| author | haftmann | 
| Sat, 13 Apr 2019 08:11:48 +0000 | |
| changeset 70146 | 9839da71621f | 
| parent 69144 | f13b82281715 | 
| child 73346 | 00e0f7724c06 | 
| permissions | -rw-r--r-- | 
| 
41141
 
ad923cdd4a5d
added example to exercise higher-order reasoning with Sledgehammer and Metis
 
blanchet 
parents: 
38991 
diff
changeset
 | 
1  | 
(* Title: HOL/Metis_Examples/Tarski.thy  | 
| 43197 | 2  | 
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory  | 
| 41144 | 3  | 
Author: Jasmin Blanchette, TU Muenchen  | 
| 23449 | 4  | 
|
| 43197 | 5  | 
Metis example featuring the full theorem of Tarski.  | 
| 23449 | 6  | 
*)  | 
7  | 
||
| 63167 | 8  | 
section \<open>Metis Example Featuring the Full Theorem of Tarski\<close>  | 
| 23449 | 9  | 
|
| 27368 | 10  | 
theory Tarski  | 
| 
68188
 
2af1f142f855
move FuncSet back to HOL-Library (amending 493b818e8e10)
 
immler 
parents: 
68072 
diff
changeset
 | 
11  | 
imports Main "HOL-Library.FuncSet"  | 
| 27368 | 12  | 
begin  | 
| 23449 | 13  | 
|
| 
50705
 
0e943b33d907
use new skolemizer for reconstructing skolemization steps in Isar proofs (because the old skolemizer messes up the order of the Skolem arguments)
 
blanchet 
parents: 
47040 
diff
changeset
 | 
14  | 
declare [[metis_new_skolem]]  | 
| 
42103
 
6066a35f6678
Metis examples use the new Skolemizer to test it
 
blanchet 
parents: 
41413 
diff
changeset
 | 
15  | 
|
| 23449 | 16  | 
(*Many of these higher-order problems appear to be impossible using the  | 
17  | 
current linkup. They often seem to need either higher-order unification  | 
|
18  | 
or explicit reasoning about connectives such as conjunction. The numerous  | 
|
19  | 
set comprehensions are to blame.*)  | 
|
20  | 
||
21  | 
record 'a potype =  | 
|
22  | 
pset :: "'a set"  | 
|
23  | 
  order :: "('a * 'a) set"
 | 
|
24  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
25  | 
definition monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
 | 
| 67613 | 26  | 
"monotone f A r == \<forall>x\<in>A. \<forall>y\<in>A. (x, y) \<in> r --> ((f x), (f y)) \<in> r"  | 
| 23449 | 27  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
28  | 
definition least :: "['a => bool, 'a potype] => 'a" where  | 
| 67613 | 29  | 
"least P po \<equiv> SOME x. x \<in> pset po \<and> P x \<and>  | 
30  | 
(\<forall>y \<in> pset po. P y \<longrightarrow> (x,y) \<in> order po)"  | 
|
| 23449 | 31  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
32  | 
definition greatest :: "['a => bool, 'a potype] => 'a" where  | 
| 67613 | 33  | 
"greatest P po \<equiv> SOME x. x \<in> pset po \<and> P x \<and>  | 
34  | 
(\<forall>y \<in> pset po. P y \<longrightarrow> (y,x) \<in> order po)"  | 
|
| 23449 | 35  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
36  | 
definition lub :: "['a set, 'a potype] => 'a" where  | 
| 67613 | 37  | 
"lub S po == least (\<lambda>x. \<forall>y\<in>S. (y,x) \<in> order po) po"  | 
| 23449 | 38  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
39  | 
definition glb :: "['a set, 'a potype] => 'a" where  | 
| 67613 | 40  | 
"glb S po \<equiv> greatest (\<lambda>x. \<forall>y\<in>S. (x,y) \<in> order po) po"  | 
| 23449 | 41  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
42  | 
definition isLub :: "['a set, 'a potype, 'a] => bool" where  | 
| 67613 | 43  | 
"isLub S po \<equiv> \<lambda>L. (L \<in> pset po \<and> (\<forall>y\<in>S. (y,L) \<in> order po) \<and>  | 
44  | 
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z) \<in> order po) \<longrightarrow> (L,z) \<in> order po))"  | 
|
| 23449 | 45  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
46  | 
definition isGlb :: "['a set, 'a potype, 'a] => bool" where  | 
| 67613 | 47  | 
"isGlb S po \<equiv> \<lambda>G. (G \<in> pset po \<and> (\<forall>y\<in>S. (G,y) \<in> order po) \<and>  | 
48  | 
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y) \<in> order po) \<longrightarrow> (z,G) \<in> order po))"  | 
|
| 23449 | 49  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
50  | 
definition "fix"    :: "[('a => 'a), 'a set] => 'a set" where
 | 
| 67613 | 51  | 
  "fix f A  \<equiv> {x. x \<in> A \<and> f x = x}"
 | 
| 23449 | 52  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
53  | 
definition interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
 | 
| 67613 | 54  | 
  "interval r a b == {x. (a,x) \<in> r & (x,b) \<in> r}"
 | 
| 23449 | 55  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
56  | 
definition Bot :: "'a potype => 'a" where  | 
| 64913 | 57  | 
"Bot po == least (\<lambda>x. True) po"  | 
| 23449 | 58  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
59  | 
definition Top :: "'a potype => 'a" where  | 
| 64913 | 60  | 
"Top po == greatest (\<lambda>x. True) po"  | 
| 23449 | 61  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
62  | 
definition PartialOrder :: "('a potype) set" where
 | 
| 30198 | 63  | 
  "PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) &
 | 
| 23449 | 64  | 
trans (order P)}"  | 
65  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
66  | 
definition CompleteLattice :: "('a potype) set" where
 | 
| 67613 | 67  | 
  "CompleteLattice == {cl. cl \<in> PartialOrder \<and>
 | 
68  | 
(\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>L. isLub S cl L)) \<and>  | 
|
69  | 
(\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>G. isGlb S cl G))}"  | 
|
| 23449 | 70  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
71  | 
definition induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
 | 
| 67613 | 72  | 
  "induced A r \<equiv> {(a,b). a \<in> A \<and> b \<in> A \<and> (a,b) \<in> r}"
 | 
| 23449 | 73  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
74  | 
definition sublattice :: "('a potype * 'a set)set" where
 | 
| 67613 | 75  | 
"sublattice \<equiv>  | 
76  | 
SIGMA cl : CompleteLattice.  | 
|
77  | 
          {S. S \<subseteq> pset cl \<and>
 | 
|
78  | 
\<lparr>pset = S, order = induced S (order cl)\<rparr> \<in> CompleteLattice}"  | 
|
| 23449 | 79  | 
|
| 35054 | 80  | 
abbreviation  | 
81  | 
  sublattice_syntax :: "['a set, 'a potype] => bool" ("_ <<= _" [51, 50] 50)
 | 
|
| 67613 | 82  | 
  where "S <<= cl \<equiv> S \<in> sublattice `` {cl}"
 | 
| 23449 | 83  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35054 
diff
changeset
 | 
84  | 
definition dual :: "'a potype => 'a potype" where  | 
| 23449 | 85  | 
"dual po == (| pset = pset po, order = converse (order po) |)"  | 
86  | 
||
| 27681 | 87  | 
locale PO =  | 
| 23449 | 88  | 
fixes cl :: "'a potype"  | 
89  | 
and A :: "'a set"  | 
|
90  | 
    and r  :: "('a * 'a) set"
 | 
|
| 67613 | 91  | 
assumes cl_po: "cl \<in> PartialOrder"  | 
| 23449 | 92  | 
defines A_def: "A == pset cl"  | 
93  | 
and r_def: "r == order cl"  | 
|
94  | 
||
| 27681 | 95  | 
locale CL = PO +  | 
