| 
35762
 | 
     1  | 
(*  Title:      ZF/ex/CoUnit.thy
  | 
| 
1478
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
515
 | 
     3  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
12228
 | 
     6  | 
header {* Trivial codatatype definitions, one of which goes wrong! *}
 | 
| 
 | 
     7  | 
  | 
| 
16417
 | 
     8  | 
theory CoUnit imports Main begin
  | 
| 
515
 | 
     9  | 
  | 
| 
12228
 | 
    10  | 
text {*
 | 
| 
 | 
    11  | 
  See discussion in: L C Paulson.  A Concrete Final Coalgebra Theorem
  | 
| 
 | 
    12  | 
  for ZF Set Theory.  Report 334, Cambridge University Computer
  | 
| 
 | 
    13  | 
  Laboratory.  1994.
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
  \bigskip
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
  This degenerate definition does not work well because the one
  | 
| 
 | 
    18  | 
  constructor's definition is trivial!  The same thing occurs with
  | 
| 
 | 
    19  | 
  Aczel's Special Final Coalgebra Theorem.
  | 
| 
 | 
    20  | 
*}
  | 
| 
 | 
    21  | 
  | 
| 
515
 | 
    22  | 
consts
  | 
| 
1401
 | 
    23  | 
  counit :: i
  | 
| 
515
 | 
    24  | 
codatatype
  | 
| 
12228
 | 
    25  | 
  "counit" = Con ("x \<in> counit")
 | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
inductive_cases ConE: "Con(x) \<in> counit"
  | 
| 
 | 
    28  | 
  -- {* USELESS because folding on @{term "Con(xa) == xa"} fails. *}
 | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemma Con_iff: "Con(x) = Con(y) <-> x = y"
  | 
| 
 | 
    31  | 
  -- {* Proving freeness results. *}
 | 
| 
 | 
    32  | 
  by (auto elim!: counit.free_elims)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma counit_eq_univ: "counit = quniv(0)"
  | 
| 
 | 
    35  | 
  -- {* Should be a singleton, not everything! *}
 | 
| 
 | 
    36  | 
  apply (rule counit.dom_subset [THEN equalityI])
  | 
| 
 | 
    37  | 
  apply (rule subsetI)
  | 
| 
 | 
    38  | 
  apply (erule counit.coinduct)
  | 
| 
 | 
    39  | 
   apply (rule subset_refl)
  | 
| 
 | 
    40  | 
  apply (unfold counit.con_defs)
  | 
| 
 | 
    41  | 
  apply fast
  | 
| 
 | 
    42  | 
  done
  | 
| 
515
 | 
    43  | 
  | 
| 
 | 
    44  | 
  | 
| 
12228
 | 
    45  | 
text {*
 | 
| 
 | 
    46  | 
  \medskip A similar example, but the constructor is non-degenerate
  | 
| 
 | 
    47  | 
  and it works!  The resulting set is a singleton.
  | 
| 
 | 
    48  | 
*}
  | 
| 
515
 | 
    49  | 
  | 
| 
 | 
    50  | 
consts
  | 
| 
1401
 | 
    51  | 
  counit2 :: i
  | 
| 
515
 | 
    52  | 
codatatype
  | 
| 
12228
 | 
    53  | 
  "counit2" = Con2 ("x \<in> counit2", "y \<in> counit2")
 | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
inductive_cases Con2E: "Con2(x, y) \<in> counit2"
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma Con2_iff: "Con2(x, y) = Con2(x', y') <-> x = x' & y = y'"
  | 
| 
 | 
    59  | 
  -- {* Proving freeness results. *}
 | 
| 
 | 
    60  | 
  by (fast elim!: counit2.free_elims)
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma Con2_bnd_mono: "bnd_mono(univ(0), %x. Con2(x, x))"
  | 
| 
 | 
    63  | 
  apply (unfold counit2.con_defs)
  | 
| 
 | 
    64  | 
  apply (rule bnd_monoI)
  | 
| 
 | 
    65  | 
   apply (assumption | rule subset_refl QPair_subset_univ QPair_mono)+
  | 
| 
 | 
    66  | 
  done
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
lemma lfp_Con2_in_counit2: "lfp(univ(0), %x. Con2(x,x)) \<in> counit2"
  | 
| 
 | 
    69  | 
  apply (rule singletonI [THEN counit2.coinduct])
  | 
| 
 | 
    70  | 
  apply (rule qunivI [THEN singleton_subsetI])
  | 
| 
 | 
    71  | 
  apply (rule subset_trans [OF lfp_subset empty_subsetI [THEN univ_mono]])
  | 
| 
 | 
    72  | 
  apply (fast intro!: Con2_bnd_mono [THEN lfp_unfold])
  | 
| 
 | 
    73  | 
  done
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
lemma counit2_Int_Vset_subset [rule_format]:
  | 
| 
 | 
    76  | 
  "Ord(i) ==> \<forall>x y. x \<in> counit2 --> y \<in> counit2 --> x Int Vset(i) \<subseteq> y"
  | 
| 
 | 
    77  | 
  -- {* Lemma for proving finality. *}
 | 
| 
 | 
    78  | 
  apply (erule trans_induct)
  | 
| 
 | 
    79  | 
  apply (tactic "safe_tac subset_cs")
  | 
| 
 | 
    80  | 
  apply (erule counit2.cases)
  | 
| 
 | 
    81  | 
  apply (erule counit2.cases)
  | 
| 
 | 
    82  | 
  apply (unfold counit2.con_defs)
  | 
| 
 | 
    83  | 
  apply (tactic {* fast_tac (subset_cs
 | 
| 
24893
 | 
    84  | 
    addSIs [@{thm QPair_Int_Vset_subset_UN} RS @{thm subset_trans}, @{thm QPair_mono}]
 | 
| 
 | 
    85  | 
    addSEs [@{thm Ord_in_Ord}, @{thm Pair_inject}]) 1 *})
 | 
| 
12228
 | 
    86  | 
  done
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
lemma counit2_implies_equal: "[| x \<in> counit2;  y \<in> counit2 |] ==> x = y"
  | 
| 
 | 
    89  | 
  apply (rule equalityI)
  | 
| 
 | 
    90  | 
  apply (assumption | rule conjI counit2_Int_Vset_subset [THEN Int_Vset_subset])+
  | 
| 
 | 
    91  | 
  done
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
lemma counit2_eq_univ: "counit2 = {lfp(univ(0), %x. Con2(x,x))}"
 | 
| 
 | 
    94  | 
  apply (rule equalityI)
  | 
| 
 | 
    95  | 
   apply (rule_tac [2] lfp_Con2_in_counit2 [THEN singleton_subsetI])
  | 
| 
 | 
    96  | 
  apply (rule subsetI)
  | 
| 
 | 
    97  | 
  apply (drule lfp_Con2_in_counit2 [THEN counit2_implies_equal])
  | 
| 
 | 
    98  | 
  apply (erule subst)
  | 
| 
 | 
    99  | 
  apply (rule singletonI)
  | 
| 
 | 
   100  | 
  done
  | 
| 
515
 | 
   101  | 
  | 
| 
 | 
   102  | 
end
  |