  | 
|
1229  | 
foldl_conv_fold lcm.commute)  | 
|
1230  | 
||
1231  | 
lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A"  | 
|
| 62345 | 1232  | 
proof -  | 
1233  | 
have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a  | 
|
1234  | 
proof -  | 
|
| 63489 | 1235  | 
from that obtain B where "A = insert a B"  | 
1236  | 
by blast  | 
|
| 62350 | 1237  | 
moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a"  | 
| 62345 | 1238  | 
by (rule gcd_dvd1)  | 
1239  | 
ultimately show "Gcd (normalize ` A) dvd a"  | 
|
1240  | 
by simp  | 
|
1241  | 
qed  | 
|
1242  | 
then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)"  | 
|
1243  | 
by (auto intro!: Gcd_greatest intro: Gcd_dvd)  | 
|
1244  | 
then show ?thesis  | 
|
1245  | 
by (auto intro: associated_eqI)  | 
|
1246  | 
qed  | 
|
1247  | 
||
| 62346 | 1248  | 
lemma Gcd_eqI:  | 
1249  | 
assumes "normalize a = a"  | 
|
1250  | 
assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b"  | 
|
1251  | 
and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a"  | 
|
1252  | 
shows "Gcd A = a"  | 
|
1253  | 
using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd)  | 
|
1254  | 
||
| 63489 | 1255  | 
lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y"  | 
1256  | 
using Gcd_dvd dvd_trans by blast  | 
|
1257  | 
||
1258  | 
lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)"  | 
|
| 63359 | 1259  | 
by (blast dest: dvd_GcdD intro: Gcd_greatest)  | 
1260  | 
||
1261  | 
lemma Gcd_mult: "Gcd (op * c ` A) = normalize c * Gcd A"  | 
|
1262  | 
proof (cases "c = 0")  | 
|
| 63489 | 1263  | 
case True  | 
1264  | 
then show ?thesis by auto  | 
|
1265  | 
next  | 
|
| 63359 | 1266  | 
case [simp]: False  | 
1267  | 
have "Gcd (op * c ` A) div c dvd Gcd A"  | 
|
1268  | 
by (intro Gcd_greatest, subst div_dvd_iff_mult)  | 
|
1269  | 
(auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c])  | 
|
| 63489 | 1270  | 
then have "Gcd (op * c ` A) dvd c * Gcd A"  | 
| 63359 | 1271  | 
by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac)  | 
1272  | 
also have "c * Gcd A = (normalize c * Gcd A) * unit_factor c"  | 
|
1273  | 
by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac)  | 
|
1274  | 
also have "Gcd (op * c ` A) dvd \<dots> \<longleftrightarrow> Gcd (op * c ` A) dvd normalize c * Gcd A"  | 
|
1275  | 
by (simp add: dvd_mult_unit_iff)  | 
|
1276  | 
finally have "Gcd (op * c ` A) dvd normalize c * Gcd A" .  | 
|
1277  | 
moreover have "normalize c * Gcd A dvd Gcd (op * c ` A)"  | 
|
1278  | 
by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd)  | 
|
1279  | 
ultimately have "normalize (Gcd (op * c ` A)) = normalize (normalize c * Gcd A)"  | 
|
1280  | 
by (rule associatedI)  | 
|
| 63489 | 1281  | 
then show ?thesis  | 
1282  | 
by (simp add: normalize_mult)  | 
|
1283  | 
qed  | 
|
| 63359 | 1284  | 
|
| 62346 | 1285  | 
lemma Lcm_eqI:  | 
1286  | 
assumes "normalize a = a"  | 
|
| 63489 | 1287  | 
and "\<And>b. b \<in> A \<Longrightarrow> b dvd a"  | 
| 62346 | 1288  | 
and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c"  | 
1289  | 
shows "Lcm A = a"  | 
|
1290  | 
using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm)  | 
|
1291  | 
||
| 63489 | 1292  | 
lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x"  | 
1293  | 
using dvd_Lcm dvd_trans by blast  | 
|
1294  | 
||
1295  | 
lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)"  | 
|
| 63359 | 1296  | 
by (blast dest: Lcm_dvdD intro: Lcm_least)  | 
1297  | 
||
| 63489 | 1298  | 
lemma Lcm_mult:  | 
| 63359 | 1299  | 
  assumes "A \<noteq> {}"
 | 
| 63489 | 1300  | 
shows "Lcm (op * c ` A) = normalize c * Lcm A"  | 
| 63359 | 1301  | 
proof (cases "c = 0")  | 
1302  | 
case True  | 
|
| 63489 | 1303  | 
  with assms have "op * c ` A = {0}"
 | 
1304  | 
by auto  | 
|
1305  | 
with True show ?thesis by auto  | 
|
| 63359 | 1306  | 
next  | 
1307  | 
case [simp]: False  | 
|
| 63489 | 1308  | 
from assms obtain x where x: "x \<in> A"  | 
1309  | 
by blast  | 
|
1310  | 
have "c dvd c * x"  | 
|
1311  | 
by simp  | 
|
1312  | 
also from x have "c * x dvd Lcm (op * c ` A)"  | 
|
1313  | 
by (intro dvd_Lcm) auto  | 
|
| 63359 | 1314  | 
finally have dvd: "c dvd Lcm (op * c ` A)" .  | 
1315  | 
||
1316  | 
have "Lcm A dvd Lcm (op * c ` A) div c"  | 
|
1317  | 
by (intro Lcm_least dvd_mult_imp_div)  | 
|
| 63489 | 1318  | 
(auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c])  | 
1319  | 
then have "c * Lcm A dvd Lcm (op * c ` A)"  | 
|
| 63359 | 1320  | 
by (subst (asm) dvd_div_iff_mult) (auto intro!: Lcm_least simp: mult_ac dvd)  | 
1321  | 
also have "c * Lcm A = (normalize c * Lcm A) * unit_factor c"  | 
|
1322  | 
by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac)  | 
|
1323  | 
also have "\<dots> dvd Lcm (op * c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (op * c ` A)"  | 
|
1324  | 
by (simp add: mult_unit_dvd_iff)  | 
|
1325  | 
finally have "normalize c * Lcm A dvd Lcm (op * c ` A)" .  | 
|
1326  | 
moreover have "Lcm (op * c ` A) dvd normalize c * Lcm A"  | 
|
1327  | 
by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm)  | 
|
1328  | 
ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (op * c ` A))"  | 
|
1329  | 
by (rule associatedI)  | 
|
| 63489 | 1330  | 
then show ?thesis  | 
1331  | 
by (simp add: normalize_mult)  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1332  | 
qed  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1333  | 
|
| 63489 | 1334  | 
lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})"
 | 
1335  | 
proof -  | 
|
1336  | 
  have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A"
 | 
|
1337  | 
by blast  | 
|
1338  | 
  then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
 | 
|
1339  | 
by (simp add: Lcm_Un [symmetric])  | 
|
1340  | 
  also have "Lcm {a\<in>A. is_unit a} = 1"
 | 
|
1341  | 
by simp  | 
|
1342  | 
finally show ?thesis  | 
|
1343  | 
by simp  | 
|
1344  | 
qed  | 
|
1345  | 
||
1346  | 
lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1347  | 
by (metis Lcm_least dvd_0_left dvd_Lcm)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1348  | 
|
| 63489 | 1349  | 
lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1350  | 
by (auto simp: Lcm_0_iff')  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1351  | 
|
| 63489 | 1352  | 
lemma Lcm_singleton [simp]: "Lcm {a} = normalize a"
 | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1353  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1354  | 
|
| 63489 | 1355  | 
lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b"
 | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1356  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1357  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1358  | 
lemma Lcm_coprime:  | 
| 63489 | 1359  | 
assumes "finite A"  | 
1360  | 
    and "A \<noteq> {}"
 | 
|
1361  | 
and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1362  | 
shows "Lcm A = normalize (\<Prod>A)"  | 
| 63489 | 1363  | 
using assms  | 
1364  | 
proof (induct rule: finite_ne_induct)  | 
|
1365  | 
case singleton  | 
|
1366  | 
then show ?case by simp  | 
|
1367  | 
next  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1368  | 
case (insert a A)  | 
| 63489 | 1369  | 
have "Lcm (insert a A) = lcm a (Lcm A)"  | 
1370  | 
by simp  | 
|
1371  | 
also from insert have "Lcm A = normalize (\<Prod>A)"  | 
|
1372  | 
by blast  | 
|
1373  | 
also have "lcm a \<dots> = lcm a (\<Prod>A)"  | 
|
1374  | 
by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2)  | 
|
1375  | 
also from insert have "gcd a (\<Prod>A) = 1"  | 
|
1376  | 
by (subst gcd.commute, intro setprod_coprime) auto  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1377  | 
with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1378  | 
by (simp add: lcm_coprime)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1379  | 
finally show ?case .  | 
| 63489 | 1380  | 
qed  | 
1381  | 
||
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1382  | 
lemma Lcm_coprime':  | 
| 63489 | 1383  | 
"card A \<noteq> 0 \<Longrightarrow>  | 
1384  | 
(\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1) \<Longrightarrow>  | 
|
1385  | 
Lcm A = normalize (\<Prod>A)"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1386  | 
by (rule Lcm_coprime) (simp_all add: card_eq_0_iff)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1387  | 
|
| 63489 | 1388  | 
lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1389  | 
by (auto intro!: Gcd_eq_1_I)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1390  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1391  | 
lemma Gcd_singleton [simp]: "Gcd {a} = normalize a"
 | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1392  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1393  | 
|
| 63489 | 1394  | 
lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b"
 | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1395  | 
by simp  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1396  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1397  | 
|
| 63489 | 1398  | 
definition pairwise_coprime  | 
1399  | 
where "pairwise_coprime A = (\<forall>x y. x \<in> A \<and> y \<in> A \<and> x \<noteq> y \<longrightarrow> coprime x y)"  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1400  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1401  | 
lemma pairwise_coprimeI [intro?]:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1402  | 
"(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> coprime x y) \<Longrightarrow> pairwise_coprime A"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1403  | 
by (simp add: pairwise_coprime_def)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1404  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1405  | 
lemma pairwise_coprimeD:  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1406  | 
"pairwise_coprime A \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> coprime x y"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1407  | 
by (simp add: pairwise_coprime_def)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1408  | 
|
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1409  | 
lemma pairwise_coprime_subset: "pairwise_coprime A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> pairwise_coprime B"  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1410  | 
by (force simp: pairwise_coprime_def)  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1411  | 
|
| 62350 | 1412  | 
end  | 
| 62345 | 1413  | 
|
| 63489 | 1414  | 
|
| 62345 | 1415  | 
subsection \<open>GCD and LCM on @{typ nat} and @{typ int}\<close>
 | 
| 59008 | 1416  | 
|
| 31706 | 1417  | 
instantiation nat :: gcd  | 
1418  | 
begin  | 
|
| 21256 | 1419  | 
|
| 62345 | 1420  | 
fun gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"  | 
| 63489 | 1421  | 
where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))"  | 
| 31706 | 1422  | 
|
| 62345 | 1423  | 
definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"  | 
| 63489 | 1424  | 
where "lcm_nat x y = x * y div (gcd x y)"  | 
1425  | 
||
1426  | 
instance ..  | 
|
| 31706 | 1427  | 
|
1428  | 
end  | 
|
1429  | 
||
1430  | 
instantiation int :: gcd  | 
|
1431  | 
begin  | 
|
| 21256 | 1432  | 
|
| 62345 | 1433  | 
definition gcd_int :: "int \<Rightarrow> int \<Rightarrow> int"  | 
1434  | 
where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))"  | 
|
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1435  | 
|
| 62345 | 1436  | 
definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int"  | 
1437  | 
where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))"  | 
|
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1438  | 
|
| 61944 | 1439  | 
instance ..  | 
| 31706 | 1440  | 
|
1441  | 
end  | 
|
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1442  | 
|
| 62345 | 1443  | 
text \<open>Transfer setup\<close>  | 
| 31706 | 1444  | 
|
1445  | 
lemma transfer_nat_int_gcd:  | 
|
| 63489 | 1446  | 
"x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)"  | 
1447  | 
"x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)"  | 
|
1448  | 
for x y :: int  | 
|
1449  | 
unfolding gcd_int_def lcm_int_def by auto  | 
|
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1450  | 
|
| 31706 | 1451  | 
lemma transfer_nat_int_gcd_closures:  | 
| 63489 | 1452  | 
"x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> gcd x y \<ge> 0"  | 
1453  | 
"x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> lcm x y \<ge> 0"  | 
|
1454  | 
for x y :: int  | 
|
| 31706 | 1455  | 
by (auto simp add: gcd_int_def lcm_int_def)  | 
1456  | 
||
| 63489 | 1457  | 
declare transfer_morphism_nat_int  | 
1458  | 
[transfer add return: transfer_nat_int_gcd transfer_nat_int_gcd_closures]  | 
|
| 31706 | 1459  | 
|
1460  | 
lemma transfer_int_nat_gcd:  | 
|
1461  | 
"gcd (int x) (int y) = int (gcd x y)"  | 
|
1462  | 
"lcm (int x) (int y) = int (lcm x y)"  | 
|
| 63489 | 1463  | 
by (auto simp: gcd_int_def lcm_int_def)  | 
| 31706 | 1464  | 
|
1465  | 
lemma transfer_int_nat_gcd_closures:  | 
|
1466  | 
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0"  | 
|
1467  | 
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0"  | 
|
| 63489 | 1468  | 
by (auto simp: gcd_int_def lcm_int_def)  | 
1469  | 
||
1470  | 
declare transfer_morphism_int_nat  | 
|
1471  | 
[transfer add return: transfer_int_nat_gcd transfer_int_nat_gcd_closures]  | 
|
| 31706 | 1472  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1473  | 
lemma gcd_nat_induct:  | 
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1474  | 
fixes m n :: nat  | 
| 
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1475  | 
assumes "\<And>m. P m 0"  | 
| 
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1476  | 
and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"  | 
| 
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1477  | 
shows "P m n"  | 
| 31706 | 1478  | 
apply (rule gcd_nat.induct)  | 
1479  | 
apply (case_tac "y = 0")  | 
|
| 63489 | 1480  | 
using assms  | 
1481  | 
apply simp_all  | 
|
1482  | 
done  | 
|
1483  | 
||
1484  | 
||
1485  | 
text \<open>Specific to \<open>int\<close>.\<close>  | 
|
1486  | 
||
1487  | 
lemma gcd_eq_int_iff: "gcd k l = int n \<longleftrightarrow> gcd (nat \<bar>k\<bar>) (nat \<bar>l\<bar>) = n"  | 
|
| 62346 | 1488  | 
by (simp add: gcd_int_def)  | 
1489  | 
||
| 63489 | 1490  | 
lemma lcm_eq_int_iff: "lcm k l = int n \<longleftrightarrow> lcm (nat \<bar>k\<bar>) (nat \<bar>l\<bar>) = n"  | 
| 62346 | 1491  | 
by (simp add: lcm_int_def)  | 
1492  | 
||
| 63489 | 1493  | 
lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y"  | 
1494  | 
for x y :: int  | 
|
| 31706 | 1495  | 
by (simp add: gcd_int_def)  | 
1496  | 
||
| 63489 | 1497  | 
lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y"  | 
1498  | 
for x y :: int  | 
|
1499  | 
by (simp add: gcd_int_def)  | 
|
1500  | 
||
1501  | 
lemma abs_gcd_int [simp]: "\<bar>gcd x y\<bar> = gcd x y"  | 
|
1502  | 
for x y :: int  | 
|
| 31706 | 1503  | 
by (simp add: gcd_int_def)  | 
1504  | 
||
| 63489 | 1505  | 
lemma gcd_abs_int: "gcd x y = gcd \<bar>x\<bar> \<bar>y\<bar>"  | 
1506  | 
for x y :: int  | 
|
1507  | 
by (simp add: gcd_int_def)  | 
|
1508  | 
||
1509  | 
lemma gcd_abs1_int [simp]: "gcd \<bar>x\<bar> y = gcd x y"  | 
|
1510  | 
for x y :: int  | 
|
1511  | 
by (metis abs_idempotent gcd_abs_int)  | 
|
1512  | 
||
1513  | 
lemma gcd_abs2_int [simp]: "gcd x \<bar>y\<bar> = gcd x y"  | 
|
1514  | 
for x y :: int  | 
|
1515  | 
by (metis abs_idempotent gcd_abs_int)  | 
|
| 31706 | 1516  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1517  | 
lemma gcd_cases_int:  | 
| 63489 | 1518  | 
fixes x y :: int  | 
1519  | 
assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)"  | 
|
1520  | 
and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))"  | 
|
1521  | 
and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)"  | 
|
1522  | 
and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))"  | 
|
| 31706 | 1523  | 
shows "P (gcd x y)"  | 
| 63489 | 1524  | 
using assms by auto arith  | 
| 21256 | 1525  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1526  | 
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0"  | 
| 63489 | 1527  | 
for x y :: int  | 
| 31706 | 1528  | 
by (simp add: gcd_int_def)  | 
1529  | 
||
| 63489 | 1530  | 
lemma lcm_neg1_int: "lcm (- x) y = lcm x y"  | 
1531  | 
for x y :: int  | 
|
| 31706 | 1532  | 
by (simp add: lcm_int_def)  | 
1533  | 
||
| 63489 | 1534  | 
lemma lcm_neg2_int: "lcm x (- y) = lcm x y"  | 
1535  | 
for x y :: int  | 
|
| 31706 | 1536  | 
by (simp add: lcm_int_def)  | 
1537  | 
||
| 63489 | 1538  | 
lemma lcm_abs_int: "lcm x y = lcm \<bar>x\<bar> \<bar>y\<bar>"  | 
1539  | 
for x y :: int  | 
|
| 31706 | 1540  | 
by (simp add: lcm_int_def)  | 
| 21256 | 1541  | 
|
| 63489 | 1542  | 
lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j"  | 
1543  | 
for i j :: int  | 
|
| 61944 | 1544  | 
by (simp add:lcm_int_def)  | 
| 31814 | 1545  | 
|
| 63489 | 1546  | 
lemma lcm_abs1_int [simp]: "lcm \<bar>x\<bar> y = lcm x y"  | 
1547  | 
for x y :: int  | 
|
| 61944 | 1548  | 
by (metis abs_idempotent lcm_int_def)  | 
| 31814 | 1549  | 
|
| 63489 | 1550  | 
lemma lcm_abs2_int [simp]: "lcm x \<bar>y\<bar> = lcm x y"  | 
1551  | 
for x y :: int  | 
|
| 61944 | 1552  | 
by (metis abs_idempotent lcm_int_def)  | 
| 31814 | 1553  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1554  | 
lemma lcm_cases_int:  | 
| 63489 | 1555  | 
fixes x y :: int  | 
1556  | 
assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)"  | 
|
1557  | 
and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))"  | 
|
1558  | 