| 67613 | 96  | 
assumes cl_co: "cl \<in> CompleteLattice"  | 
| 23449 | 97  | 
|
| 27681 | 98  | 
definition CLF_set :: "('a potype * ('a => 'a)) set" where
 | 
99  | 
"CLF_set = (SIGMA cl: CompleteLattice.  | 
|
| 67613 | 100  | 
            {f. f \<in> pset cl \<rightarrow> pset cl \<and> monotone f (pset cl) (order cl)})"
 | 
| 27681 | 101  | 
|
102  | 
locale CLF = CL +  | 
|
| 23449 | 103  | 
fixes f :: "'a => 'a"  | 
104  | 
and P :: "'a set"  | 
|
| 67613 | 105  | 
  assumes f_cl:  "(cl,f) \<in> CLF_set" (*was the equivalent "f : CLF``{cl}"*)
 | 
| 23449 | 106  | 
defines P_def: "P == fix f A"  | 
107  | 
||
| 27681 | 108  | 
locale Tarski = CLF +  | 
| 23449 | 109  | 
fixes Y :: "'a set"  | 
110  | 
and intY1 :: "'a set"  | 
|
111  | 
and v :: "'a"  | 
|
112  | 
assumes  | 
|
113  | 
Y_ss: "Y \<subseteq> P"  | 
|
114  | 
defines  | 
|
115  | 
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"  | 
|
| 67613 | 116  | 
    and v_def: "v == glb {x. ((\<lambda>x \<in> intY1. f x) x, x) \<in> induced intY1 r \<and>
 | 
117  | 
x \<in> intY1}  | 
|
118  | 
\<lparr>pset=intY1, order=induced intY1 r\<rparr>"  | 
|
| 23449 | 119  | 
|
| 63167 | 120  | 
subsection \<open>Partial Order\<close>  | 
| 23449 | 121  | 
|
| 30198 | 122  | 
lemma (in PO) PO_imp_refl_on: "refl_on A r"  | 
| 23449 | 123  | 
apply (insert cl_po)  | 
124  | 
apply (simp add: PartialOrder_def A_def r_def)  | 
|
125  | 
done  | 
|
126  | 
||
127  | 
lemma (in PO) PO_imp_sym: "antisym r"  | 
|
128  | 
apply (insert cl_po)  | 
|
129  | 
apply (simp add: PartialOrder_def r_def)  | 
|
130  | 
done  | 
|
131  | 
||
132  | 
lemma (in PO) PO_imp_trans: "trans r"  | 
|
133  | 
apply (insert cl_po)  | 
|
134  | 
apply (simp add: PartialOrder_def r_def)  | 
|
135  | 
done  | 
|
136  | 
||
137  | 
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"  | 
|
138  | 
apply (insert cl_po)  | 
|
| 30198 | 139  | 
apply (simp add: PartialOrder_def refl_on_def A_def r_def)  | 
| 23449 | 140  | 
done  | 
141  | 
||
142  | 
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"  | 
|
143  | 
apply (insert cl_po)  | 
|
144  | 
apply (simp add: PartialOrder_def antisym_def r_def)  | 
|
145  | 
done  | 
|
146  | 
||
147  | 
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"  | 
|
148  | 
apply (insert cl_po)  | 
|
149  | 
apply (simp add: PartialOrder_def r_def)  | 
|
150  | 
apply (unfold trans_def, fast)  | 
|
151  | 
done  | 
|
152  | 
||
153  | 
lemma (in PO) monotoneE:  | 
|
154  | 
"[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"  | 
|
155  | 
by (simp add: monotone_def)  | 
|
156  | 
||
157  | 
lemma (in PO) po_subset_po:  | 
|
158  | 
"S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"  | 
|
159  | 
apply (simp (no_asm) add: PartialOrder_def)  | 
|
160  | 
apply auto  | 
|
| 63167 | 161  | 
\<comment> \<open>refl\<close>  | 
| 30198 | 162  | 
apply (simp add: refl_on_def induced_def)  | 
| 23449 | 163  | 
apply (blast intro: reflE)  | 
| 63167 | 164  | 
\<comment> \<open>antisym\<close>  | 
| 23449 | 165  | 
apply (simp add: antisym_def induced_def)  | 
166  | 
apply (blast intro: antisymE)  | 
|
| 63167 | 167  | 
\<comment> \<open>trans\<close>  | 
| 23449 | 168  | 
apply (simp add: trans_def induced_def)  | 
169  | 
apply (blast intro: transE)  | 
|
170  | 
done  | 
|
171  | 
||
172  | 
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"  | 
|
173  | 
by (simp add: add: induced_def)  | 
|
174  | 
||
175  | 
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"  | 
|
176  | 
by (simp add: add: induced_def)  | 
|
177  | 
||
178  | 
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"  | 
|
179  | 
apply (insert cl_co)  | 
|
180  | 
apply (simp add: CompleteLattice_def A_def)  | 
|
181  | 
done  | 
|
182  | 
||
183  | 
declare (in CL) cl_co [simp]  | 
|
184  | 
||
185  | 
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"  | 
|
186  | 
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])  | 
|
187  | 
||
188  | 
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"  | 
|
189  | 
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])  | 
|
190  | 
||
191  | 
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
45970 
diff
changeset
 | 
192  | 
by (simp add: isLub_def isGlb_def dual_def converse_unfold)  | 
| 23449 | 193  | 
|
194  | 
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
45970 
diff
changeset
 | 
195  | 
by (simp add: isLub_def isGlb_def dual_def converse_unfold)  | 
| 23449 | 196  | 
|
197  | 
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"  | 
|
198  | 
apply (insert cl_po)  | 
|
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
199  | 
apply (simp add: PartialOrder_def dual_def)  | 
| 23449 | 200  | 
done  | 
201  | 
||
202  | 
lemma Rdual:  | 
|
203  | 
"\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))  | 
|
204  | 
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"  | 
|
205  | 
apply safe  | 
|
206  | 
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
 | 
|
207  | 
(|pset = A, order = r|) " in exI)  | 
|
208  | 
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
 | 
|
209  | 
apply (drule mp, fast)  | 
|
210  | 
apply (simp add: isLub_lub isGlb_def)  | 
|
211  | 
apply (simp add: isLub_def, blast)  | 
|
212  | 
done  | 
|
213  | 
||
214  | 
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
45970 
diff
changeset
 | 
215  | 
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)  | 
| 23449 | 216  | 
|
217  | 
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"  | 
|
| 
46752
 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 
haftmann 
parents: 
45970 
diff
changeset
 | 
218  | 
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)  | 
| 23449 | 219  | 
|
220  | 
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"  | 
|
221  | 
by (simp add: PartialOrder_def CompleteLattice_def, fast)  | 
|
222  | 
||
223  | 
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]  | 
|
224  | 
||
| 30198 | 225  | 
declare PO.PO_imp_refl_on [OF PO.intro [OF CL_imp_PO], simp]  | 
| 27681 | 226  | 
declare PO.PO_imp_sym [OF PO.intro [OF CL_imp_PO], simp]  | 
227  | 
declare PO.PO_imp_trans [OF PO.intro [OF CL_imp_PO], simp]  | 
|
| 23449 | 228  | 
|
| 30198 | 229  | 
lemma (in CL) CO_refl_on: "refl_on A r"  | 
230  | 
by (rule PO_imp_refl_on)  | 
|
| 23449 | 231  | 
|
232  | 
lemma (in CL) CO_antisym: "antisym r"  | 
|
233  | 
by (rule PO_imp_sym)  | 
|
234  | 
||
235  | 
lemma (in CL) CO_trans: "trans r"  | 
|
236  | 
by (rule PO_imp_trans)  | 
|
237  | 
||
238  | 
lemma CompleteLatticeI:  | 
|
239  | 
"[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));  | 
|
240  | 
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]  | 
|
241  | 
==> po \<in> CompleteLattice"  | 
|
242  | 
apply (unfold CompleteLattice_def, blast)  | 
|
243  | 
done  | 
|
244  | 
