(* Title: ZF/Cardinal_AC.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
These results help justify infinite-branching datatypes
*)
section\<open>Cardinal Arithmetic Using AC\<close>
theory Cardinal_AC imports CardinalArith Zorn begin
subsection\<open>Strengthened Forms of Existing Theorems on Cardinals\<close>
lemma cardinal_eqpoll: "|A| \<approx> A"
apply (rule AC_well_ord [THEN exE])
apply (erule well_ord_cardinal_eqpoll)
done
text\<open>The theorem @{term "||A|| = |A|"}\<close>
lemmas cardinal_idem = cardinal_eqpoll [THEN cardinal_cong, simp]
lemma cardinal_eqE: "|X| = |Y| ==> X \<approx> Y"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cardinal_eqE, assumption+)
done
lemma cardinal_eqpoll_iff: "|X| = |Y| \<longleftrightarrow> X \<approx> Y"
by (blast intro: cardinal_cong cardinal_eqE)
lemma cardinal_disjoint_Un:
"[| |A|=|B|; |C|=|D|; A \<inter> C = 0; B \<inter> D = 0 |]
==> |A \<union> C| = |B \<union> D|"
by (simp add: cardinal_eqpoll_iff eqpoll_disjoint_Un)
lemma lepoll_imp_Card_le: "A \<lesssim> B ==> |A| \<le> |B|"
apply (rule AC_well_ord [THEN exE])
apply (erule well_ord_lepoll_imp_Card_le, assumption)
done
lemma cadd_assoc: "(i \<oplus> j) \<oplus> k = i \<oplus> (j \<oplus> k)"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cadd_assoc, assumption+)
done
lemma cmult_assoc: "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cmult_assoc, assumption+)
done
lemma cadd_cmult_distrib: "(i \<oplus> j) \<otimes> k = (i \<otimes> k) \<oplus> (j \<otimes> k)"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cadd_cmult_distrib, assumption+)
done
lemma InfCard_square_eq: "InfCard(|A|) ==> A*A \<approx> A"
apply (rule AC_well_ord [THEN exE])
apply (erule well_ord_InfCard_square_eq, assumption)
done
subsection \<open>The relationship between cardinality and le-pollence\<close>
lemma Card_le_imp_lepoll:
assumes "|A| \<le> |B|" shows "A \<lesssim> B"
proof -
have "A \<approx> |A|"
by (rule cardinal_eqpoll [THEN eqpoll_sym])
also have "... \<lesssim> |B|"
by (rule le_imp_subset [THEN subset_imp_lepoll]) (rule assms)
also have "... \<approx> B"
by (rule cardinal_eqpoll)
finally show ?thesis .
qed
lemma le_Card_iff: "Card(K) ==> |A| \<le> K \<longleftrightarrow> A \<lesssim> K"
apply (erule Card_cardinal_eq [THEN subst], rule iffI,
erule Card_le_imp_lepoll)
apply (erule lepoll_imp_Card_le)
done
lemma cardinal_0_iff_0 [simp]: "|A| = 0 \<longleftrightarrow> A = 0"
apply auto
apply (drule cardinal_0 [THEN ssubst])
apply (blast intro: eqpoll_0_iff [THEN iffD1] cardinal_eqpoll_iff [THEN iffD1])
done
lemma cardinal_lt_iff_lesspoll:
assumes i: "Ord(i)" shows "i < |A| \<longleftrightarrow> i \<prec> A"
proof
assume "i < |A|"
hence "i \<prec> |A|"
by (blast intro: lt_Card_imp_lesspoll Card_cardinal)
also have "... \<approx> A"
by (rule cardinal_eqpoll)
finally show "i \<prec> A" .
next
assume "i \<prec> A"
also have "... \<approx> |A|"
by (blast intro: cardinal_eqpoll eqpoll_sym)
finally have "i \<prec> |A|" .
thus "i < |A|" using i
by (force intro: cardinal_lt_imp_lt lesspoll_cardinal_lt)
qed
lemma cardinal_le_imp_lepoll: " i \<le> |A| ==> i \<lesssim> A"
by (blast intro: lt_Ord Card_le_imp_lepoll Ord_cardinal_le le_trans)
subsection\<open>Other Applications of AC\<close>
lemma surj_implies_inj:
assumes f: "f \<in> surj(X,Y)" shows "\<exists>g. g \<in> inj(Y,X)"
proof -
from f AC_Pi [of Y "%y. f-``{y}"]
obtain z where z: "z \<in> (\<Prod>y\<in>Y. f -`` {y})"
by (auto simp add: surj_def) (fast dest: apply_Pair)
show ?thesis
proof
show "z \<in> inj(Y, X)" using z surj_is_fun [OF f]
by (blast dest: apply_type Pi_memberD
intro: apply_equality Pi_type f_imp_injective)
qed
qed
text\<open>Kunen's Lemma 10.20\<close>
lemma surj_implies_cardinal_le:
assumes f: "f \<in> surj(X,Y)" shows "|Y| \<le> |X|"
proof (rule lepoll_imp_Card_le)
from f [THEN surj_implies_inj] obtain g where "g \<in> inj(Y,X)" ..