and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)"  | 
|
1559  | 
and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))"  | 
|
| 31706 | 1560  | 
shows "P (lcm x y)"  | 
| 41550 | 1561  | 
using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith  | 
| 31706 | 1562  | 
|
| 63489 | 1563  | 
lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0"  | 
1564  | 
for x y :: int  | 
|
| 31706 | 1565  | 
by (simp add: lcm_int_def)  | 
1566  | 
||
| 63489 | 1567  | 
lemma gcd_0_nat: "gcd x 0 = x"  | 
1568  | 
for x :: nat  | 
|
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1569  | 
by simp  | 
| 
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1570  | 
|
| 63489 | 1571  | 
lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>"  | 
1572  | 
for x :: int  | 
|
1573  | 
by (auto simp: gcd_int_def)  | 
|
1574  | 
||
1575  | 
lemma gcd_0_left_nat: "gcd 0 x = x"  | 
|
1576  | 
for x :: nat  | 
|
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1577  | 
by simp  | 
| 
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
1578  | 
|
| 63489 | 1579  | 
lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>"  | 
1580  | 
for x :: int  | 
|
1581  | 
by (auto simp:gcd_int_def)  | 
|
1582  | 
||
1583  | 
lemma gcd_red_nat: "gcd x y = gcd y (x mod y)"  | 
|
1584  | 
for x y :: nat  | 
|
1585  | 
by (cases "y = 0") auto  | 
|
1586  | 
||
1587  | 
||
1588  | 
text \<open>Weaker, but useful for the simplifier.\<close>  | 
|
1589  | 
||
1590  | 
lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"  | 
|
1591  | 
for x y :: nat  | 
|
| 21263 | 1592  | 
by simp  | 
| 21256 | 1593  | 
|
| 63489 | 1594  | 
lemma gcd_1_nat [simp]: "gcd m 1 = 1"  | 
1595  | 
for m :: nat  | 
|
| 60690 | 1596  | 
by simp  | 
| 31706 | 1597  | 
|
| 63489 | 1598  | 
lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0"  | 
1599  | 
for m :: nat  | 
|
1600  | 
by simp  | 
|
1601  | 
||
1602  | 
lemma gcd_1_int [simp]: "gcd m 1 = 1"  | 
|
1603  | 
for m :: int  | 
|
| 31706 | 1604  | 
by (simp add: gcd_int_def)  | 
| 
30082
 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 
huffman 
parents: 
30042 
diff
changeset
 | 
1605  | 
|
| 63489 | 1606  | 
lemma gcd_idem_nat: "gcd x x = x"  | 
1607  | 
for x :: nat  | 
|
1608  | 
by simp  | 
|
1609  | 
||
1610  | 
lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>"  | 
|
1611  | 
for x :: int  | 
|
1612  | 
by (auto simp add: gcd_int_def)  | 
|
| 31706 | 1613  | 
|
1614  | 
declare gcd_nat.simps [simp del]  | 
|
| 21256 | 1615  | 
|
| 60758 | 1616  | 
text \<open>  | 
| 63489 | 1617  | 
  \<^medskip> @{term "gcd m n"} divides \<open>m\<close> and \<open>n\<close>.
 | 
1618  | 
The conjunctions don't seem provable separately.  | 
|
| 60758 | 1619  | 
\<close>  | 
| 21256 | 1620  | 
|
| 59008 | 1621  | 
instance nat :: semiring_gcd  | 
1622  | 
proof  | 
|
1623  | 
fix m n :: nat  | 
|
1624  | 
show "gcd m n dvd m" and "gcd m n dvd n"  | 
|
1625  | 
proof (induct m n rule: gcd_nat_induct)  | 
|
1626  | 
fix m n :: nat  | 
|
| 63489 | 1627  | 
assume "gcd n (m mod n) dvd m mod n"  | 
1628  | 
and "gcd n (m mod n) dvd n"  | 
|
| 59008 | 1629  | 
then have "gcd n (m mod n) dvd m"  | 
1630  | 
by (rule dvd_mod_imp_dvd)  | 
|
1631  | 
moreover assume "0 < n"  | 
|
1632  | 
ultimately show "gcd m n dvd m"  | 
|
1633  | 
by (simp add: gcd_non_0_nat)  | 
|
1634  | 
qed (simp_all add: gcd_0_nat gcd_non_0_nat)  | 
|
1635  | 
next  | 
|
1636  | 
fix m n k :: nat  | 
|
1637  | 
assume "k dvd m" and "k dvd n"  | 
|
1638  | 
then show "k dvd gcd m n"  | 
|
1639  | 
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat)  | 
|
| 60686 | 1640  | 
qed (simp_all add: lcm_nat_def)  | 
| 
59667
 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
59545 
diff
changeset
 | 
1641  | 
|
| 59008 | 1642  | 
instance int :: ring_gcd  | 
| 60686 | 1643  | 
by standard  | 
| 63489 | 1644  | 
(simp_all add: dvd_int_unfold_dvd_nat gcd_int_def lcm_int_def  | 
1645  | 
zdiv_int nat_abs_mult_distrib [symmetric] lcm_gcd gcd_greatest)  | 
|
1646  | 
||
1647  | 
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a"  | 
|
1648  | 
for a b :: nat  | 
|
1649  | 
by (rule dvd_imp_le) auto  | 
|
1650  | 
||
1651  | 
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b"  | 
|
1652  | 
for a b :: nat  | 
|
1653  | 
by (rule dvd_imp_le) auto  | 
|
1654  | 
||
1655  | 
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a"  | 
|
1656  | 
for a b :: int  | 
|
1657  | 
by (rule zdvd_imp_le) auto  | 
|
1658  | 
||
1659  | 
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b"  | 
|
1660  | 
for a b :: int  | 
|
1661  | 
by (rule zdvd_imp_le) auto  | 
|
1662  | 
||
1663  | 
lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0"  | 
|
1664  | 
for m n :: nat  | 
|
1665  | 
using gcd_eq_0_iff [of m n] by arith  | 
|
1666  | 
||
1667  | 
lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0"  | 
|
1668  | 
for m n :: int  | 
|
1669  | 
using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith  | 
|
1670  | 
||
1671  | 
lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"  | 
|
1672  | 
for d a :: nat  | 
|
| 31706 | 1673  | 
apply auto  | 
| 33657 | 1674  | 
apply (rule dvd_antisym)  | 
| 63489 | 1675  | 
apply (erule (1) gcd_greatest)  | 
| 31706 | 1676  | 
apply auto  | 
| 63489 | 1677  | 
done  | 
1678  | 
||
1679  | 
lemma gcd_unique_int:  | 
|
1680  | 
"d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"  | 
|
1681  | 
for d a :: int  | 
|
1682  | 
apply (cases "d = 0")  | 
|
1683  | 
apply simp  | 
|
1684  | 
apply (rule iffI)  | 
|
1685  | 
apply (rule zdvd_antisym_nonneg)  | 
|
1686  | 
apply (auto intro: gcd_greatest)  | 
|
1687  | 
done  | 
|
| 
30082
 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 
huffman 
parents: 
30042 
diff
changeset
 | 
1688  | 
|
| 61913 | 1689  | 
interpretation gcd_nat:  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1690  | 
semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n"  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1691  | 
by standard (auto simp add: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans)  | 
| 31798 | 1692  | 
|
| 63489 | 1693  | 
lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>"  | 
1694  | 
for x y :: int  | 
|
| 
54867
 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 
haftmann 
parents: 
54489 
diff
changeset
 | 
1695  | 
by (metis abs_dvd_iff gcd_0_left_int gcd_abs_int gcd_unique_int)  | 
| 31798 | 1696  | 
|
| 63489 | 1697  | 
lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>"  | 
1698  | 
for x y :: int  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1699  | 
by (metis gcd_proj1_if_dvd_int gcd.commute)  | 
| 31798 | 1700  | 
|
| 63489 | 1701  | 
|
1702  | 
text \<open>\<^medskip> Multiplication laws.\<close>  | 
|
1703  | 
||
1704  | 
lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)"  | 
|
1705  | 
for k m n :: nat  | 
|
1706  | 
  \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close>
 | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1707  | 
apply (induct m n rule: gcd_nat_induct)  | 
| 63489 | 1708  | 
apply simp  | 
1709  | 
apply (cases "k = 0")  | 
|
1710  | 
apply (simp_all add: gcd_non_0_nat)  | 
|
1711  | 
done  | 
|
1712  | 
||
1713  | 
lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)"  | 
|
1714  | 
for k m n :: int  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1715  | 
apply (subst (1 2) gcd_abs_int)  | 
| 31813 | 1716  | 
apply (subst (1 2) abs_mult)  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1717  | 
apply (rule gcd_mult_distrib_nat [transferred])  | 
| 63489 | 1718  | 
apply auto  | 
1719  | 
done  | 
|
| 21256 | 1720  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1721  | 
lemma coprime_crossproduct_nat:  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1722  | 
fixes a b c d :: nat  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1723  | 
assumes "coprime a d" and "coprime b c"  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1724  | 
shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d"  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1725  | 
using assms coprime_crossproduct [of a d b c] by simp  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1726  | 
|
| 35368 | 1727  | 
lemma coprime_crossproduct_int:  | 
1728  | 
fixes a b c d :: int  | 
|
1729  | 
assumes "coprime a d" and "coprime b c"  | 
|
1730  | 
shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>"  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1731  | 
using assms coprime_crossproduct [of a d b c] by simp  | 
| 35368 | 1732  | 
|
| 63489 | 1733  | 
|
1734  | 
text \<open>\medskip Addition laws.\<close>  | 
|
1735  | 
||
1736  | 
(* TODO: add the other variations? *)  | 
|
1737  | 
||
1738  | 
lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n"  | 
|
1739  | 
for m n :: nat  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1740  | 