||
245  | 
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"  | 
|
246  | 
apply (insert cl_co)  | 
|
247  | 
apply (simp add: CompleteLattice_def dual_def)  | 
|
248  | 
apply (fold dual_def)  | 
|
249  | 
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]  | 
|
250  | 
dualPO)  | 
|
251  | 
done  | 
|
252  | 
||
253  | 
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"  | 
|
254  | 
by (simp add: dual_def)  | 
|
255  | 
||
256  | 
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"  | 
|
257  | 
by (simp add: dual_def)  | 
|
258  | 
||
259  | 
lemma (in PO) monotone_dual:  | 
|
| 43197 | 260  | 
"monotone f (pset cl) (order cl)  | 
| 23449 | 261  | 
==> monotone f (pset (dual cl)) (order(dual cl))"  | 
262  | 
by (simp add: monotone_def dualA_iff dualr_iff)  | 
|
263  | 
||
264  | 
lemma (in PO) interval_dual:  | 
|
265  | 
"[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"  | 
|
266  | 
apply (simp add: interval_def dualr_iff)  | 
|
267  | 
apply (fold r_def, fast)  | 
|
268  | 
done  | 
|
269  | 
||
270  | 
lemma (in PO) interval_not_empty:  | 
|
271  | 
     "[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r"
 | 
|
272  | 
apply (simp add: interval_def)  | 
|
273  | 
apply (unfold trans_def, blast)  | 
|
274  | 
done  | 
|
275  | 
||
276  | 
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"  | 
|
277  | 
by (simp add: interval_def)  | 
|
278  | 
||
279  | 
lemma (in PO) left_in_interval:  | 
|
280  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
 | 
|
281  | 
apply (simp (no_asm_simp) add: interval_def)  | 
|
282  | 
apply (simp add: PO_imp_trans interval_not_empty)  | 
|
283  | 
apply (simp add: reflE)  | 
|
284  | 
done  | 
|
285  | 
||
286  | 
lemma (in PO) right_in_interval:  | 
|
287  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
 | 
|
288  | 
apply (simp (no_asm_simp) add: interval_def)  | 
|
289  | 
apply (simp add: PO_imp_trans interval_not_empty)  | 
|
290  | 
apply (simp add: reflE)  | 
|
291  | 
done  | 
|
292  | 
||
| 63167 | 293  | 
subsection \<open>sublattice\<close>  | 
| 23449 | 294  | 
|
295  | 
lemma (in PO) sublattice_imp_CL:  | 
|
296  | 
"S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"  | 
|
297  | 
by (simp add: sublattice_def CompleteLattice_def A_def r_def)  | 
|
298  | 
||
299  | 
lemma (in CL) sublatticeI:  | 
|
300  | 
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]  | 
|
301  | 
==> S <<= cl"  | 
|
302  | 
by (simp add: sublattice_def A_def r_def)  | 
|
303  | 
||
| 63167 | 304  | 
subsection \<open>lub\<close>  | 
| 23449 | 305  | 
|
306  | 
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"  | 
|
307  | 
apply (rule antisymE)  | 
|
308  | 
apply (auto simp add: isLub_def r_def)  | 
|
309  | 
done  | 
|
310  | 
||
311  | 
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"  | 
|
312  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
|
313  | 
apply (unfold lub_def least_def)  | 
|
314  | 
apply (rule some_equality [THEN ssubst])  | 
|
315  | 
apply (simp add: isLub_def)  | 
|
316  | 
apply (simp add: lub_unique A_def isLub_def)  | 
|
317  | 
apply (simp add: isLub_def r_def)  | 
|
318  | 
done  | 
|
319  | 
||
320  | 
lemma (in CL) lub_least:  | 
|
321  | 
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"  | 
|
322  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
|
323  | 
apply (unfold lub_def least_def)  | 
|
324  | 
apply (rule_tac s=x in some_equality [THEN ssubst])  | 
|
325  | 
apply (simp add: isLub_def)  | 
|
326  | 
apply (simp add: lub_unique A_def isLub_def)  | 
|
327  | 
apply (simp add: isLub_def r_def A_def)  | 
|
328  | 
done  | 
|
329  | 
||
330  | 
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"  | 
|
331  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
|
332  | 
apply (unfold lub_def least_def)  | 
|
333  | 
apply (subst some_equality)  | 
|
334  | 
apply (simp add: isLub_def)  | 
|
335  | 
prefer 2 apply (simp add: isLub_def A_def)  | 
|
336  | 
apply (simp add: lub_unique A_def isLub_def)  | 
|
337  | 
done  | 
|
338  | 
||
339  | 
lemma (in CL) lubI:  | 
|
340  | 
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;  | 
|
341  | 
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"  | 
|
342  | 
apply (rule lub_unique, assumption)  | 
|
343  | 
apply (simp add: isLub_def A_def r_def)  | 
|
344  | 
apply (unfold isLub_def)  | 
|
345  | 
apply (rule conjI)  | 
|
346  | 
apply (fold A_def r_def)  | 
|
347  | 
apply (rule lub_in_lattice, assumption)  | 
|
348  | 
apply (simp add: lub_upper lub_least)  | 
|
349  | 
done  | 
|
350  | 
||
351  | 
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"  | 
|
352  | 
by (simp add: lubI isLub_def A_def r_def)  | 
|
353  | 
||
354  | 
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"  | 
|
355  | 
by (simp add: isLub_def A_def)  | 
|
356  | 
||
357  | 
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"  | 
|
358  | 
by (simp add: isLub_def r_def)  | 
|
359  | 
||
360  | 
lemma (in CL) isLub_least:  | 
|
361  | 
"[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"  | 
|
362  | 
by (simp add: isLub_def A_def r_def)  | 
|
363  | 
||
364  | 
lemma (in CL) isLubI:  | 
|
| 67613 | 365  | 
"\<lbrakk>L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;  | 
366  | 
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z) \<in> r) \<longrightarrow> (L, z) \<in> r)\<rbrakk> \<Longrightarrow> isLub S cl L"  | 
|
| 23449 | 367  | 
by (simp add: isLub_def A_def r_def)  | 
368  | 
||
| 63167 | 369  | 
subsection \<open>glb\<close>  | 
| 23449 | 370  | 
|
371  | 
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"  | 
|
372  | 
apply (subst glb_dual_lub)  | 
|
373  | 
apply (simp add: A_def)  | 
|
374  | 
apply (rule dualA_iff [THEN subst])  | 
|
375  | 
apply (rule CL.lub_in_lattice)  | 
|
| 27681 | 376  | 
apply (rule CL.intro)  | 
377  | 
apply (rule PO.intro)  | 
|
| 23449 | 378  | 
apply (rule dualPO)  | 
| 27681 | 379  | 
apply (rule CL_axioms.intro)  | 
| 23449 | 380  | 
apply (rule CL_dualCL)  | 
381  | 
apply (simp add: dualA_iff)  | 
|
382  | 
done  | 
|
383  | 
||
384  | 
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"  | 
|
385  | 
apply (subst glb_dual_lub)  | 
|
386  | 
apply (simp add: r_def)  | 
|
387  | 
apply (rule dualr_iff [THEN subst])  | 
|
388  | 
apply (rule CL.lub_upper)  | 
|
| 27681 | 389  | 
apply (rule CL.intro)  | 
390  | 
apply (rule PO.intro)  | 
|
| 23449 | 391  | 
apply (rule dualPO)  | 
| 27681 | 392  | 
apply (rule CL_axioms.intro)  | 
| 23449 | 393  | 
apply (rule CL_dualCL)  | 
394  | 
apply (simp add: dualA_iff A_def, assumption)  | 
|
395  | 
done  | 
|
396  | 
||
| 63167 | 397  | 
text \<open>  | 
| 23449 | 398  | 
Reduce the sublattice property by using substructural properties;  | 
| 63167 | 399  | 
abandoned see \<open>Tarski_4.ML\<close>.  | 
400  | 
