author | wenzelm |
Sat, 04 Nov 2017 19:44:28 +0100 | |
changeset 67007 | 978c584609de |
parent 61980 | 6b780867d426 |
child 67443 | 3abf6a722518 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Cardinal_AC.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
484 | 3 |
Copyright 1994 University of Cambridge |
4 |
||
13134 | 5 |
These results help justify infinite-branching datatypes |
484 | 6 |
*) |
7 |
||
60770 | 8 |
section\<open>Cardinal Arithmetic Using AC\<close> |
13328 | 9 |
|
16417 | 10 |
theory Cardinal_AC imports CardinalArith Zorn begin |
13134 | 11 |
|
60770 | 12 |
subsection\<open>Strengthened Forms of Existing Theorems on Cardinals\<close> |
13134 | 13 |
|
46954 | 14 |
lemma cardinal_eqpoll: "|A| \<approx> A" |
13134 | 15 |
apply (rule AC_well_ord [THEN exE]) |
16 |
apply (erule well_ord_cardinal_eqpoll) |
|
17 |
done |
|
18 |
||
60770 | 19 |
text\<open>The theorem @{term "||A|| = |A|"}\<close> |
45602 | 20 |
lemmas cardinal_idem = cardinal_eqpoll [THEN cardinal_cong, simp] |
13134 | 21 |
|
46954 | 22 |
lemma cardinal_eqE: "|X| = |Y| ==> X \<approx> Y" |
13134 | 23 |
apply (rule AC_well_ord [THEN exE]) |
24 |
apply (rule AC_well_ord [THEN exE]) |
|
13269 | 25 |
apply (rule well_ord_cardinal_eqE, assumption+) |
13134 | 26 |
done |
27 |
||
46954 | 28 |
lemma cardinal_eqpoll_iff: "|X| = |Y| \<longleftrightarrow> X \<approx> Y" |
13269 | 29 |
by (blast intro: cardinal_cong cardinal_eqE) |
13134 | 30 |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13356
diff
changeset
|
31 |
lemma cardinal_disjoint_Un: |
46820 | 32 |
"[| |A|=|B|; |C|=|D|; A \<inter> C = 0; B \<inter> D = 0 |] |
33 |
==> |A \<union> C| = |B \<union> D|" |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13356
diff
changeset
|
34 |
by (simp add: cardinal_eqpoll_iff eqpoll_disjoint_Un) |
13134 | 35 |
|
46954 | 36 |
lemma lepoll_imp_Card_le: "A \<lesssim> B ==> |A| \<le> |B|" |
13134 | 37 |
apply (rule AC_well_ord [THEN exE]) |
13269 | 38 |
apply (erule well_ord_lepoll_imp_Card_le, assumption) |
13134 | 39 |
done |
40 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
41 |
lemma cadd_assoc: "(i \<oplus> j) \<oplus> k = i \<oplus> (j \<oplus> k)" |
13134 | 42 |
apply (rule AC_well_ord [THEN exE]) |
43 |
apply (rule AC_well_ord [THEN exE]) |
|
44 |
apply (rule AC_well_ord [THEN exE]) |
|
13269 | 45 |
apply (rule well_ord_cadd_assoc, assumption+) |
13134 | 46 |
done |
47 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
48 |
lemma cmult_assoc: "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)" |
13134 | 49 |
apply (rule AC_well_ord [THEN exE]) |
50 |
apply (rule AC_well_ord [THEN exE]) |
|
51 |
apply (rule AC_well_ord [THEN exE]) |
|
13269 | 52 |
apply (rule well_ord_cmult_assoc, assumption+) |
13134 | 53 |
done |
54 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
55 |
lemma cadd_cmult_distrib: "(i \<oplus> j) \<otimes> k = (i \<otimes> k) \<oplus> (j \<otimes> k)" |
13134 | 56 |
apply (rule AC_well_ord [THEN exE]) |
57 |
apply (rule AC_well_ord [THEN exE]) |
|
58 |
apply (rule AC_well_ord [THEN exE]) |
|
13269 | 59 |
apply (rule well_ord_cadd_cmult_distrib, assumption+) |
13134 | 60 |
done |
61 |
||
46954 | 62 |
lemma InfCard_square_eq: "InfCard(|A|) ==> A*A \<approx> A" |
13134 | 63 |
apply (rule AC_well_ord [THEN exE]) |
13269 | 64 |
apply (erule well_ord_InfCard_square_eq, assumption) |
13134 | 65 |
done |
66 |
||
67 |
||
60770 | 68 |
subsection \<open>The relationship between cardinality and le-pollence\<close> |