by (subst gcd_add1 [symmetric]) auto  | 
| 31706 | 1741  | 
|
| 63489 | 1742  | 
lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n"  | 
1743  | 
for m n :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1744  | 
apply (subst gcd.commute)  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1745  | 
apply (subst gcd_diff1_nat [symmetric])  | 
| 63489 | 1746  | 
apply auto  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1747  | 
apply (subst gcd.commute)  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1748  | 
apply (subst gcd_diff1_nat)  | 
| 63489 | 1749  | 
apply assumption  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1750  | 
apply (rule gcd.commute)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1751  | 
done  | 
| 31706 | 1752  | 
|
| 63489 | 1753  | 
lemma gcd_non_0_int: "y > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"  | 
1754  | 
for x y :: int  | 
|
| 31706 | 1755  | 
apply (frule_tac b = y and a = x in pos_mod_sign)  | 
1756  | 
apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib)  | 
|
| 63489 | 1757  | 
apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] zmod_zminus1_eq_if)  | 
| 31706 | 1758  | 
apply (frule_tac a = x in pos_mod_bound)  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1759  | 
apply (subst (1 2) gcd.commute)  | 
| 63489 | 1760  | 
apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat nat_le_eq_zle)  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1761  | 
done  | 
| 21256 | 1762  | 
|
| 63489 | 1763  | 
lemma gcd_red_int: "gcd x y = gcd y (x mod y)"  | 
1764  | 
for x y :: int  | 
|
1765  | 
apply (cases "y = 0")  | 
|
1766  | 
apply force  | 
|
1767  | 
apply (cases "y > 0")  | 
|
1768  | 
apply (subst gcd_non_0_int, auto)  | 
|
1769  | 
apply (insert gcd_non_0_int [of "- y" "- x"])  | 
|
| 35216 | 1770  | 
apply auto  | 
| 63489 | 1771  | 
done  | 
1772  | 
||
1773  | 
(* TODO: differences, and all variations of addition rules  | 
|
| 31706 | 1774  | 
as simplification rules for nat and int *)  | 
1775  | 
||
| 63489 | 1776  | 
(* TODO: add the three variations of these, and for ints? *)  | 
1777  | 
||
1778  | 
lemma finite_divisors_nat [simp]: (* FIXME move *)  | 
|
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1779  | 
fixes m :: nat  | 
| 63489 | 1780  | 
assumes "m > 0"  | 
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1781  | 
  shows "finite {d. d dvd m}"
 | 
| 31734 | 1782  | 
proof-  | 
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1783  | 
  from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1784  | 
by (auto dest: dvd_imp_le)  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1785  | 
then show ?thesis  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1786  | 
using finite_Collect_le_nat by (rule finite_subset)  | 
| 31734 | 1787  | 
qed  | 
1788  | 
||
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1789  | 
lemma finite_divisors_int [simp]:  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1790  | 
fixes i :: int  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1791  | 
assumes "i \<noteq> 0"  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1792  | 
  shows "finite {d. d dvd i}"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1793  | 
proof -  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1794  | 
  have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1795  | 
by (auto simp: abs_if)  | 
| 63489 | 1796  | 
  then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}"
 | 
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
1797  | 
by simp  | 
| 63489 | 1798  | 
from finite_subset [OF _ this] show ?thesis  | 
1799  | 
using assms by (simp add: dvd_imp_le_int subset_iff)  | 
|
| 31734 | 1800  | 
qed  | 
1801  | 
||
| 63489 | 1802  | 
lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n"
 | 
1803  | 
apply (rule antisym)  | 
|
1804  | 
apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le)  | 
|
1805  | 
apply simp  | 
|
1806  | 
done  | 
|
1807  | 
||
1808  | 
lemma Max_divisors_self_int [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::int. d dvd n} = \<bar>n\<bar>"
 | 
|
1809  | 
apply (rule antisym)  | 
|
1810  | 
apply (rule Max_le_iff [THEN iffD2])  | 
|
1811  | 
apply (auto intro: abs_le_D1 dvd_imp_le_int)  | 
|
1812  | 
done  | 
|
1813  | 
||
1814  | 
lemma gcd_is_Max_divisors_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | 
|
1815  | 
for m n :: nat  | 
|
1816  | 
apply (rule Max_eqI[THEN sym])  | 
|
1817  | 
apply (metis finite_Collect_conjI finite_divisors_nat)  | 
|
1818  | 
apply simp  | 
|
1819  | 
apply (metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff gcd_pos_nat)  | 
|
1820  | 
apply simp  | 
|
1821  | 
done  | 
|
1822  | 
||
1823  | 
lemma gcd_is_Max_divisors_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | 
|
1824  | 
for m n :: int  | 
|
1825  | 
apply (rule Max_eqI[THEN sym])  | 
|
1826  | 
apply (metis finite_Collect_conjI finite_divisors_int)  | 
|
1827  | 
apply simp  | 
|
1828  | 
apply (metis gcd_greatest_iff gcd_pos_int zdvd_imp_le)  | 
|
1829  | 
apply simp  | 
|
1830  | 
done  | 
|
1831  | 
||
1832  | 
lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"  | 
|
1833  | 
for k l :: int  | 
|
| 
34030
 
829eb528b226
resorted code equations from "old" number theory version
 
haftmann 
parents: 
33946 
diff
changeset
 | 
1834  | 
by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat)  | 
| 
 
829eb528b226
resorted code equations from "old" number theory version
 
haftmann 
parents: 
33946 
diff
changeset
 | 
1835  | 
|
| 
22027
 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 
chaieb 
parents: 
21404 
diff
changeset
 | 
1836  | 
|
| 60758 | 1837  | 
subsection \<open>Coprimality\<close>  | 
| 31706 | 1838  | 
|
| 63489 | 1839  | 
lemma coprime_nat: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"  | 
1840  | 
for a b :: nat  | 
|
| 62345 | 1841  | 
using coprime [of a b] by simp  | 
| 31706 | 1842  | 
|
| 63489 | 1843  | 
lemma coprime_Suc_0_nat: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)"  | 
1844  | 
for a b :: nat  | 
|
| 60690 | 1845  | 
using coprime_nat by simp  | 
| 31706 | 1846  | 
|
| 63489 | 1847  | 
lemma coprime_int: "coprime a b \<longleftrightarrow> (\<forall>d. d \<ge> 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"  | 
1848  | 
for a b :: int  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1849  | 
using gcd_unique_int [of 1 a b]  | 
| 31706 | 1850  | 
apply clarsimp  | 
1851  | 
apply (erule subst)  | 
|
1852  | 
apply (rule iffI)  | 
|
| 63489 | 1853  | 
apply force  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61605 
diff
changeset
 | 
1854  | 
using abs_dvd_iff abs_ge_zero apply blast  | 
| 59807 | 1855  | 
done  | 
| 31706 | 1856  | 
|
| 63489 | 1857  | 
lemma pow_divides_eq_nat [simp]: "n > 0 \<Longrightarrow> a^n dvd b^n \<longleftrightarrow> a dvd b"  | 
1858  | 
for a b n :: nat  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1859  | 
using pow_divs_eq[of n] by simp  | 
| 31706 | 1860  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1861  | 
lemma coprime_Suc_nat [simp]: "coprime (Suc n) n"  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1862  | 
using coprime_plus_one[of n] by simp  | 
| 31706 | 1863  | 
|
| 63489 | 1864  | 
lemma coprime_minus_one_nat: "n \<noteq> 0 \<Longrightarrow> coprime (n - 1) n"  | 
1865  | 
for n :: nat  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
1866  | 
using coprime_Suc_nat [of "n - 1"] gcd.commute [of "n - 1" n] by auto  | 
| 31706 | 1867  | 
|
| 63489 | 1868  | 
lemma coprime_common_divisor_nat: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1"  | 
1869  | 
for a b :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
1870  | 
by (metis gcd_greatest_iff nat_dvd_1_iff_1)  | 
| 31706 | 1871  | 
|
| 63489 | 1872  | 
lemma coprime_common_divisor_int: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> \<bar>x\<bar> = 1"  | 
1873  | 
for a b :: int  | 
|
| 60686 | 1874  | 
using gcd_greatest_iff [of x a b] by auto  | 
| 31706 | 1875  | 
|
| 63489 | 1876  | 
lemma invertible_coprime_nat: "x * y mod m = 1 \<Longrightarrow> coprime x m"  | 
1877  | 
for m x y :: nat  | 
|
1878  | 
by (metis coprime_lmult gcd_1_nat gcd.commute gcd_red_nat)  | 
|
1879  | 
||
1880  | 
lemma invertible_coprime_int: "x * y mod m = 1 \<Longrightarrow> coprime x m"  | 
|
1881  | 
for m x y :: int  | 
|
1882  | 
by (metis coprime_lmult gcd_1_int gcd.commute gcd_red_int)  | 
|
| 31706 | 1883  | 
|
1884  | 
||
| 60758 | 1885  | 
subsection \<open>Bezout's theorem\<close>  | 
| 31706 | 1886  | 
|
| 63489 | 1887  | 
text \<open>  | 
1888  | 
Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem --  | 
|
1889  | 
see the theorems that follow the definition.  | 
|
1890  | 
\<close>  | 
|
1891  | 
||
1892  | 
fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int"  | 