\<close>  | 
|
| 23449 | 401  | 
|
402  | 
declare (in CLF) f_cl [simp]  | 
|
403  | 
||
404  | 
lemma (in CLF) [simp]:  | 
|
| 67613 | 405  | 
"f \<in> pset cl \<rightarrow> pset cl \<and> monotone f (pset cl) (order cl)"  | 
| 
42762
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
406  | 
proof -  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
407  | 
  have "\<forall>u v. (v, u) \<in> CLF_set \<longrightarrow> u \<in> {R \<in> pset v \<rightarrow> pset v. monotone R (pset v) (order v)}"
 | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
408  | 
unfolding CLF_set_def using SigmaE2 by blast  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
409  | 
hence F1: "\<forall>u v. (v, u) \<in> CLF_set \<longrightarrow> u \<in> pset v \<rightarrow> pset v \<and> monotone u (pset v) (order v)"  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
410  | 
using CollectE by blast  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
411  | 
hence "Tarski.monotone f (pset cl) (order cl)" by (metis f_cl)  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
412  | 
hence "(cl, f) \<in> CLF_set \<and> Tarski.monotone f (pset cl) (order cl)"  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
413  | 
by (metis f_cl)  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
414  | 
thus "f \<in> pset cl \<rightarrow> pset cl \<and> Tarski.monotone f (pset cl) (order cl)"  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
415  | 
using F1 by metis  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
416  | 
qed  | 
| 23449 | 417  | 
|
| 61384 | 418  | 
lemma (in CLF) f_in_funcset: "f \<in> A \<rightarrow> A"  | 
| 23449 | 419  | 
by (simp add: A_def)  | 
420  | 
||
421  | 
lemma (in CLF) monotone_f: "monotone f A r"  | 
|
422  | 
by (simp add: A_def r_def)  | 
|
423  | 
||
424  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 425  | 
|
| 27681 | 426  | 
declare (in CLF) CLF_set_def [simp] CL_dualCL [simp] monotone_dual [simp] dualA_iff [simp]  | 
427  | 
||
| 
42762
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
428  | 
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set"  | 
| 23449 | 429  | 
apply (simp del: dualA_iff)  | 
430  | 
apply (simp)  | 
|
| 43197 | 431  | 
done  | 
| 27681 | 432  | 
|
433  | 
declare (in CLF) CLF_set_def[simp del] CL_dualCL[simp del] monotone_dual[simp del]  | 
|
| 23449 | 434  | 
dualA_iff[simp del]  | 
435  | 
||
| 63167 | 436  | 
subsection \<open>fixed points\<close>  | 
| 23449 | 437  | 
|
438  | 
lemma fix_subset: "fix f A \<subseteq> A"  | 
|
| 
69144
 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 
paulson <lp15@cam.ac.uk> 
parents: 
68188 
diff
changeset
 | 
439  | 
by (auto simp add: fix_def)  | 
| 23449 | 440  | 
|
441  | 
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"  | 
|
442  | 
by (simp add: fix_def)  | 
|
443  | 
||
444  | 
lemma fixf_subset:  | 
|
| 64913 | 445  | 
"[| A \<subseteq> B; x \<in> fix (\<lambda>y \<in> A. f y) A |] ==> x \<in> fix f B"  | 
| 23449 | 446  | 
by (simp add: fix_def, auto)  | 
447  | 
||
| 63167 | 448  | 
subsection \<open>lemmas for Tarski, lub\<close>  | 
| 23449 | 449  | 
|
450  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 451  | 
|
452  | 
declare CL.lub_least[intro] CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] PO.transE[intro] PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]  | 
|
453  | 
||
| 23449 | 454  | 
lemma (in CLF) lubH_le_flubH:  | 
455  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
 | 
|
456  | 
apply (rule lub_least, fast)  | 
|
457  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
458  | 
apply (rule lub_in_lattice, fast)  | 
|
| 63167 | 459  | 
\<comment> \<open>\<open>\<forall>x:H. (x, f (lub H r)) \<in> r\<close>\<close>  | 
| 23449 | 460  | 
apply (rule ballI)  | 
461  | 
(*never proved, 2007-01-22*)  | 
|
462  | 
apply (rule transE)  | 
|
| 63167 | 463  | 
\<comment> \<open>instantiates \<open>(x, ?z) \<in> order cl to (x, f x)\<close>,\<close>  | 
464  | 
\<comment> \<open>because of the definition of \<open>H\<close>\<close>  | 
|
| 23449 | 465  | 
apply fast  | 
| 63167 | 466  | 
\<comment> \<open>so it remains to show \<open>(f x, f (lub H cl)) \<in> r\<close>\<close>  | 
| 23449 | 467  | 
apply (rule_tac f = "f" in monotoneE)  | 
468  | 
apply (rule monotone_f, fast)  | 
|
469  | 
apply (rule lub_in_lattice, fast)  | 
|
470  | 
apply (rule lub_upper, fast)  | 
|
471  | 
apply assumption  | 
|
472  | 
done  | 
|
| 45705 | 473  | 
|
474  | 
declare CL.lub_least[rule del] CLF.f_in_funcset[rule del]  | 
|
475  | 
funcset_mem[rule del] CL.lub_in_lattice[rule del]  | 
|
476  | 
PO.transE[rule del] PO.monotoneE[rule del]  | 
|
477  | 
CLF.monotone_f[rule del] CL.lub_upper[rule del]  | 
|
| 23449 | 478  | 
|
479  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 480  | 
|
481  | 
declare CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro]  | 
|
482  | 
PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]  | 
|
483  | 
CLF.lubH_le_flubH[simp]  | 
|
484  | 
||
| 23449 | 485  | 
lemma (in CLF) flubH_le_lubH:  | 
486  | 
     "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
 | 
|
487  | 
apply (rule lub_upper, fast)  | 
|
488  | 
apply (rule_tac t = "H" in ssubst, assumption)  | 
|
489  | 
apply (rule CollectI)  | 
|
| 47040 | 490  | 
by (metis (lifting) CO_refl_on lubH_le_flubH monotone_def monotone_f refl_onD1 refl_onD2)  | 
| 23449 | 491  | 
|
| 45705 | 492  | 
declare CLF.f_in_funcset[rule del] funcset_mem[rule del]  | 
493  | 
CL.lub_in_lattice[rule del] PO.monotoneE[rule del]  | 
|
494  | 
CLF.monotone_f[rule del] CL.lub_upper[rule del]  | 
|
495  | 
CLF.lubH_le_flubH[simp del]  | 
|
| 23449 | 496  | 
|
497  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 498  | 
|
| 37622 | 499  | 
(* Single-step version fails. The conjecture clauses refer to local abstraction  | 
500  | 
functions (Frees). *)  | 
|
| 23449 | 501  | 
lemma (in CLF) lubH_is_fixp:  | 
502  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | 
|
503  | 
apply (simp add: fix_def)  | 
|
504  | 
apply (rule conjI)  | 
|
| 
36554
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
505  | 
proof -  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
506  | 
  assume A1: "H = {x. (x, f x) \<in> r \<and> x \<in> A}"
 | 
| 
42762
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
507  | 
have F1: "\<forall>u v. v \<inter> u \<subseteq> u" by (metis Int_commute Int_lower1)  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
508  | 
  have "{R. (R, f R) \<in> r} \<inter> {R. R \<in> A} = H" using A1 by (metis Collect_conj_eq)
 | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
509  | 
  hence "H \<subseteq> {R. R \<in> A}" using F1 by metis
 | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
510  | 