13134 | 69 |
|
46954 | 70 |
lemma Card_le_imp_lepoll: |
71 |
assumes "|A| \<le> |B|" shows "A \<lesssim> B" |
|
72 |
proof - |
|
73 |
have "A \<approx> |A|" |
|
74 |
by (rule cardinal_eqpoll [THEN eqpoll_sym]) |
|
75 |
also have "... \<lesssim> |B|" |
|
76 |
by (rule le_imp_subset [THEN subset_imp_lepoll]) (rule assms) |
|
77 |
also have "... \<approx> B" |
|
78 |
by (rule cardinal_eqpoll) |
|
79 |
finally show ?thesis . |
|
80 |
qed |
|
13134 | 81 |
|
46954 | 82 |
lemma le_Card_iff: "Card(K) ==> |A| \<le> K \<longleftrightarrow> A \<lesssim> K" |
46820 | 83 |
apply (erule Card_cardinal_eq [THEN subst], rule iffI, |
13269 | 84 |
erule Card_le_imp_lepoll) |
46820 | 85 |
apply (erule lepoll_imp_Card_le) |
13134 | 86 |
done |
87 |
||
46954 | 88 |
lemma cardinal_0_iff_0 [simp]: "|A| = 0 \<longleftrightarrow> A = 0" |
46820 | 89 |
apply auto |
14046 | 90 |
apply (drule cardinal_0 [THEN ssubst]) |
91 |
apply (blast intro: eqpoll_0_iff [THEN iffD1] cardinal_eqpoll_iff [THEN iffD1]) |
|
92 |
done |
|
93 |
||
46954 | 94 |
lemma cardinal_lt_iff_lesspoll: |
95 |
assumes i: "Ord(i)" shows "i < |A| \<longleftrightarrow> i \<prec> A" |
|
96 |
proof |
|
97 |
assume "i < |A|" |
|
98 |
hence "i \<prec> |A|" |
|
99 |
by (blast intro: lt_Card_imp_lesspoll Card_cardinal) |
|
100 |
also have "... \<approx> A" |
|
101 |
by (rule cardinal_eqpoll) |
|
102 |
finally show "i \<prec> A" . |
|
103 |
next |
|
104 |
assume "i \<prec> A" |
|
105 |
also have "... \<approx> |A|" |
|
106 |
by (blast intro: cardinal_eqpoll eqpoll_sym) |
|
107 |
finally have "i \<prec> |A|" . |
|
108 |
thus "i < |A|" using i |
|
109 |
by (force intro: cardinal_lt_imp_lt lesspoll_cardinal_lt) |
|
110 |
qed |
|
14046 | 111 |
|
112 |
lemma cardinal_le_imp_lepoll: " i \<le> |A| ==> i \<lesssim> A" |
|
46954 | 113 |
by (blast intro: lt_Ord Card_le_imp_lepoll Ord_cardinal_le le_trans) |
14046 | 114 |
|
115 |
||
60770 | 116 |
subsection\<open>Other Applications of AC\<close> |
14046 | 117 |
|
47052 | 118 |
lemma surj_implies_inj: |
119 |
assumes f: "f \<in> surj(X,Y)" shows "\<exists>g. g \<in> inj(Y,X)" |
|
120 |
proof - |
|
121 |
from f AC_Pi [of Y "%y. f-``{y}"] |
|
61980 | 122 |
obtain z where z: "z \<in> (\<Prod>y\<in>Y. f -`` {y})" |
47052 | 123 |
by (auto simp add: surj_def) (fast dest: apply_Pair) |
124 |
show ?thesis |
|
125 |
proof |
|
126 |
show "z \<in> inj(Y, X)" using z surj_is_fun [OF f] |
|
127 |
by (blast dest: apply_type Pi_memberD |
|
128 |
intro: apply_equality Pi_type f_imp_injective) |
|
129 |
qed |
|
130 |
qed |
|
13134 | 131 |
|
60770 | 132 |
text\<open>Kunen's Lemma 10.20\<close> |
47052 | 133 |
lemma surj_implies_cardinal_le: |
134 |
assumes f: "f \<in> surj(X,Y)" shows "|Y| \<le> |X|" |
|
135 |
proof (rule lepoll_imp_Card_le) |
|
136 |
from f [THEN surj_implies_inj] obtain g where "g \<in> inj(Y,X)" .. |
|
137 |
thus "Y \<lesssim> X" |
|
138 |
by (auto simp add: lepoll_def) |
|
139 |
qed |
|
13134 | 140 |
|
60770 | 141 |
text\<open>Kunen's Lemma 10.21\<close> |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13356
diff
changeset
|
142 |
lemma cardinal_UN_le: |
46963 | 143 |
assumes K: "InfCard(K)" |
144 |
shows "(!!i. i\<in>K ==> |X(i)| \<le> K) ==> |\<Union>i\<in>K. X(i)| \<le> K" |
|
145 |
proof (simp add: K InfCard_is_Card le_Card_iff) |
|
146 |
have [intro]: "Ord(K)" by (blast intro: InfCard_is_Card Card_is_Ord K) |
|
147 |
assume "!!i. i\<in>K ==> X(i) \<lesssim> K" |
|
148 |