|
1893  | 
where "bezw x y =  | 
|
1894  | 
(if y = 0 then (1, 0)  | 
|
1895  | 
else  | 
|
| 31706 | 1896  | 
(snd (bezw y (x mod y)),  | 
1897  | 
fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))"  | 
|
1898  | 
||
| 63489 | 1899  | 
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)"  | 
1900  | 
by simp  | 
|
1901  | 
||
1902  | 
lemma bezw_non_0:  | 
|
1903  | 
"y > 0 \<Longrightarrow> bezw x y =  | 
|
1904  | 
(snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))"  | 
|
| 31706 | 1905  | 
by simp  | 
1906  | 
||
1907  | 
declare bezw.simps [simp del]  | 
|
1908  | 
||
| 63489 | 1909  | 
lemma bezw_aux: "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
1910  | 
proof (induct x y rule: gcd_nat_induct)  | 
| 31706 | 1911  | 
fix m :: nat  | 
1912  | 
show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)"  | 
|
1913  | 
by auto  | 
|
| 63489 | 1914  | 
next  | 
1915  | 
fix m n :: nat  | 
|
1916  | 
assume ngt0: "n > 0"  | 
|
1917  | 
and ih: "fst (bezw n (m mod n)) * int n + snd (bezw n (m mod n)) * int (m mod n) =  | 
|
1918  | 
int (gcd n (m mod n))"  | 
|
1919  | 
then show "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)"  | 
|
1920  | 
apply (simp add: bezw_non_0 gcd_non_0_nat)  | 
|
1921  | 
apply (erule subst)  | 
|
1922  | 
apply (simp add: field_simps)  | 
|
1923  | 
apply (subst mod_div_equality [of m n, symmetric])  | 
|
1924  | 
(* applying simp here undoes the last substitution! what is procedure cancel_div_mod? *)  | 
|
1925  | 
apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult)  | 
|
1926  | 
done  | 
|
| 31706 | 1927  | 
qed  | 
1928  | 
||
| 63489 | 1929  | 
lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y"  | 
1930  | 
for x y :: int  | 
|
| 31706 | 1931  | 
proof -  | 
| 63489 | 1932  | 
have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int  | 
| 31706 | 1933  | 
apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI)  | 
1934  | 
apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI)  | 
|
1935  | 
apply (unfold gcd_int_def)  | 
|
1936  | 
apply simp  | 
|
1937  | 
apply (subst bezw_aux [symmetric])  | 
|
1938  | 
apply auto  | 
|
1939  | 
done  | 
|
| 63489 | 1940  | 
consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0"  | 
1941  | 
by atomize_elim auto  | 
|
1942  | 
then show ?thesis  | 
|
1943  | 
proof cases  | 
|
1944  | 
case 1  | 
|
1945  | 
then show ?thesis by (rule aux)  | 
|
1946  | 
next  | 
|
1947  | 
case 2  | 
|
1948  | 
then show ?thesis  | 
|
1949  | 
apply -  | 
|
1950  | 
apply (insert aux [of x "-y"])  | 
|
1951  | 
apply auto  | 
|
1952  | 
apply (rule_tac x = u in exI)  | 
|
1953  | 
apply (rule_tac x = "-v" in exI)  | 
|
1954  | 
apply (subst gcd_neg2_int [symmetric])  | 
|
1955  | 
apply auto  | 
|
1956  | 
done  | 
|
1957  | 
next  | 
|
1958  | 
case 3  | 
|
1959  | 
then show ?thesis  | 
|
1960  | 
apply -  | 
|
1961  | 
apply (insert aux [of "-x" y])  | 
|
1962  | 
apply auto  | 
|
1963  | 
apply (rule_tac x = "-u" in exI)  | 
|
1964  | 
apply (rule_tac x = v in exI)  | 
|
1965  | 
apply (subst gcd_neg1_int [symmetric])  | 
|
1966  | 
apply auto  | 
|
1967  | 
done  | 
|
1968  | 
next  | 
|
1969  | 
case 4  | 
|
1970  | 
then show ?thesis  | 
|
1971  | 
apply -  | 
|
1972  | 
apply (insert aux [of "-x" "-y"])  | 
|
1973  | 
apply auto  | 
|
1974  | 
apply (rule_tac x = "-u" in exI)  | 
|
1975  | 
apply (rule_tac x = "-v" in exI)  | 
|
1976  | 
apply (subst gcd_neg1_int [symmetric])  | 
|
1977  | 
apply (subst gcd_neg2_int [symmetric])  | 
|
1978  | 
apply auto  | 
|
1979  | 
done  | 
|
1980  | 
qed  | 
|
| 31706 | 1981  | 
qed  | 
1982  | 
||
| 63489 | 1983  | 
|
1984  | 
text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close>  | 
|
| 31706 | 1985  | 
|
1986  | 
lemma ind_euclid:  | 
|
| 63489 | 1987  | 
fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool"  | 
1988  | 
assumes c: " \<forall>a b. P a b \<longleftrightarrow> P b a"  | 
|
1989  | 
and z: "\<forall>a. P a 0"  | 
|
1990  | 
and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"  | 
|
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
1991  | 
shows "P a b"  | 
| 63489 | 1992  | 
proof (induct "a + b" arbitrary: a b rule: less_induct)  | 
| 34915 | 1993  | 
case less  | 
| 63489 | 1994  | 
consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b"  | 
1995  | 
by arith  | 
|
1996  | 
show ?case  | 
|
1997  | 
proof (cases a b rule: linorder_cases)  | 
|
1998  | 
case equal  | 
|
1999  | 
with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp  | 
|
2000  | 
next  | 
|
2001  | 
case lt: less  | 
|
2002  | 
then consider "a = 0" | "a + b - a < a + b" by arith  | 
|
2003  | 
then show ?thesis  | 
|
2004  | 
proof cases  | 
|
2005  | 
case 1  | 
|
2006  | 
with z c show ?thesis by blast  | 
|
2007  | 
next  | 
|
2008  | 
case 2  | 
|
2009  | 
also have *: "a + b - a = a + (b - a)" using lt by arith  | 
|
| 34915 | 2010  | 
finally have "a + (b - a) < a + b" .  | 
| 63489 | 2011  | 
then have "P a (a + (b - a))" by (rule add [rule_format, OF less])  | 
2012  | 
then show ?thesis by (simp add: *[symmetric])  | 
|
2013  | 
qed  | 
|
2014  | 
next  | 
|
2015  | 
case gt: greater  | 
|
2016  | 
then consider "b = 0" | "b + a - b < a + b" by arith  | 
|
2017  | 
then show ?thesis  | 
|
2018  | 
proof cases  | 
|
2019  | 
case 1  | 
|
2020  | 
with z c show ?thesis by blast  | 
|
2021  | 
next  | 
|
2022  | 
case 2  | 
|
2023  | 
also have *: "b + a - b = b + (a - b)" using gt by arith  | 
|
| 34915 | 2024  | 
finally have "b + (a - b) < a + b" .  | 
| 63489 | 2025  | 
then have "P b (b + (a - b))" by (rule add [rule_format, OF less])  | 
2026  | 
then have "P b a" by (simp add: *[symmetric])  | 
|
2027  | 
with c show ?thesis by blast  | 
|
2028  | 
qed  | 
|
2029  | 
qed  | 
|
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2030  | 
qed  | 
| 
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2031  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2032  | 
lemma bezout_lemma_nat:  | 
| 31706 | 2033  | 
assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>  | 
2034  | 
(a * x = b * y + d \<or> b * x = a * y + d)"  | 
|
2035  | 
shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and>  | 
|
2036  | 
(a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"  | 
|
2037  | 
using ex  | 
|
2038  | 
apply clarsimp  | 
|
| 63489 | 2039  | 
apply (rule_tac x="d" in exI)  | 
2040  | 
apply simp  | 
|
2041  | 
apply (case_tac "a * x = b * y + d")  | 
|
2042  | 
apply simp_all  | 
|
2043  | 
apply (rule_tac x="x + y" in exI)  | 
|
2044  | 
apply (rule_tac x="y" in exI)  | 
|
2045  | 
apply algebra  | 
|
| 31706 | 2046  | 
apply (rule_tac x="x" in exI)  | 
2047  | 
apply (rule_tac x="x + y" in exI)  | 
|
2048  | 
apply algebra  | 
|
| 63489 | 2049  | 
done  | 
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2050  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2051  | 
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>  | 
| 31706 | 2052  | 
(a * x = b * y + d \<or> b * x = a * y + d)"  | 
| 63489 | 2053  | 
apply (induct a b rule: ind_euclid)  | 
2054  | 
apply blast  | 
|
2055  | 
apply clarify  | 
|
2056  | 
apply (rule_tac x="a" in exI)  | 
|
2057  | 
apply simp  | 
|
| 31706 | 2058  | 
apply clarsimp  | 
2059  | 
apply (rule_tac x="d" in exI)  | 
|
| 63489 | 2060  | 
apply (case_tac "a * x = b * y + d")  | 
2061  | 
apply simp_all  | 
|
2062  | 
apply (rule_tac x="x+y" in exI)  | 
|
2063  | 
apply (rule_tac x="y" in exI)  | 
|
2064  | 
apply algebra  | 
|
| 31706 | 2065  | 
apply (rule_tac x="x" in exI)  | 
2066  | 
apply (rule_tac x="x+y" in exI)  | 
|
2067  | 
apply algebra  | 
|
| 63489 | 2068  | 
done  | 
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2069  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2070  | 
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>  | 
| 31706 | 2071  | 
(a * x - b * y = d \<or> b * x - a * y = d)"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2072  | 
using bezout_add_nat[of a b]  | 
| 31706 | 2073  | 
apply clarsimp  | 
| 63489 | 2074  | 
apply (rule_tac x="d" in exI)  | 
2075  | 
apply simp  | 
|
| 31706 | 2076  | 
apply (rule_tac x="x" in exI)  | 
2077  | 
apply (rule_tac x="y" in exI)  | 
|
2078  | 
apply auto  | 
|
| 63489 | 2079  | 
done  | 
2080  | 
||
2081  | 
lemma bezout_add_strong_nat:  | 
|
2082  | 
fixes a b :: nat  | 
|
2083  | 
assumes a: "a \<noteq> 0"  | 
|
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2084  | 
shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"  | 
| 63489 | 2085  | 
proof -  | 
2086  | 
consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d"  | 
|
2087  | 
| d x y where "d dvd a" "d dvd b" "b * x = a * y + d"  | 
|
2088  | 
using bezout_add_nat [of a b] by blast  | 
|
2089  | 
then show ?thesis  | 
|
2090  | 
proof cases  | 
|
2091  | 
case 1  | 
|
2092  | 