thus "Y \<lesssim> X"
by (auto simp add: lepoll_def)
qed
text\<open>Kunen's Lemma 10.21\<close>
lemma cardinal_UN_le:
assumes K: "InfCard(K)"
shows "(!!i. i\<in>K ==> |X(i)| \<le> K) ==> |\<Union>i\<in>K. X(i)| \<le> K"
proof (simp add: K InfCard_is_Card le_Card_iff)
have [intro]: "Ord(K)" by (blast intro: InfCard_is_Card Card_is_Ord K)
assume "!!i. i\<in>K ==> X(i) \<lesssim> K"
hence "!!i. i\<in>K ==> \<exists>f. f \<in> inj(X(i), K)" by (simp add: lepoll_def)
with AC_Pi obtain f where f: "f \<in> (\<Prod>i\<in>K. inj(X(i), K))"
by force
{ fix z
assume z: "z \<in> (\<Union>i\<in>K. X(i))"
then obtain i where i: "i \<in> K" "Ord(i)" "z \<in> X(i)"
by (blast intro: Ord_in_Ord [of K])
hence "(\<mu> i. z \<in> X(i)) \<le> i" by (fast intro: Least_le)
hence "(\<mu> i. z \<in> X(i)) < K" by (best intro: lt_trans1 ltI i)
hence "(\<mu> i. z \<in> X(i)) \<in> K" and "z \<in> X(\<mu> i. z \<in> X(i))"
by (auto intro: LeastI ltD i)
} note mems = this
have "(\<Union>i\<in>K. X(i)) \<lesssim> K \<times> K"
proof (unfold lepoll_def)
show "\<exists>f. f \<in> inj(\<Union>RepFun(K, X), K \<times> K)"
apply (rule exI)
apply (rule_tac c = "%z. \<langle>\<mu> i. z \<in> X(i), f ` (\<mu> i. z \<in> X(i)) ` z\<rangle>"
and d = "%\<langle>i,j\<rangle>. converse (f`i) ` j" in lam_injective)
apply (force intro: f inj_is_fun mems apply_type Perm.left_inverse)+
done
qed
also have "... \<approx> K"
by (simp add: K InfCard_square_eq InfCard_is_Card Card_cardinal_eq)
finally show "(\<Union>i\<in>K. X(i)) \<lesssim> K" .
qed
text\<open>The same again, using @{term csucc}\<close>
lemma cardinal_UN_lt_csucc:
"[| InfCard(K); \<And>i. i\<in>K \<Longrightarrow> |X(i)| < csucc(K) |]
==> |\<Union>i\<in>K. X(i)| < csucc(K)"
by (simp add: Card_lt_csucc_iff cardinal_UN_le InfCard_is_Card Card_cardinal)
text\<open>The same again, for a union of ordinals. In use, j(i) is a bit like rank(i),
the least ordinal j such that i:Vfrom(A,j).\<close>
lemma cardinal_UN_Ord_lt_csucc:
"[| InfCard(K); \<And>i. i\<in>K \<Longrightarrow> j(i) < csucc(K) |]
==> (\<Union>i\<in>K. j(i)) < csucc(K)"
apply (rule cardinal_UN_lt_csucc [THEN Card_lt_imp_lt], assumption)
apply (blast intro: Ord_cardinal_le [THEN lt_trans1] elim: ltE)
apply (blast intro!: Ord_UN elim: ltE)
apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN Card_csucc])
done
subsection\<open>The Main Result for Infinite-Branching Datatypes\<close>
text\<open>As above, but the index set need not be a cardinal. Work
backwards along the injection from @{term W} into @{term K}, given
that @{term"W\<noteq>0"}.\<close>
lemma inj_UN_subset:
assumes f: "f \<in> inj(A,B)" and a: "a \<in> A"
shows "(\<Union>x\<in>A. C(x)) \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f)`y else a))"
proof (rule UN_least)
fix x
assume x: "x \<in> A"
hence fx: "f ` x \<in> B" by (blast intro: f inj_is_fun [THEN apply_type])
have "C(x) \<subseteq> C(if f ` x \<in> range(f) then converse(f) ` (f ` x) else a)"
using f x by (simp add: inj_is_fun [THEN apply_rangeI])
also have "... \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f) ` y else a))"
by (rule UN_upper [OF fx])
finally show "C(x) \<subseteq> (\<Union>y\<in>B. C(if y \<in> range(f) then converse(f)`y else a))" .
qed
theorem le_UN_Ord_lt_csucc:
assumes IK: "InfCard(K)" and WK: "|W| \<le> K" and j: "\<And>w. w\<in>W \<Longrightarrow> j(w) < csucc(K)"
shows "(\<Union>w\<in>W. j(w)) < csucc(K)"
proof -
have CK: "Card(K)"
by (simp add: InfCard_is_Card IK)
then obtain f where f: "f \<in> inj(W, K)" using WK
by(auto simp add: le_Card_iff lepoll_def)
have OU: "Ord(\<Union>w\<in>W. j(w))" using j
by (blast elim: ltE)
note lt_subset_trans [OF _ _ OU, trans]
show ?thesis
proof (cases "W=0")
case True \<comment>\<open>solve the easy 0 case\<close>
thus ?thesis by (simp add: CK Card_is_Ord Card_csucc Ord_0_lt_csucc)
next
case False
then obtain x where x: "x \<in> W" by blast
have "(\<Union>x\<in>W. j(x)) \<subseteq> (\<Union>k\<in>K. j(if k \<in> range(f) then converse(f) ` k else x))"
by (rule inj_UN_subset [OF f x])
also have "... < csucc(K)" using IK
proof (rule cardinal_UN_Ord_lt_csucc)
fix k
assume "k \<in> K"
thus "j(if k \<in> range(f) then converse(f) ` k else x) < csucc(K)" using f x j
by (simp add: inj_converse_fun [THEN apply_type])
qed
finally show ?thesis .
qed
qed
end