hence "H \<subseteq> A" by (metis Collect_mem_eq)  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
511  | 
hence "lub H cl \<in> A" by (metis lub_in_lattice)  | 
| 
 
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
 
blanchet 
parents: 
42103 
diff
changeset
 | 
512  | 
  thus "lub {x. (x, f x) \<in> r \<and> x \<in> A} cl \<in> A" using A1 by metis
 | 
| 
36554
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
513  | 
next  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
514  | 
  assume A1: "H = {x. (x, f x) \<in> r \<and> x \<in> A}"
 | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
515  | 
  have F1: "\<forall>v. {R. R \<in> v} = v" by (metis Collect_mem_eq)
 | 
| 
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
516  | 
  have F2: "\<forall>w u. {R. R \<in> u \<and> R \<in> w} = u \<inter> w"
 | 
| 
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
517  | 
by (metis Collect_conj_eq Collect_mem_eq)  | 
| 
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
518  | 
  have F3: "\<forall>x v. {R. v R \<in> x} = v -` x" by (metis vimage_def)
 | 
| 
36554
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
519  | 
hence F4: "A \<inter> (\<lambda>R. (R, f R)) -` r = H" using A1 by auto  | 
| 64913 | 520  | 
hence F5: "(f (lub H cl), lub H cl) \<in> r"  | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
521  | 
by (metis A1 flubH_le_lubH)  | 
| 
36554
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
522  | 
have F6: "(lub H cl, f (lub H cl)) \<in> r"  | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
523  | 
by (metis A1 lubH_le_flubH)  | 
| 
36554
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
524  | 
have "(lub H cl, f (lub H cl)) \<in> r \<longrightarrow> f (lub H cl) = lub H cl"  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
525  | 
using F5 by (metis antisymE)  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
526  | 
hence "f (lub H cl) = lub H cl" using F6 by metis  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
527  | 
  thus "H = {x. (x, f x) \<in> r \<and> x \<in> A}
 | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
528  | 
        \<Longrightarrow> f (lub {x. (x, f x) \<in> r \<and> x \<in> A} cl) =
 | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
529  | 
           lub {x. (x, f x) \<in> r \<and> x \<in> A} cl"
 | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45705 
diff
changeset
 | 
530  | 
by metis  | 
| 24827 | 531  | 
qed  | 
| 23449 | 532  | 
|
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
24855 
diff
changeset
 | 
533  | 
lemma (in CLF) (*lubH_is_fixp:*)  | 
| 23449 | 534  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | 
535  | 
apply (simp add: fix_def)  | 
|
536  | 
apply (rule conjI)  | 
|
| 30198 | 537  | 
apply (metis CO_refl_on lubH_le_flubH refl_onD1)  | 
| 23449 | 538  | 
apply (metis antisymE flubH_le_lubH lubH_le_flubH)  | 
539  | 
done  | 
|
540  | 
||
541  | 
lemma (in CLF) fix_in_H:  | 
|
542  | 
     "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
 | 
|
| 30198 | 543  | 
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on  | 
| 23449 | 544  | 
fix_subset [of f A, THEN subsetD])  | 
545  | 
||
546  | 
lemma (in CLF) fixf_le_lubH:  | 
|
547  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
 | 
|
548  | 
apply (rule ballI)  | 
|
549  | 
apply (rule lub_upper, fast)  | 
|
550  | 
apply (rule fix_in_H)  | 
|
551  | 
apply (simp_all add: P_def)  | 
|
552  | 
done  | 
|
553  | 
||
554  | 
lemma (in CLF) lubH_least_fixf:  | 
|
555  | 
     "H = {x. (x, f x) \<in> r & x \<in> A}
 | 
|
556  | 
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"  | 
|
557  | 
apply (metis P_def lubH_is_fixp)  | 
|
558  | 
done  | 
|
559  | 
||
| 63167 | 560  | 
subsection \<open>Tarski fixpoint theorem 1, first part\<close>  | 
| 45705 | 561  | 
|
562  | 
declare CL.lubI[intro] fix_subset[intro] CL.lub_in_lattice[intro]  | 
|
563  | 
CLF.fixf_le_lubH[simp] CLF.lubH_least_fixf[simp]  | 
|
564  | 
||
| 23449 | 565  | 
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
 | 
566  | 
(*sledgehammer;*)  | 
|
567  | 
apply (rule sym)  | 
|
568  | 
apply (simp add: P_def)  | 
|
569  | 
apply (rule lubI)  | 
|
| 58944 | 570  | 
apply (simp add: fix_subset)  | 
571  | 
using fix_subset lubH_is_fixp apply fastforce  | 
|
572  | 
apply (simp add: fixf_le_lubH)  | 
|
573  | 
using lubH_is_fixp apply blast  | 
|
574  | 
done  | 
|
| 23449 | 575  | 
|
| 45705 | 576  | 
declare CL.lubI[rule del] fix_subset[rule del] CL.lub_in_lattice[rule del]  | 
577  | 
CLF.fixf_le_lubH[simp del] CLF.lubH_least_fixf[simp del]  | 
|
| 23449 | 578  | 
|
579  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 580  | 
|
581  | 
declare glb_dual_lub[simp] PO.dualA_iff[intro] CLF.lubH_is_fixp[intro]  | 
|
582  | 
PO.dualPO[intro] CL.CL_dualCL[intro] PO.dualr_iff[simp]  | 
|
583  | 
||
| 23449 | 584  | 
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
 | 
| 63167 | 585  | 
\<comment> \<open>Tarski for glb\<close>  | 
| 23449 | 586  | 
(*sledgehammer;*)  | 
587  | 
apply (simp add: glb_dual_lub P_def A_def r_def)  | 
|
588  | 
apply (rule dualA_iff [THEN subst])  | 
|
589  | 
apply (rule CLF.lubH_is_fixp)  | 
|
| 27681 | 590  | 
apply (rule CLF.intro)  | 
591  | 
apply (rule CL.intro)  | 
|
592  | 
apply (rule PO.intro)  | 
|
| 23449 | 593  | 
apply (rule dualPO)  | 
| 27681 | 594  | 
apply (rule CL_axioms.intro)  | 
| 23449 | 595  | 
apply (rule CL_dualCL)  | 
| 27681 | 596  | 
apply (rule CLF_axioms.intro)  | 
| 23449 | 597  | 
apply (rule CLF_dual)  | 
598  | 
apply (simp add: dualr_iff dualA_iff)  | 
|
599  | 
done  | 
|
600  | 
||
| 45705 | 601  | 
declare glb_dual_lub[simp del] PO.dualA_iff[rule del] CLF.lubH_is_fixp[rule del]  | 
602  | 
PO.dualPO[rule del] CL.CL_dualCL[rule del] PO.dualr_iff[simp del]  | 
|
| 23449 | 603  | 
|
604  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 605  | 
|
| 23449 | 606  | 
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
 | 
607  | 
(*sledgehammer;*)  | 
|
608  | 
apply (simp add: glb_dual_lub P_def A_def r_def)  | 
|
609  | 
apply (rule dualA_iff [THEN subst])  | 
|
610  | 
(*never proved, 2007-01-22*)  | 
|
611  | 
(*sledgehammer;*)  | 
|
| 27681 | 612  | 
apply (simp add: CLF.T_thm_1_lub [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro,  | 
613  | 
OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff)  | 
|
| 23449 | 614  | 
done  | 
615  | 
||
| 63167 | 616  | 
subsection \<open>interval\<close>  | 
| 23449 | 617  | 
|
| 45705 | 618  | 
declare (in CLF) CO_refl_on[simp] refl_on_def [simp]  | 
| 23449 | 619  | 
|
620  | 
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"  | 
|
| 30198 | 621  | 
by (metis CO_refl_on refl_onD1)  | 
| 45705 | 622  | 
|
623  | 
declare (in CLF) CO_refl_on[simp del] refl_on_def [simp del]  | 
|
| 23449 | 624  | 
|