hence "!!i. i\<in>K ==> \<exists>f. f \<in> inj(X(i), K)" by (simp add: lepoll_def) |
|
61980 | 149 |
with AC_Pi obtain f where f: "f \<in> (\<Prod>i\<in>K. inj(X(i), K))" |
47052 | 150 |
by force |
46963 | 151 |
{ fix z |
152 |
assume z: "z \<in> (\<Union>i\<in>K. X(i))" |
|
153 |
then obtain i where i: "i \<in> K" "Ord(i)" "z \<in> X(i)" |
|
154 |
by (blast intro: Ord_in_Ord [of K]) |
|
61394 | 155 |
hence "(\<mu> i. z \<in> X(i)) \<le> i" by (fast intro: Least_le) |
156 |
hence "(\<mu> i. z \<in> X(i)) < K" by (best intro: lt_trans1 ltI i) |
|
157 |
hence "(\<mu> i. z \<in> X(i)) \<in> K" and "z \<in> X(\<mu> i. z \<in> X(i))" |
|
46963 | 158 |
by (auto intro: LeastI ltD i) |
159 |
} note mems = this |
|
160 |
have "(\<Union>i\<in>K. X(i)) \<lesssim> K \<times> K" |
|
161 |
proof (unfold lepoll_def) |
|
162 |
show "\<exists>f. f \<in> inj(\<Union>RepFun(K, X), K \<times> K)" |
|
163 |
apply (rule exI) |
|
61394 | 164 |
apply (rule_tac c = "%z. \<langle>\<mu> i. z \<in> X(i), f ` (\<mu> i. z \<in> X(i)) ` z\<rangle>" |
46963 | 165 |
and d = "%\<langle>i,j\<rangle>. converse (f`i) ` j" in lam_injective) |
166 |
apply (force intro: f inj_is_fun mems apply_type Perm.left_inverse)+ |
|
167 |
done |
|
168 |
qed |
|
169 |
also have "... \<approx> K" |
|
170 |
by (simp add: K InfCard_square_eq InfCard_is_Card Card_cardinal_eq) |
|
171 |
finally show "(\<Union>i\<in>K. X(i)) \<lesssim> K" . |
|
172 |
qed |
|
13134 | 173 |
|
60770 | 174 |
text\<open>The same again, using @{term csucc}\<close> |
13134 | 175 |
lemma cardinal_UN_lt_csucc: |
47071
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
176 |
"[| InfCard(K); \<And>i. i\<in>K \<Longrightarrow> |X(i)| < csucc(K) |] |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13356
diff
changeset
|
177 |
==> |\<Union>i\<in>K. X(i)| < csucc(K)" |
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13356
diff
changeset
|
178 |
by (simp add: Card_lt_csucc_iff cardinal_UN_le InfCard_is_Card Card_cardinal) |
13134 | 179 |
|
60770 | 180 |
text\<open>The same again, for a union of ordinals. In use, j(i) is a bit like rank(i), |
181 |
the least ordinal j such that i:Vfrom(A,j).\<close> |
|
13134 | 182 |
lemma cardinal_UN_Ord_lt_csucc: |
47071
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
183 |
"[| InfCard(K); \<And>i. i\<in>K \<Longrightarrow> j(i) < csucc(K) |] |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13356
diff
changeset
|
184 |
==> (\<Union>i\<in>K. j(i)) < csucc(K)" |
13269 | 185 |
apply (rule cardinal_UN_lt_csucc [THEN Card_lt_imp_lt], assumption) |
13134 | 186 |
apply (blast intro: Ord_cardinal_le [THEN lt_trans1] elim: ltE) |
187 |
apply (blast intro!: Ord_UN elim: ltE) |
|
188 |
apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN Card_csucc]) |
|
189 |
done |
|
190 |
||
191 |
||
60770 | 192 |
subsection\<open>The Main Result for Infinite-Branching Datatypes\<close> |
13134 | 193 |
|
60770 | 194 |
text\<open>As above, but the index set need not be a cardinal. Work |
47071
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
195 |
backwards along the injection from @{term W} into @{term K}, given |
60770 | 196 |
that @{term"W\<noteq>0"}.\<close> |
46954 | 197 |
|
13134 | 198 |
lemma inj_UN_subset: |
46954 | 199 |
assumes f: "f \<in> inj(A,B)" and a: "a \<in> A" |
200 |
shows "(\<Union>x\<in>A. C(x)) \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f)`y else a))" |
|
201 |
proof (rule UN_least) |
|
202 |
fix x |
|
203 |
assume x: "x \<in> A" |
