src/HOL/Induct/Infinitely_Branching_Tree.thy
author Manuel Eberl <eberlm@in.tum.de>
Sat, 30 Nov 2019 13:47:33 +0100
changeset 71189 954ee5acaae0
parent 65562 f9753d949afc
permissions -rw-r--r--
Split off new HOL-Complex_Analysis session from HOL-Analysis
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
     1
(*  Title:      HOL/Induct/Infinitely_Branching_Tree.thy
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
     2
    Author:     Stefan Berghofer, TU Muenchen
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
7018
ae18bb3075c3 Infinitely branching trees.
berghofe
parents:
diff changeset
     4
*)
ae18bb3075c3 Infinitely branching trees.
berghofe
parents:
diff changeset
     5
60530
44f9873d6f6f isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
     6
section \<open>Infinitely branching trees\<close>
11046
b5f5942781a0 Induct: converted some theories to new-style format;
wenzelm
parents: 7018
diff changeset
     7
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
     8
theory Infinitely_Branching_Tree
31602
59df8222c204 tuned header
haftmann
parents: 21404
diff changeset
     9
imports Main
59df8222c204 tuned header
haftmann
parents: 21404
diff changeset
    10
begin
7018
ae18bb3075c3 Infinitely branching trees.
berghofe
parents:
diff changeset
    11
58310
91ea607a34d8 updated news
blanchet
parents: 58249
diff changeset
    12
datatype 'a tree =
11046
b5f5942781a0 Induct: converted some theories to new-style format;
wenzelm
parents: 7018
diff changeset
    13
    Atom 'a
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    14
  | Branch "nat \<Rightarrow> 'a tree"
7018
ae18bb3075c3 Infinitely branching trees.
berghofe
parents:
diff changeset
    15
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    16
primrec map_tree :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a tree \<Rightarrow> 'b tree"
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    17
  where
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    18
    "map_tree f (Atom a) = Atom (f a)"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    19
  | "map_tree f (Branch ts) = Branch (\<lambda>x. map_tree f (ts x))"
11046
b5f5942781a0 Induct: converted some theories to new-style format;
wenzelm
parents: 7018
diff changeset
    20
b5f5942781a0 Induct: converted some theories to new-style format;
wenzelm
parents: 7018
diff changeset
    21
lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g \<circ> f) t"
12171
dc87f33db447 tuned inductions;
wenzelm
parents: 11649
diff changeset
    22
  by (induct t) simp_all
7018
ae18bb3075c3 Infinitely branching trees.
berghofe
parents:
diff changeset
    23
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    24
primrec exists_tree :: "('a \<Rightarrow> bool) \<Rightarrow> 'a tree \<Rightarrow> bool"
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    25
  where
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    26
    "exists_tree P (Atom a) = P a"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    27
  | "exists_tree P (Branch ts) = (\<exists>x. exists_tree P (ts x))"
11046
b5f5942781a0 Induct: converted some theories to new-style format;
wenzelm
parents: 7018
diff changeset
    28
b5f5942781a0 Induct: converted some theories to new-style format;
wenzelm
parents: 7018
diff changeset
    29
lemma exists_map:
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    30
  "(\<And>x. P x \<Longrightarrow> Q (f x)) \<Longrightarrow>
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    31
    exists_tree P ts \<Longrightarrow> exists_tree Q (map_tree f ts)"
12171
dc87f33db447 tuned inductions;
wenzelm
parents: 11649
diff changeset
    32
  by (induct ts) auto
7018
ae18bb3075c3 Infinitely branching trees.