| 45705 | 625  | 
declare (in CLF) rel_imp_elem[intro]  | 
626  | 
declare interval_def [simp]  | 
|
627  | 
||
| 23449 | 628  | 
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"  | 
| 30198 | 629  | 
by (metis CO_refl_on interval_imp_mem refl_onD refl_onD2 rel_imp_elem subset_eq)  | 
| 23449 | 630  | 
|
| 45705 | 631  | 
declare (in CLF) rel_imp_elem[rule del]  | 
632  | 
declare interval_def [simp del]  | 
|
| 23449 | 633  | 
|
634  | 
lemma (in CLF) intervalI:  | 
|
635  | 
"[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"  | 
|
636  | 
by (simp add: interval_def)  | 
|
637  | 
||
638  | 
lemma (in CLF) interval_lemma1:  | 
|
639  | 
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"  | 
|
640  | 
by (unfold interval_def, fast)  | 
|
641  | 
||
642  | 
lemma (in CLF) interval_lemma2:  | 
|
643  | 
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"  | 
|
644  | 
by (unfold interval_def, fast)  | 
|
645  | 
||
646  | 
lemma (in CLF) a_less_lub:  | 
|
647  | 
     "[| S \<subseteq> A; S \<noteq> {};
 | 
|
648  | 
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"  | 
|
649  | 
by (blast intro: transE)  | 
|
650  | 
||
651  | 
lemma (in CLF) glb_less_b:  | 
|
652  | 
     "[| S \<subseteq> A; S \<noteq> {};
 | 
|
653  | 
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"  | 
|
654  | 
by (blast intro: transE)  | 
|
655  | 
||
656  | 
lemma (in CLF) S_intv_cl:  | 
|
657  | 
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"  | 
|
658  | 
by (simp add: subset_trans [OF _ interval_subset])  | 
|
659  | 
||
| 45705 | 660  | 
|
| 23449 | 661  | 
lemma (in CLF) L_in_interval:  | 
662  | 
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;  | 
|
| 43197 | 663  | 
         S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
 | 
| 23449 | 664  | 
(*WON'T TERMINATE  | 
665  | 
apply (metis CO_trans intervalI interval_lemma1 interval_lemma2 isLub_least isLub_upper subset_empty subset_iff trans_def)  | 
|
666  | 
*)  | 
|
667  | 
apply (rule intervalI)  | 
|
668  | 
apply (rule a_less_lub)  | 
|
669  | 
prefer 2 apply assumption  | 
|
670  | 
apply (simp add: S_intv_cl)  | 
|
671  | 
apply (rule ballI)  | 
|
672  | 
apply (simp add: interval_lemma1)  | 
|
673  | 
apply (simp add: isLub_upper)  | 
|
| 63167 | 674  | 
\<comment> \<open>\<open>(L, b) \<in> r\<close>\<close>  | 
| 23449 | 675  | 
apply (simp add: isLub_least interval_lemma2)  | 
676  | 
done  | 
|
677  | 
||
678  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 679  | 
|
| 23449 | 680  | 
lemma (in CLF) G_in_interval:  | 
681  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
 | 
|
682  | 
         S \<noteq> {} |] ==> G \<in> interval r a b"
 | 
|
683  | 
apply (simp add: interval_dual)  | 
|
| 27681 | 684  | 
apply (simp add: CLF.L_in_interval [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]  | 
| 23449 | 685  | 
dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)  | 
686  | 
done  | 
|
687  | 
||
| 45705 | 688  | 
|
| 23449 | 689  | 
lemma (in CLF) intervalPO:  | 
690  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
|
691  | 
==> (| pset = interval r a b, order = induced (interval r a b) r |)  | 
|
692  | 
\<in> PartialOrder"  | 
|
| 
36554
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
693  | 
proof -  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
694  | 
assume A1: "a \<in> A"  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
695  | 
assume "b \<in> A"  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
696  | 
hence "\<forall>u. u \<in> A \<longrightarrow> interval r u b \<subseteq> A" by (metis interval_subset)  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
697  | 
hence "interval r a b \<subseteq> A" using A1 by metis  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
698  | 
hence "interval r a b \<subseteq> A" by metis  | 
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
699  | 
thus ?thesis by (metis po_subset_po)  | 
| 23449 | 700  | 
qed  | 
701  | 
||
702  | 
lemma (in CLF) intv_CL_lub:  | 
|
703  | 
 "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
|
704  | 
==> \<forall>S. S \<subseteq> interval r a b -->  | 
|
705  | 
(\<exists>L. isLub S (| pset = interval r a b,  | 
|
706  | 
order = induced (interval r a b) r |) L)"  | 
|
707  | 
apply (intro strip)  | 
|
708  | 
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])  | 
|
709  | 
prefer 2 apply assumption  | 
|
710  | 
apply assumption  | 
|
711  | 
apply (erule exE)  | 
|
| 63167 | 712  | 
\<comment> \<open>define the lub for the interval as\<close>  | 
| 23449 | 713  | 
apply (rule_tac x = "if S = {} then a else L" in exI)
 | 
| 62390 | 714  | 
apply (simp (no_asm_simp) add: isLub_def split del: if_split)  | 
| 23449 | 715  | 
apply (intro impI conjI)  | 
| 63167 | 716  | 
\<comment> \<open>\<open>(if S = {} then a else L) \<in> interval r a b\<close>\<close>
 | 
| 23449 | 717  | 
apply (simp add: CL_imp_PO L_in_interval)  | 
718  | 
apply (simp add: left_in_interval)  | 
|
| 63167 | 719  | 
\<comment> \<open>lub prop 1\<close>  | 
| 23449 | 720  | 
apply (case_tac "S = {}")
 | 
| 63167 | 721  | 
\<comment> \<open>\<open>S = {}, y \<in> S = False => everything\<close>\<close>
 | 
| 23449 | 722  | 
apply fast  | 
| 63167 | 723  | 
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close>
 | 
| 23449 | 724  | 
apply simp  | 
| 63167 | 725  | 
\<comment> \<open>\<open>\<forall>y:S. (y, L) \<in> induced (interval r a b) r\<close>\<close>  | 
| 23449 | 726  | 
apply (rule ballI)  | 
727  | 
apply (simp add: induced_def L_in_interval)  | 
|
728  | 
apply (rule conjI)  | 
|
729  | 
apply (rule subsetD)  | 
|
730  | 
apply (simp add: S_intv_cl, assumption)  | 
|
731  | 
apply (simp add: isLub_upper)  | 
|
| 63167 | 732  | 
\<comment> \<open>\<open>\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r\<close>\<close>
 | 
| 23449 | 733  | 
apply (rule ballI)  | 
734  | 
apply (rule impI)  | 
|
735  | 
apply (case_tac "S = {}")
 | 
|
| 63167 | 736  | 
\<comment> \<open>\<open>S = {}\<close>\<close>
 | 
| 23449 | 737  | 
apply simp  | 
738  | 
apply (simp add: induced_def interval_def)  | 
|
739  | 
apply (rule conjI)  | 
|
740  | 
apply (rule reflE, assumption)  | 
|
741  | 
apply (rule interval_not_empty)  | 
|
742  | 
apply (rule CO_trans)  | 
|
743  | 
apply (simp add: interval_def)  | 
|
| 63167 | 744  | 
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close>
 | 
| 23449 | 745  | 
apply simp  | 
746  | 
apply (simp add: induced_def L_in_interval)  | 
|
747  | 
apply (rule isLub_least, assumption)  | 
|
748  | 
apply (rule subsetD)  | 
|
749  | 
prefer 2 apply assumption  | 
|
750  | 
apply (simp add: S_intv_cl, fast)  | 
|
751  | 
done  | 
|
752  | 
||
753  | 
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]  | 
|
754  | 
||
755  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 756  | 