|
204 |
hence fx: "f ` x \<in> B" by (blast intro: f inj_is_fun [THEN apply_type]) |
|
205 |
have "C(x) \<subseteq> C(if f ` x \<in> range(f) then converse(f) ` (f ` x) else a)" |
|
206 |
using f x by (simp add: inj_is_fun [THEN apply_rangeI]) |
|
207 |
also have "... \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f) ` y else a))" |
|
208 |
by (rule UN_upper [OF fx]) |
|
209 |
finally show "C(x) \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f)`y else a))" . |
|
210 |
qed |
|
13134 | 211 |
|
47071
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
212 |
theorem le_UN_Ord_lt_csucc: |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
213 |
assumes IK: "InfCard(K)" and WK: "|W| \<le> K" and j: "\<And>w. w\<in>W \<Longrightarrow> j(w) < csucc(K)" |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
214 |
shows "(\<Union>w\<in>W. j(w)) < csucc(K)" |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
215 |
proof - |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
216 |
have CK: "Card(K)" |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
217 |
by (simp add: InfCard_is_Card IK) |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
218 |
then obtain f where f: "f \<in> inj(W, K)" using WK |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
219 |
by(auto simp add: le_Card_iff lepoll_def) |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
220 |
have OU: "Ord(\<Union>w\<in>W. j(w))" using j |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
221 |
by (blast elim: ltE) |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
222 |
note lt_subset_trans [OF _ _ OU, trans] |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
223 |
show ?thesis |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
224 |
proof (cases "W=0") |
61798 | 225 |
case True \<comment>\<open>solve the easy 0 case\<close> |
47071
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
226 |
thus ?thesis by (simp add: CK Card_is_Ord Card_csucc Ord_0_lt_csucc) |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
227 |
next |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
228 |
case False |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
229 |
then obtain x where x: "x \<in> W" by blast |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
230 |
have "(\<Union>x\<in>W. j(x)) \<subseteq> (\<Union>k\<in>K. j(if k \<in> range(f) then converse(f) ` k else x))" |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
231 |
by (rule inj_UN_subset [OF f x]) |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
232 |
also have "... < csucc(K)" using IK |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
233 |
proof (rule cardinal_UN_Ord_lt_csucc) |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
234 |
fix k |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
235 |
assume "k \<in> K" |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
236 |
thus "j(if k \<in> range(f) then converse(f) ` k else x) < csucc(K)" using f x j |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
237 |
by (simp add: inj_converse_fun [THEN apply_type]) |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
238 |
qed |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
239 |
finally show ?thesis . |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
240 |
qed |
2884ee1ffbf0
More structured proofs for infinite cardinalities
paulson
parents:
47052
diff
changeset
|
241 |
qed |
13134 | 242 |
|
243 |
end |