then show ?thesis by blast  | 
|
2093  | 
next  | 
|
2094  | 
case H: 2  | 
|
2095  | 
show ?thesis  | 
|
2096  | 
proof (cases "b = 0")  | 
|
2097  | 
case True  | 
|
2098  | 
with H show ?thesis by simp  | 
|
2099  | 
next  | 
|
2100  | 
case False  | 
|
2101  | 
then have bp: "b > 0" by simp  | 
|
2102  | 
with dvd_imp_le [OF H(2)] consider "d = b" | "d < b"  | 
|
2103  | 
by atomize_elim auto  | 
|
2104  | 
then show ?thesis  | 
|
2105  | 
proof cases  | 
|
2106  | 
case 1  | 
|
2107  | 
with a H show ?thesis  | 
|
2108  | 
apply simp  | 
|
2109  | 
apply (rule exI[where x = b])  | 
|
2110  | 
apply simp  | 
|
2111  | 
apply (rule exI[where x = b])  | 
|
2112  | 
apply (rule exI[where x = "a - 1"])  | 
|
2113  | 
apply (simp add: diff_mult_distrib2)  | 
|
2114  | 
done  | 
|
2115  | 
next  | 
|
2116  | 
case 2  | 
|
2117  | 
show ?thesis  | 
|
2118  | 
proof (cases "x = 0")  | 
|
2119  | 
case True  | 
|
2120  | 
with a H show ?thesis by simp  | 
|
2121  | 
next  | 
|
2122  | 
case x0: False  | 
|
2123  | 
then have xp: "x > 0" by simp  | 
|
2124  | 
from \<open>d < b\<close> have "d \<le> b - 1" by simp  | 
|
2125  | 
then have "d * b \<le> b * (b - 1)" by simp  | 
|
2126  | 
with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"]  | 
|
2127  | 
have dble: "d * b \<le> x * b * (b - 1)" using bp by simp  | 
|
2128  | 
from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)"  | 
|
| 31706 | 2129  | 
by simp  | 
| 63489 | 2130  | 
then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x"  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56218 
diff
changeset
 | 
2131  | 
by (simp only: mult.assoc distrib_left)  | 
| 63489 | 2132  | 
then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)"  | 
| 31706 | 2133  | 
by algebra  | 
| 63489 | 2134  | 
then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b"  | 
2135  | 
using bp by simp  | 
|
2136  | 
then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32879 
diff
changeset
 | 
2137  | 
by (simp only: diff_add_assoc[OF dble, of d, symmetric])  | 
| 63489 | 2138  | 
then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d"  | 
| 59008 | 2139  | 
by (simp only: diff_mult_distrib2 ac_simps)  | 
| 63489 | 2140  | 
with H(1,2) show ?thesis  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32879 
diff
changeset
 | 
2141  | 
apply -  | 
| 63489 | 2142  | 
apply (rule exI [where x = d])  | 
2143  | 
apply simp  | 
|
2144  | 
apply (rule exI [where x = "(b - 1) * y"])  | 
|
2145  | 
apply (rule exI [where x = "x * (b - 1) - d"])  | 
|
2146  | 
apply simp  | 
|
2147  | 
done  | 
|
2148  | 
qed  | 
|
2149  | 
qed  | 
|
2150  | 
qed  | 
|
2151  | 
qed  | 
|
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2152  | 
qed  | 
| 
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2153  | 
|
| 63489 | 2154  | 
lemma bezout_nat:  | 
2155  | 
fixes a :: nat  | 
|
2156  | 
assumes a: "a \<noteq> 0"  | 
|
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2157  | 
shows "\<exists>x y. a * x = b * y + gcd a b"  | 
| 63489 | 2158  | 
proof -  | 
2159  | 
obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d"  | 
|
2160  | 
using bezout_add_strong_nat [OF a, of b] by blast  | 
|
2161  | 
from d have "d dvd gcd a b"  | 
|
2162  | 
by simp  | 
|
2163  | 
then obtain k where k: "gcd a b = d * k"  | 
|
2164  | 
unfolding dvd_def by blast  | 
|
2165  | 
from eq have "a * x * k = (b * y + d) * k"  | 
|
2166  | 
by auto  | 
|
2167  | 
then have "a * (x * k) = b * (y * k) + gcd a b"  | 
|
2168  | 
by (algebra add: k)  | 
|
2169  | 
then show ?thesis  | 
|
2170  | 
by blast  | 
|
| 
27669
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2171  | 
qed  | 
| 
 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 
chaieb 
parents: 
27651 
diff
changeset
 | 
2172  | 
|
| 31706 | 2173  | 
|
| 63489 | 2174  | 
subsection \<open>LCM properties on @{typ nat} and @{typ int}\<close>
 | 
2175  | 
||
2176  | 
lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b"  | 
|
2177  | 
for a b :: int  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2178  | 
by (simp add: lcm_int_def lcm_nat_def zdiv_int gcd_int_def)  | 
| 31706 | 2179  | 
|
| 63489 | 2180  | 
lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n"  | 
2181  | 
for m n :: nat  | 
|
| 31706 | 2182  | 
unfolding lcm_nat_def  | 
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
2183  | 
by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod])  | 
| 31706 | 2184  | 
|
| 63489 | 2185  | 
lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n"  | 
2186  | 
for m n :: int  | 
|
| 31706 | 2187  | 
unfolding lcm_int_def gcd_int_def  | 
| 62348 | 2188  | 
apply (subst of_nat_mult [symmetric])  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2189  | 
apply (subst prod_gcd_lcm_nat [symmetric])  | 
| 31706 | 2190  | 
apply (subst nat_abs_mult_distrib [symmetric])  | 
| 63489 | 2191  | 
apply (simp add: abs_mult)  | 
2192  | 
done  | 
|
2193  | 
||
2194  | 
lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0"  | 
|
2195  | 
for m n :: nat  | 
|
2196  | 
by (metis gr0I mult_is_0 prod_gcd_lcm_nat)  | 
|
2197  | 
||
2198  | 
lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0"  | 
|
2199  | 
for m n :: int  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2200  | 
apply (subst lcm_abs_int)  | 
| 
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2201  | 
apply (rule lcm_pos_nat [transferred])  | 
| 63489 | 2202  | 
apply auto  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2203  | 
done  | 
| 
23687
 
06884f7ffb18
extended - convers now basic lcm properties also
 
haftmann 
parents: 
23431 
diff
changeset
 | 
2204  | 
|
| 63489 | 2205  | 
lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0" (* FIXME move *)  | 
2206  | 
for m n :: nat  | 
|
2207  | 
by (cases m) auto  | 
|
2208  | 
||
2209  | 
lemma lcm_unique_nat:  | 
|
2210  | 
"a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"  | 
|
2211  | 
for a b d :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2212  | 
by (auto intro: dvd_antisym lcm_least)  | 
| 
27568
 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 
chaieb 
parents: 
27556 
diff
changeset
 | 
2213  | 
|
| 63489 | 2214  | 
lemma lcm_unique_int:  | 
2215  | 
"d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"  | 
|
2216  | 
for a b d :: int  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2217  | 
using lcm_least zdvd_antisym_nonneg by auto  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
34915 
diff
changeset
 | 
2218  | 
|
| 63489 | 2219  | 
lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y"  | 
2220  | 
for x y :: nat  | 
|
| 31706 | 2221  | 
apply (rule sym)  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2222  | 
apply (subst lcm_unique_nat [symmetric])  | 
| 31706 | 2223  | 
apply auto  | 
| 63489 | 2224  | 
done  | 
2225  | 
||
2226  | 
lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>"  | 
|
2227  | 
for x y :: int  | 
|
| 31706 | 2228  | 
apply (rule sym)  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31814 
diff
changeset
 | 
2229  | 
apply (subst lcm_unique_int [symmetric])  | 
| 31706 | 2230  | 
apply auto  | 
| 63489 | 2231  | 
done  | 
2232  | 
||
2233  | 
lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y"  | 
|
2234  | 
for x y :: nat  | 
|
2235  | 
by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat)  | 
|
2236  | 
||
2237  | 
lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>"  | 
|
2238  | 
for x y :: int  | 
|
2239  | 
by (subst lcm.commute) (erule lcm_proj2_if_dvd_int)  | 
|
2240  | 
||
2241  | 
lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m"  | 
|
2242  | 
for m n :: nat  | 
|
2243  | 
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat)  | 
|
2244  | 
||
2245  | 
lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n"  | 
|
2246  | 
for m n :: nat  | 
|
2247  | 
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat)  | 
|
2248  | 
||
2249  | 
lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m"  | 
|
2250  | 
for m n :: int  | 
|
2251  | 
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int)  | 
|
2252  | 
||
2253  | 
lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n"  | 
|
2254  | 
for m n :: int  | 
|
2255  | 
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int)  | 
|
2256  | 
||
2257  | 
lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0"  | 
|
2258  | 
for m n :: nat  | 
|
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2259  | 
using lcm_eq_1_iff [of m n] by simp  | 
| 63489 | 2260  | 
|
2261  | 
lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)"  | 
|
2262  | 
for m n :: int  | 
|
| 61913 | 2263  | 
by auto  | 
| 31995 | 2264  | 
|
| 
34030
 
829eb528b226
resorted code equations from "old" number theory version
 
haftmann 
parents: 
33946 
diff
changeset
 | 
2265  | 
|
| 62345 | 2266  | 