|
| 23449 | 757  | 
lemma (in CLF) interval_is_sublattice:  | 
758  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
|
759  | 
==> interval r a b <<= cl"  | 
|
760  | 
(*sledgehammer *)  | 
|
761  | 
apply (rule sublatticeI)  | 
|
762  | 
apply (simp add: interval_subset)  | 
|
763  | 
(*never proved, 2007-01-22*)  | 
|
764  | 
(*sledgehammer *)  | 
|
765  | 
apply (rule CompleteLatticeI)  | 
|
766  | 
apply (simp add: intervalPO)  | 
|
767  | 
apply (simp add: intv_CL_lub)  | 
|
768  | 
apply (simp add: intv_CL_glb)  | 
|
769  | 
done  | 
|
770  | 
||
771  | 
lemmas (in CLF) interv_is_compl_latt =  | 
|
772  | 
interval_is_sublattice [THEN sublattice_imp_CL]  | 
|
773  | 
||
| 63167 | 774  | 
subsection \<open>Top and Bottom\<close>  | 
| 23449 | 775  | 
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"  | 
776  | 
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)  | 
|
777  | 
||
778  | 
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"  | 
|
779  | 
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)  | 
|
780  | 
||
| 45705 | 781  | 
|
| 23449 | 782  | 
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"  | 
783  | 
(*sledgehammer; *)  | 
|
784  | 
apply (simp add: Bot_def least_def)  | 
|
785  | 
apply (rule_tac a="glb A cl" in someI2)  | 
|
| 43197 | 786  | 
apply (simp_all add: glb_in_lattice glb_lower  | 
| 23449 | 787  | 
r_def [symmetric] A_def [symmetric])  | 
788  | 
done  | 
|
789  | 
||
790  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
| 45705 | 791  | 
|
| 23449 | 792  | 
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"  | 
793  | 
(*sledgehammer;*)  | 
|
794  | 
apply (simp add: Top_dual_Bot A_def)  | 
|
795  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
796  | 
(*sledgehammer*)  | 
|
797  | 
apply (rule dualA_iff [THEN subst])  | 
|
| 27681 | 798  | 
apply (blast intro!: CLF.Bot_in_lattice [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] dualPO CL_dualCL CLF_dual)  | 
| 23449 | 799  | 
done  | 
800  | 
||
801  | 
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"  | 
|
802  | 
apply (simp add: Top_def greatest_def)  | 
|
803  | 
apply (rule_tac a="lub A cl" in someI2)  | 
|
804  | 
apply (rule someI2)  | 
|
| 43197 | 805  | 
apply (simp_all add: lub_in_lattice lub_upper  | 
| 23449 | 806  | 
r_def [symmetric] A_def [symmetric])  | 
807  | 
done  | 
|
808  | 
||
809  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 810  | 
|
| 23449 | 811  | 
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"  | 
| 43197 | 812  | 
(*sledgehammer*)  | 
| 23449 | 813  | 
apply (simp add: Bot_dual_Top r_def)  | 
814  | 
apply (rule dualr_iff [THEN subst])  | 
|
| 27681 | 815  | 
apply (simp add: CLF.Top_prop [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]  | 
| 23449 | 816  | 
dualA_iff A_def dualPO CL_dualCL CLF_dual)  | 
817  | 
done  | 
|
818  | 
||
| 45705 | 819  | 
|
| 43197 | 820  | 
lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}"
 | 
| 23449 | 821  | 
apply (metis Top_in_lattice Top_prop empty_iff intervalI reflE)  | 
822  | 
done  | 
|
823  | 
||
| 45705 | 824  | 
|
| 43197 | 825  | 
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}"
 | 
| 23449 | 826  | 
apply (metis Bot_prop ex_in_conv intervalI reflE rel_imp_elem)  | 
827  | 
done  | 
|
828  | 
||
| 63167 | 829  | 
subsection \<open>fixed points form a partial order\<close>  | 
| 23449 | 830  | 
|
831  | 
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"  | 
|
832  | 
by (simp add: P_def fix_subset po_subset_po)  | 
|
833  | 
||
834  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
| 45705 | 835  | 
|
836  | 
declare (in Tarski) P_def[simp] Y_ss [simp]  | 
|
837  | 
declare fix_subset [intro] subset_trans [intro]  | 
|
838  | 
||
| 23449 | 839  | 
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"  | 
| 43197 | 840  | 
(*sledgehammer*)  | 
| 23449 | 841  | 
apply (rule subset_trans [OF _ fix_subset])  | 
842  | 
apply (rule Y_ss [simplified P_def])  | 
|
843  | 
done  | 
|
844  | 
||
| 45705 | 845  | 
declare (in Tarski) P_def[simp del] Y_ss [simp del]  | 
846  | 
declare fix_subset [rule del] subset_trans [rule del]  | 
|
| 23449 | 847  | 
|
848  | 
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"  | 
|
849  | 
by (rule Y_subset_A [THEN lub_in_lattice])  | 
|
850  | 
||
851  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 852  | 
|
| 23449 | 853  | 
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"  | 
| 43197 | 854  | 
(*sledgehammer*)  | 
| 23449 | 855  | 
apply (rule lub_least)  | 
856  | 
apply (rule Y_subset_A)  | 
|
857  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
858  | 
apply (rule lubY_in_A)  | 
|
| 63167 | 859  | 
\<comment> \<open>\<open>Y \<subseteq> P ==> f x = x\<close>\<close>  | 
| 23449 | 860  | 
apply (rule ballI)  | 
861  | 
(*sledgehammer *)  | 
|
862  | 
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])  | 
|
863  | 
apply (erule Y_ss [simplified P_def, THEN subsetD])  | 
|
| 63167 | 864  | 
\<comment> \<open>\<open>reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r\<close> by monotonicity\<close>  | 
| 23449 | 865  | 
(*sledgehammer*)  | 
866  | 
apply (rule_tac f = "f" in monotoneE)  | 
|
867  | 
apply (rule monotone_f)  | 
|
868  | 
apply (simp add: Y_subset_A [THEN subsetD])  | 
|
869  | 
apply (rule lubY_in_A)  | 
|
870  | 
apply (simp add: lub_upper Y_subset_A)  | 
|
871  | 
done  | 
|
872  | 
||
873  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
| 45705 | 874  | 
|
| 23449 | 875  | 
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"  | 
| 43197 | 876  | 
(*sledgehammer*)  | 
| 23449 | 877  | 
apply (unfold intY1_def)  | 
878  | 
apply (rule interval_subset)  | 
|
879  | 
apply (rule lubY_in_A)  | 
|
880  | 
apply (rule Top_in_lattice)  | 
|
881  | 
done  | 
|
882  | 
||
883  | 
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]  | 
|
884  | 
||
885  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 886  | 
|
| 23449 | 887  | 
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"  | 
| 43197 | 888  | 
(*sledgehammer*)  | 
| 23449 | 889  | 
apply (simp add: intY1_def interval_def)  | 
890  | 
apply (rule conjI)  | 
|
891  | 
apply (rule transE)  | 
|
892  | 
apply (rule lubY_le_flubY)  | 
|
| 63167 | 893  | 
\<comment> \<open>\<open>(f (lub Y cl), f x) \<in> r\<close>\<close>  | 
| 23449 | 894  | 
(*sledgehammer [has been proved before now...]*)  | 
895  | 
apply (rule_tac f=f in monotoneE)  | 
|
896  | 
apply (rule monotone_f)  | 
|
897  | 
apply (rule lubY_in_A)  | 
|
898  | 
apply (simp add: intY1_def interval_def intY1_elem)  | 
|
899  | 
apply (simp add: intY1_def interval_def)  | 
|
| 63167 | 900  | 
\<comment> \<open>\<open>(f x, Top cl) \<in> r\<close>\<close>  | 
| 23449 | 901  | 
apply (rule Top_prop)  | 