berghofe
parents:
diff changeset
    33
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    34
60530
44f9873d6f6f isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    35
subsection\<open>The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.\<close>
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    36
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    37
datatype brouwer = Zero | Succ brouwer | Lim "nat \<Rightarrow> brouwer"
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    38
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    39
text \<open>Addition of ordinals\<close>
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    40
primrec add :: "brouwer \<Rightarrow> brouwer \<Rightarrow> brouwer"
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    41
  where
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    42
    "add i Zero = i"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    43
  | "add i (Succ j) = Succ (add i j)"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    44
  | "add i (Lim f) = Lim (\<lambda>n. add i (f n))"
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    45
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    46
lemma add_assoc: "add (add i j) k = add i (add j k)"
18242
2215049cd29c tuned induct proofs;
wenzelm
parents: 16417
diff changeset
    47
  by (induct k) auto
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    48
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    49
text \<open>Multiplication of ordinals\<close>
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    50
primrec mult :: "brouwer \<Rightarrow> brouwer \<Rightarrow> brouwer"
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    51
  where
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    52
    "mult i Zero = Zero"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    53
  | "mult i (Succ j) = add (mult i j) i"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    54
  | "mult i (Lim f) = Lim (\<lambda>n. mult i (f n))"
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    55
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    56
lemma add_mult_distrib: "mult i (add j k) = add (mult i j) (mult i k)"
18242
2215049cd29c tuned induct proofs;
wenzelm
parents: 16417
diff changeset
    57
  by (induct k) (auto simp add: add_assoc)
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    58
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    59
lemma mult_assoc: "mult (mult i j) k = mult i (mult j k)"
18242
2215049cd29c tuned induct proofs;
wenzelm
parents: 16417
diff changeset
    60
  by (induct k) (auto simp add: add_mult_distrib)
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    61
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    62
text \<open>We could probably instantiate some axiomatic type classes and use
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    63
  the standard infix operators.\<close>
16078
e1364521a250 new Brouwer ordinal example
paulson
parents: 14981
diff changeset
    64
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    65
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    66
subsection \<open>A WF Ordering for The Brouwer ordinals (Michael Compton)\<close>
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    67
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    68
text \<open>To use the function package we need an ordering on the Brouwer
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    69
  ordinals.  Start with a predecessor relation and form its transitive
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    70
  closure.\<close>
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    71
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    72
definition brouwer_pred :: "(brouwer \<times> brouwer) set"
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    73
  where "brouwer_pred = (\<Union>i. {(m, n). n = Succ m \<or> (\<exists>f. n = Lim f \<and> m = f i)})"
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    74
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    75
definition brouwer_order :: "(brouwer \<times> brouwer) set"
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    76
  where "brouwer_order = brouwer_pred\<^sup>+"
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    77
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    78
lemma wf_brouwer_pred: "wf brouwer_pred"
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    79
  unfolding wf_def brouwer_pred_def
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    80
  apply clarify
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    81
  apply (induct_tac x)
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    82
    apply blast+
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    83
  done
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    84
35419
d78659d1723e more recdef (and old primrec) hunting
krauss
parents: 31602
diff changeset
    85
lemma wf_brouwer_order[simp]: "wf brouwer_order"
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    86
  unfolding brouwer_order_def
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    87
  by (rule wf_trancl[OF wf_brouwer_pred])
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    88
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    89
lemma [simp]: "(j, Succ j) \<in> brouwer_order"
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    90
  by (auto simp add: brouwer_order_def brouwer_pred_def)
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
    91
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    92
lemma [simp]: "(f n, Lim f) \<in> brouwer_order"
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    93
  by (auto simp add: brouwer_order_def brouwer_pred_def)
35419
d78659d1723e more recdef (and old primrec) hunting
krauss
parents: 31602
diff changeset
    94
60532
7fb5b7dc8332 misc tuning;
wenzelm
parents: 60530
diff changeset
    95
text \<open>Example of a general function\<close>
46914
c2ca2c3d23a6 misc tuning;
wenzelm
parents: 39246
diff changeset
    96
function add2 :: "brouwer \<Rightarrow> brouwer \<Rightarrow> brouwer"
65562
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    97
  where
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    98
    "add2 i Zero = i"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
    99
  | "add2 i (Succ j) = Succ (add2 i j)"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
   100
  | "add2 i (Lim f) = Lim (\<lambda>n. add2 i (f n))"
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
   101
  by pat_completeness auto
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
   102
termination
f9753d949afc renamed theory to avoid conflict with loaded theory "Tree" from HOL-Library;
wenzelm
parents: 60532
diff changeset
   103
  by (relation "inv_image brouwer_order snd") auto
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
   104
39246
9e58f0499f57 modernized primrec
haftmann
parents: 35439
diff changeset
   105
lemma add2_assoc: "add2 (add2 i j) k = add2 i (add2 j k)"
18242
2215049cd29c tuned induct proofs;
wenzelm
parents: 16417
diff changeset
   106
  by (induct k) auto
16174
a55c796b1f79 ordering for the ordinals
paulson
parents: 16078
diff changeset
   107
7018
ae18bb3075c3 Infinitely branching trees.
berghofe
parents:
diff changeset
   108
end