subsection \<open>The complete divisibility lattice on @{typ nat} and @{typ int}\<close>
 | 
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2267  | 
|
| 63489 | 2268  | 
text \<open>  | 
2269  | 
Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>).  | 
|
2270  | 
\<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice.  | 
|
| 60758 | 2271  | 
\<close>  | 
| 45264 | 2272  | 
|
| 62345 | 2273  | 
instantiation nat :: semiring_Gcd  | 
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2274  | 
begin  | 
| 
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2275  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2276  | 
interpretation semilattice_neutr_set lcm "1::nat"  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2277  | 
by standard simp_all  | 
| 
54867
 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 
haftmann 
parents: 
54489 
diff
changeset
 | 
2278  | 
|
| 63489 | 2279  | 
definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set"  | 
2280  | 
||
2281  | 
lemma Lcm_nat_empty: "Lcm {} = (1::nat)"
 | 
|
| 60690 | 2282  | 
by (simp add: Lcm_nat_def del: One_nat_def)  | 
| 51489 | 2283  | 
|
| 63489 | 2284  | 
lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat  | 
| 61929 | 2285  | 
by (cases "finite M") (auto simp add: Lcm_nat_def simp del: One_nat_def)  | 
2286  | 
||
| 63489 | 2287  | 
lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set"  | 
| 61929 | 2288  | 
by (simp add: Lcm_nat_def)  | 
2289  | 
||
2290  | 
lemma dvd_Lcm_nat [simp]:  | 
|
2291  | 
fixes M :: "nat set"  | 
|
2292  | 
assumes "m \<in> M"  | 
|
2293  | 
shows "m dvd Lcm M"  | 
|
2294  | 
proof -  | 
|
| 63489 | 2295  | 
from assms have "insert m M = M"  | 
2296  | 
by auto  | 
|
| 61929 | 2297  | 
moreover have "m dvd Lcm (insert m M)"  | 
2298  | 
by (simp add: Lcm_nat_insert)  | 
|
| 63489 | 2299  | 
ultimately show ?thesis  | 
2300  | 
by simp  | 
|
| 61929 | 2301  | 
qed  | 
2302  | 
||
2303  | 
lemma Lcm_dvd_nat [simp]:  | 
|
2304  | 
fixes M :: "nat set"  | 
|
2305  | 
assumes "\<forall>m\<in>M. m dvd n"  | 
|
2306  | 
shows "Lcm M dvd n"  | 
|
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2307  | 
proof (cases "n > 0")  | 
| 63489 | 2308  | 
case False  | 
2309  | 
then show ?thesis by simp  | 
|
| 61929 | 2310  | 
next  | 
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2311  | 
case True  | 
| 63489 | 2312  | 
  then have "finite {d. d dvd n}"
 | 
2313  | 
by (rule finite_divisors_nat)  | 
|
2314  | 
  moreover have "M \<subseteq> {d. d dvd n}"
 | 
|
2315  | 
using assms by fast  | 
|
2316  | 
ultimately have "finite M"  | 
|
2317  | 
by (rule rev_finite_subset)  | 
|
2318  | 
then show ?thesis  | 
|
2319  | 
using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert)  | 
|
| 61929 | 2320  | 
qed  | 
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2321  | 
|
| 63489 | 2322  | 
definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set"
 | 
2323  | 
||
2324  | 
instance  | 
|
2325  | 
proof  | 
|
2326  | 
fix N :: "nat set"  | 
|
2327  | 
fix n :: nat  | 
|
2328  | 
show "Gcd N dvd n" if "n \<in> N"  | 
|
2329  | 
using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def)  | 
|
2330  | 
show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m"  | 
|
2331  | 
using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def)  | 
|
2332  | 
show "n dvd Lcm N" if "n \<in> N"  | 
|
2333  | 
using that by (induct N rule: infinite_finite_induct) auto  | 
|
2334  | 
show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n"  | 
|
2335  | 
using that by (induct N rule: infinite_finite_induct) auto  | 
|
2336  | 
show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N"  | 
|
2337  | 
by simp_all  | 
|
2338  | 
qed  | 
|
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2339  | 
|
| 62345 | 2340  | 
end  | 
| 61913 | 2341  | 
|
| 63489 | 2342  | 
lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1"  | 
2343  | 
for N :: "nat set"  | 
|
| 62346 | 2344  | 
by (rule Gcd_eq_1_I) auto  | 
2345  | 
||
| 63489 | 2346  | 
|
2347  | 
text \<open>Alternative characterizations of Gcd:\<close>  | 
|
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2348  | 
|
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2349  | 
lemma Gcd_eq_Max:  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2350  | 
fixes M :: "nat set"  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2351  | 
  assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2352  | 
  shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2353  | 
proof (rule antisym)  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2354  | 
from assms obtain m where "m \<in> M" and "m > 0"  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2355  | 
by auto  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2356  | 
  from \<open>m > 0\<close> have "finite {d. d dvd m}"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2357  | 
by (blast intro: finite_divisors_nat)  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2358  | 
  with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2359  | 
by blast  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2360  | 
  from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2361  | 
by (auto intro: Max_ge Gcd_dvd)  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2362  | 
  from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M"
 | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2363  | 
apply (rule Max.boundedI)  | 
| 63489 | 2364  | 
apply auto  | 
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2365  | 
apply (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat)  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2366  | 
done  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2367  | 
qed  | 
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2368  | 
|
| 63489 | 2369  | 
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})"
 | 
2370  | 
for M :: "nat set"  | 
|
2371  | 
apply (induct pred: finite)  | 
|
2372  | 
apply simp  | 
|
2373  | 
apply (case_tac "x = 0")  | 
|
2374  | 
apply simp  | 
|
2375  | 
  apply (subgoal_tac "insert x F - {0} = insert x (F - {0})")
 | 
|
2376  | 
apply simp  | 
|
2377  | 
apply blast  | 
|
2378  | 
done  | 
|
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2379  | 
|
| 
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2380  | 
lemma Lcm_in_lcm_closed_set_nat:  | 
| 63489 | 2381  | 
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M \<in> M"
 | 
2382  | 
for M :: "nat set"  | 
|
2383  | 
apply (induct rule: finite_linorder_min_induct)  | 
|
2384  | 
apply simp  | 
|
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2385  | 
apply simp  | 
| 63489 | 2386  | 
apply (subgoal_tac "\<forall>m n. m \<in> A \<longrightarrow> n \<in> A \<longrightarrow> lcm m n \<in> A")  | 
2387  | 
apply simp  | 
|
2388  | 
   apply(case_tac "A = {}")
 | 
|
2389  | 
apply simp  | 
|
2390  | 
apply simp  | 
|
2391  | 
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0)  | 
|
2392  | 
done  | 
|
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2393  | 
|
| 
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2394  | 
lemma Lcm_eq_Max_nat:  | 
| 63489 | 2395  | 
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M = Max M"
 | 
2396  | 
for M :: "nat set"  | 
|
2397  | 
apply (rule antisym)  | 
|
2398  | 
apply (rule Max_ge)  | 
|
2399  | 
apply assumption  | 
|
2400  | 
apply (erule (2) Lcm_in_lcm_closed_set_nat)  | 
|
2401  | 
apply (auto simp add: not_le Lcm_0_iff dvd_imp_le leD le_neq_trans)  | 
|
2402  | 
done  | 
|
| 
32112
 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 
nipkow 
parents: 
32111 
diff
changeset
 | 
2403  | 
|
| 34222 | 2404  | 
lemma mult_inj_if_coprime_nat:  | 
| 63489 | 2405  | 
"inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> \<forall>a\<in>A. \<forall>b\<in>B. coprime (f a) (g b) \<Longrightarrow>  | 
2406  | 
inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)"  | 
|
2407  | 
for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat"  | 
|
| 61913 | 2408  | 
by (auto simp add: inj_on_def coprime_crossproduct_nat simp del: One_nat_def)  | 
| 34222 | 2409  | 
|
| 63489 | 2410  | 
|
2411  | 
text \<open>Nitpick:\<close>  | 
|
| 34222 | 2412  | 
|
| 
41792
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41550 
diff
changeset
 | 
2413  | 
lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y"  | 
| 63489 | 2414  | 
by (induct x y rule: nat_gcd.induct)  | 
2415  | 
(simp add: gcd_nat.simps Nitpick.nat_gcd.simps)  | 
|
| 
33197
 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 
blanchet 
parents: 
32960 
diff
changeset
 | 
2416  | 
|
| 
41792
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41550 
diff
changeset
 | 
2417  | 
lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y"  | 
| 63489 | 2418  | 
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd)  | 