902  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
903  | 
apply (simp add: intY1_def interval_def intY1_elem)  | 
|
904  | 
done  | 
|
905  | 
||
| 45705 | 906  | 
|
| 64913 | 907  | 
lemma (in Tarski) intY1_func: "(\<lambda>x \<in> intY1. f x) \<in> intY1 \<rightarrow> intY1"  | 
| 27368 | 908  | 
apply (rule restrict_in_funcset)  | 
909  | 
apply (metis intY1_f_closed restrict_in_funcset)  | 
|
910  | 
done  | 
|
| 23449 | 911  | 
|
| 45705 | 912  | 
|
| 24855 | 913  | 
lemma (in Tarski) intY1_mono:  | 
| 64913 | 914  | 
"monotone (\<lambda>x \<in> intY1. f x) intY1 (induced intY1 r)"  | 
| 23449 | 915  | 
(*sledgehammer *)  | 
916  | 
apply (auto simp add: monotone_def induced_def intY1_f_closed)  | 
|
917  | 
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])  | 
|
918  | 
done  | 
|
919  | 
||
920  | 
(*proof requires relaxing relevance: 2007-01-25*)  | 
|
| 45705 | 921  | 
|
| 23449 | 922  | 
lemma (in Tarski) intY1_is_cl:  | 
923  | 
"(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"  | 
|
| 43197 | 924  | 
(*sledgehammer*)  | 
| 23449 | 925  | 
apply (unfold intY1_def)  | 
926  | 
apply (rule interv_is_compl_latt)  | 
|
927  | 
apply (rule lubY_in_A)  | 
|
928  | 
apply (rule Top_in_lattice)  | 
|
929  | 
apply (rule Top_intv_not_empty)  | 
|
930  | 
apply (rule lubY_in_A)  | 
|
931  | 
done  | 
|
932  | 
||
933  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 934  | 
|
| 23449 | 935  | 
lemma (in Tarski) v_in_P: "v \<in> P"  | 
| 43197 | 936  | 
(*sledgehammer*)  | 
| 23449 | 937  | 
apply (unfold P_def)  | 
938  | 
apply (rule_tac A = "intY1" in fixf_subset)  | 
|
939  | 
apply (rule intY1_subset)  | 
|
| 27681 | 940  | 
apply (simp add: CLF.glbH_is_fixp [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]  | 
941  | 
v_def CL_imp_PO intY1_is_cl CLF_set_def intY1_func intY1_mono)  | 
|
| 23449 | 942  | 
done  | 
943  | 
||
| 45705 | 944  | 
|
| 23449 | 945  | 
lemma (in Tarski) z_in_interval:  | 
946  | 
"[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"  | 
|
947  | 
(*sledgehammer *)  | 
|
948  | 
apply (unfold intY1_def P_def)  | 
|
949  | 
apply (rule intervalI)  | 
|
950  | 
prefer 2  | 
|
951  | 
apply (erule fix_subset [THEN subsetD, THEN Top_prop])  | 
|
952  | 
apply (rule lub_least)  | 
|
953  | 
apply (rule Y_subset_A)  | 
|
954  | 
apply (fast elim!: fix_subset [THEN subsetD])  | 
|
955  | 
apply (simp add: induced_def)  | 
|
956  | 
done  | 
|
957  | 
||
| 45705 | 958  | 
|
| 23449 | 959  | 
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]  | 
| 64913 | 960  | 
==> ((\<lambda>x \<in> intY1. f x) z, z) \<in> induced intY1 r"  | 
| 
58943
 
a1df119fad45
updated sledgehammer proof after breakdown of metis (exception Type.TUNIFY);
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
961  | 
using P_def fix_imp_eq indI intY1_elem reflE z_in_interval by fastforce  | 
| 23449 | 962  | 
|
963  | 
(*never proved, 2007-01-22*)  | 
|
| 45705 | 964  | 
|
| 23449 | 965  | 
lemma (in Tarski) tarski_full_lemma:  | 
966  | 
"\<exists>L. isLub Y (| pset = P, order = induced P r |) L"  | 
|
967  | 
apply (rule_tac x = "v" in exI)  | 
|
968  | 
apply (simp add: isLub_def)  | 
|
| 63167 | 969  | 
\<comment> \<open>\<open>v \<in> P\<close>\<close>  | 
| 23449 | 970  | 
apply (simp add: v_in_P)  | 
971  | 
apply (rule conjI)  | 
|
| 43197 | 972  | 
(*sledgehammer*)  | 
| 63167 | 973  | 
\<comment> \<open>\<open>v\<close> is lub\<close>  | 
974  | 
\<comment> \<open>\<open>1. \<forall>y:Y. (y, v) \<in> induced P r\<close>\<close>  | 
|
| 23449 | 975  | 
apply (rule ballI)  | 
976  | 
apply (simp add: induced_def subsetD v_in_P)  | 
|
977  | 
apply (rule conjI)  | 
|
978  | 
apply (erule Y_ss [THEN subsetD])  | 
|
979  | 
apply (rule_tac b = "lub Y cl" in transE)  | 
|
980  | 
apply (rule lub_upper)  | 
|
981  | 
apply (rule Y_subset_A, assumption)  | 
|
982  | 
apply (rule_tac b = "Top cl" in interval_imp_mem)  | 
|
983  | 
apply (simp add: v_def)  | 
|
984  | 
apply (fold intY1_def)  | 
|
| 27681 | 985  | 
apply (rule CL.glb_in_lattice [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])  | 
| 23449 | 986  | 
apply (simp add: CL_imp_PO intY1_is_cl, force)  | 
| 63167 | 987  | 
\<comment> \<open>\<open>v\<close> is LEAST ub\<close>  | 
| 23449 | 988  | 
apply clarify  | 
989  | 
apply (rule indI)  | 
|
990  | 
prefer 3 apply assumption  | 
|
991  | 
prefer 2 apply (simp add: v_in_P)  | 
|
992  | 
apply (unfold v_def)  | 
|
993  | 
(*never proved, 2007-01-22*)  | 
|
| 43197 | 994  | 
(*sledgehammer*)  | 
| 23449 | 995  | 
apply (rule indE)  | 
996  | 
apply (rule_tac [2] intY1_subset)  | 
|
997  | 
(*never proved, 2007-01-22*)  | 
|
| 43197 | 998  | 
(*sledgehammer*)  | 
| 27681 | 999  | 
apply (rule CL.glb_lower [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])  | 
| 23449 | 1000  | 
apply (simp add: CL_imp_PO intY1_is_cl)  | 
1001  | 
apply force  | 
|
1002  | 
apply (simp add: induced_def intY1_f_closed z_in_interval)  | 
|
1003  | 
apply (simp add: P_def fix_imp_eq [of _ f A] reflE  | 
|
1004  | 
fix_subset [of f A, THEN subsetD])  | 
|
1005  | 
done  | 
|
1006  | 
||
1007  | 
lemma CompleteLatticeI_simp:  | 
|
1008  | 
"[| (| pset = A, order = r |) \<in> PartialOrder;  | 
|
1009  | 
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |]  | 
|
1010  | 
==> (| pset = A, order = r |) \<in> CompleteLattice"  | 
|
1011  | 
by (simp add: CompleteLatticeI Rdual)  | 
|
1012  | 
||
| 45705 | 1013  | 
(*never proved, 2007-01-22*)  | 
| 23449 | 1014  | 
|
| 45705 | 1015  | 
declare (in CLF) fixf_po[intro] P_def [simp] A_def [simp] r_def [simp]  | 
1016  | 
Tarski.tarski_full_lemma [intro] cl_po [intro] cl_co [intro]  | 
|
1017  | 
CompleteLatticeI_simp [intro]  | 
|
1018  | 
||
| 23449 | 1019  | 
theorem (in CLF) Tarski_full:  | 
1020  | 
"(| pset = P, order = induced P r|) \<in> CompleteLattice"  | 
|
| 43197 | 1021  | 
(*sledgehammer*)  | 
| 23449 | 1022  | 
apply (rule CompleteLatticeI_simp)  | 
1023  | 
apply (rule fixf_po, clarify)  | 
|
1024  | 
(*never proved, 2007-01-22*)  | 
|
| 43197 | 1025  | 
(*sledgehammer*)  | 
| 23449 | 1026  | 
apply (simp add: P_def A_def r_def)  | 
| 27681 | 1027  | 
apply (blast intro!: Tarski.tarski_full_lemma [OF Tarski.intro, OF CLF.intro Tarski_axioms.intro,  | 
1028  | 
OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] cl_po cl_co f_cl)  | 
|
| 23449 | 1029  | 
done  | 
| 
36554
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
1030  | 
|
| 
 
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
 
blanchet 
parents: 
35416 
diff
changeset
 | 
1031  | 
declare (in CLF) fixf_po [rule del] P_def [simp del] A_def [simp del] r_def [simp del]  | 
| 23449 | 1032  | 
Tarski.tarski_full_lemma [rule del] cl_po [rule del] cl_co [rule del]  | 
1033  | 
CompleteLatticeI_simp [rule del]  | 
|
1034  | 
||
1035  | 
end  |