2419  | 
||
2420  | 
||
2421  | 
subsubsection \<open>Setwise GCD and LCM for integers\<close>  | 
|
| 45264 | 2422  | 
|
| 62345 | 2423  | 
instantiation int :: semiring_Gcd  | 
| 45264 | 2424  | 
begin  | 
2425  | 
||
| 63489 | 2426  | 
definition "Lcm M = int (LCM m\<in>M. (nat \<circ> abs) m)"  | 
2427  | 
||
2428  | 
definition "Gcd M = int (GCD m\<in>M. (nat \<circ> abs) m)"  | 
|
2429  | 
||
2430  | 
instance  | 
|
2431  | 
by standard  | 
|
2432  | 
(auto intro!: Gcd_dvd Gcd_greatest simp add: Gcd_int_def  | 
|
2433  | 
Lcm_int_def int_dvd_iff dvd_int_iff dvd_int_unfold_dvd_nat [symmetric])  | 
|
| 62345 | 2434  | 
|
2435  | 
end  | 
|
2436  | 
||
| 63489 | 2437  | 
lemma abs_Gcd [simp]: "\<bar>Gcd K\<bar> = Gcd K"  | 
2438  | 
for K :: "int set"  | 
|
| 62346 | 2439  | 
using normalize_Gcd [of K] by simp  | 
2440  | 
||
| 63489 | 2441  | 
lemma abs_Lcm [simp]: "\<bar>Lcm K\<bar> = Lcm K"  | 
2442  | 
for K :: "int set"  | 
|
| 62346 | 2443  | 
using normalize_Lcm [of K] by simp  | 
2444  | 
||
| 63489 | 2445  | 
lemma Gcm_eq_int_iff: "Gcd K = int n \<longleftrightarrow> Gcd ((nat \<circ> abs) ` K) = n"  | 
| 62346 | 2446  | 
by (simp add: Gcd_int_def comp_def image_image)  | 
2447  | 
||
| 63489 | 2448  | 
lemma Lcm_eq_int_iff: "Lcm K = int n \<longleftrightarrow> Lcm ((nat \<circ> abs) ` K) = n"  | 
| 62346 | 2449  | 
by (simp add: Lcm_int_def comp_def image_image)  | 
2450  | 
||
| 62345 | 2451  | 
|
2452  | 
subsection \<open>GCD and LCM on @{typ integer}\<close>
 | 
|
2453  | 
||
2454  | 
instantiation integer :: gcd  | 
|
2455  | 
begin  | 
|
2456  | 
||
2457  | 
context  | 
|
2458  | 
includes integer.lifting  | 
|
2459  | 
begin  | 
|
2460  | 
||
| 63489 | 2461  | 
lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd .  | 
2462  | 
||
2463  | 
lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm .  | 
|
| 62345 | 2464  | 
|
2465  | 
end  | 
|
| 63489 | 2466  | 
|
| 45264 | 2467  | 
instance ..  | 
| 60686 | 2468  | 
|
| 21256 | 2469  | 
end  | 
| 45264 | 2470  | 
|
| 
61856
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2471  | 
lifting_update integer.lifting  | 
| 
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2472  | 
lifting_forget integer.lifting  | 
| 
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2473  | 
|
| 62345 | 2474  | 
context  | 
2475  | 
includes integer.lifting  | 
|
2476  | 
begin  | 
|
| 
61856
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2477  | 
|
| 63489 | 2478  | 
lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"  | 
| 62345 | 2479  | 
by transfer (fact gcd_code_int)  | 
| 
61856
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2480  | 
|
| 63489 | 2481  | 
lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b"  | 
2482  | 
for a b :: integer  | 
|
| 62345 | 2483  | 
by transfer (fact lcm_altdef_int)  | 
| 
61856
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2484  | 
|
| 
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2485  | 
end  | 
| 
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2486  | 
|
| 63489 | 2487  | 
code_printing  | 
2488  | 
constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup>  | 
|
2489  | 
(OCaml) "Big'_int.gcd'_big'_int"  | 
|
| 
61856
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2490  | 
and (Haskell) "Prelude.gcd"  | 
| 
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2491  | 
and (Scala) "_.gcd'((_)')"  | 
| 61975 | 2492  | 
\<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close>  | 
| 
61856
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2493  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2494  | 
text \<open>Some code equations\<close>  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2495  | 
|
| 
62429
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
2496  | 
lemmas Lcm_set_nat [code, code_unfold] = Lcm_set[where ?'a = nat]  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
2497  | 
lemmas Gcd_set_nat [code] = Gcd_set[where ?'a = nat]  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
2498  | 
lemmas Lcm_set_int [code, code_unfold] = Lcm_set[where ?'a = int]  | 
| 
 
25271ff79171
Tuned Euclidean Rings/GCD rings
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
62353 
diff
changeset
 | 
2499  | 
lemmas Gcd_set_int [code] = Gcd_set[where ?'a = int]  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2500  | 
|
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2501  | 
|
| 63489 | 2502  | 
text \<open>Fact aliases.\<close>  | 
2503  | 
||
2504  | 
lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0"  | 
|
2505  | 
for m n :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2506  | 
by (fact lcm_eq_0_iff)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2507  | 
|
| 63489 | 2508  | 
lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0"  | 
2509  | 
for m n :: int  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2510  | 
by (fact lcm_eq_0_iff)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2511  | 
|
| 63489 | 2512  | 
lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n"  | 
2513  | 
for k m n :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2514  | 
by (fact dvd_lcmI1)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2515  | 
|
| 63489 | 2516  | 
lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n"  | 
2517  | 
for k m n :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2518  | 
by (fact dvd_lcmI2)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2519  | 
|
| 63489 | 2520  | 
lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n"  | 
2521  | 
for i m n :: int  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2522  | 
by (fact dvd_lcmI1)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2523  | 
|
| 63489 | 2524  | 
lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n"  | 
2525  | 
for i m n :: int  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2526  | 
by (fact dvd_lcmI2)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2527  | 
|
| 63489 | 2528  | 
lemma coprime_exp2_nat [intro]: "coprime a b \<Longrightarrow> coprime (a^n) (b^m)"  | 
2529  | 
for a b :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2530  | 
by (fact coprime_exp2)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2531  | 
|
| 63489 | 2532  | 
lemma coprime_exp2_int [intro]: "coprime a b \<Longrightarrow> coprime (a^n) (b^m)"  | 
2533  | 
for a b :: int  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2534  | 
by (fact coprime_exp2)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2535  | 
|
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2536  | 
lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat]  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2537  | 
lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int]  | 
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2538  | 
lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat]  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2539  | 
lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int]  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2540  | 
|
| 63489 | 2541  | 
lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M"  | 
2542  | 
for M :: "int set"  | 
|
2543  | 
by (fact dvd_Lcm)  | 
|
2544  | 
||
2545  | 
lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x"  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2546  | 
by (fact gcd_neg1_int)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2547  | 
|
| 63489 | 2548  | 
lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)"  | 
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2549  | 
by (fact gcd_neg2_int)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2550  | 
|
| 63489 | 2551  | 
lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x"  | 
2552  | 
for x y :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2553  | 
by (fact gcd_nat.absorb1)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2554  | 
|
| 63489 | 2555  | 
lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y"  | 
2556  | 
for x y :: nat  | 
|
| 
62344
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2557  | 
by (fact gcd_nat.absorb2)  | 
| 
 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 
haftmann 
parents: 
62343 
diff
changeset
 | 
2558  | 
|
| 
62353
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2559  | 
lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat]  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2560  | 
lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat]  | 
| 
 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 
haftmann 
parents: 
62350 
diff
changeset
 | 
2561  | 
lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int]  | 
| 62345 | 2562  | 
|
| 
61856
 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 
Andreas Lochbihler 
parents: 
61799 
diff
changeset
 | 
2563  | 
end  |