author | wenzelm |
Fri, 11 May 2018 19:59:05 +0200 | |
changeset 68149 | 9a4a6adb95b5 |
parent 60822 | 4f58f3662e7d |
child 69593 | 3dda49e08b9d |
permissions | -rw-r--r-- |
41777 | 1 |
(* Title: ZF/pair.thy |
13240 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1992 University of Cambridge |
|
4 |
*) |
|
5 |
||
60770 | 6 |
section\<open>Ordered Pairs\<close> |
13357 | 7 |
|
16417 | 8 |
theory pair imports upair |
42455 | 9 |
begin |
10 |
||
48891 | 11 |
ML_file "simpdata.ML" |
12 |
||
60770 | 13 |
setup \<open> |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
48891
diff
changeset
|
14 |
map_theory_simpset |
60822 | 15 |
(Simplifier.set_mksimps (fn ctxt => map mk_eq o ZF_atomize o Variable.gen_all ctxt) |
45625
750c5a47400b
modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents:
45620
diff
changeset
|
16 |
#> Simplifier.add_cong @{thm if_weak_cong}) |
60770 | 17 |
\<close> |
42794 | 18 |
|
60770 | 19 |
ML \<open>val ZF_ss = simpset_of @{context}\<close> |
42794 | 20 |
|
60770 | 21 |
simproc_setup defined_Bex ("\<exists>x\<in>A. P(x) & Q(x)") = \<open> |
54998 | 22 |
fn _ => Quantifier1.rearrange_bex |
23 |
(fn ctxt => |
|
24 |
unfold_tac ctxt @{thms Bex_def} THEN |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58871
diff
changeset
|
25 |
Quantifier1.prove_one_point_ex_tac ctxt) |
60770 | 26 |
\<close> |
42455 | 27 |
|
60770 | 28 |
simproc_setup defined_Ball ("\<forall>x\<in>A. P(x) \<longrightarrow> Q(x)") = \<open> |
54998 | 29 |
fn _ => Quantifier1.rearrange_ball |
30 |
(fn ctxt => |
|
31 |
unfold_tac ctxt @{thms Ball_def} THEN |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58871
diff
changeset
|
32 |
Quantifier1.prove_one_point_all_tac ctxt) |
60770 | 33 |
\<close> |
42455 | 34 |
|
13240 | 35 |
|
36 |
(** Lemmas for showing that <a,b> uniquely determines a and b **) |
|
37 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
38 |
lemma singleton_eq_iff [iff]: "{a} = {b} \<longleftrightarrow> a=b" |
13240 | 39 |
by (rule extension [THEN iff_trans], blast) |
40 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
41 |
lemma doubleton_eq_iff: "{a,b} = {c,d} \<longleftrightarrow> (a=c & b=d) | (a=d & b=c)" |
13240 | 42 |
by (rule extension [THEN iff_trans], blast) |
43 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
44 |
lemma Pair_iff [simp]: "<a,b> = <c,d> \<longleftrightarrow> a=c & b=d" |
13240 | 45 |
by (simp add: Pair_def doubleton_eq_iff, blast) |
46 |
||
45602 | 47 |
lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, elim!] |
13240 | 48 |
|
45602 | 49 |
lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1] |
50 |
lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2] |
|
13240 | 51 |
|
46820 | 52 |
lemma Pair_not_0: "<a,b> \<noteq> 0" |
13240 | 53 |
apply (unfold Pair_def) |
54 |
apply (blast elim: equalityE) |
|
55 |
done |
|
56 |
||
45602 | 57 |
lemmas Pair_neq_0 = Pair_not_0 [THEN notE, elim!] |
13240 | 58 |
|
59 |
declare sym [THEN Pair_neq_0, elim!] |
|
60 |
||
61 |
lemma Pair_neq_fst: "<a,b>=a ==> P" |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
62 |
proof (unfold Pair_def) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
63 |
assume eq: "{{a, a}, {a, b}} = a" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
64 |
have "{a, a} \<in> {{a, a}, {a, b}}" by (rule consI1) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
65 |
hence "{a, a} \<in> a" by (simp add: eq) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
66 |
moreover have "a \<in> {a, a}" by (rule consI1) |
46953 | 67 |
ultimately show "P" by (rule mem_asym) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
68 |
qed |
13240 | 69 |
|
70 |
lemma Pair_neq_snd: "<a,b>=b ==> P" |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
71 |
proof (unfold Pair_def) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
72 |
assume eq: "{{a, a}, {a, b}} = b" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
73 |
have "{a, b} \<in> {{a, a}, {a, b}}" by blast |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
74 |
hence "{a, b} \<in> b" by (simp add: eq) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
75 |
moreover have "b \<in> {a, b}" by blast |
46953 | 76 |
ultimately show "P" by (rule mem_asym) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
77 |
qed |
13240 | 78 |
|
79 |
||
60770 | 80 |
subsection\<open>Sigma: Disjoint Union of a Family of Sets\<close> |
13357 | 81 |
|
60770 | 82 |
text\<open>Generalizes Cartesian product\<close> |
13240 | 83 |
|
46953 | 84 |
lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) \<longleftrightarrow> a \<in> A & b \<in> B(a)" |
13240 | 85 |
by (simp add: Sigma_def) |
86 |
||
46953 | 87 |
lemma SigmaI [TC,intro!]: "[| a \<in> A; b \<in> B(a) |] ==> <a,b> \<in> Sigma(A,B)" |
13240 | 88 |
by simp |
89 |
||
45602 | 90 |
lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1] |
91 |
lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2] |
|
13240 | 92 |
|
93 |
(*The general elimination rule*) |
|
94 |
lemma SigmaE [elim!]: |
|
46953 | 95 |
"[| c \<in> Sigma(A,B); |
96 |
!!x y.[| x \<in> A; y \<in> B(x); c=<x,y> |] ==> P |
|
13240 | 97 |
|] ==> P" |
46953 | 98 |
by (unfold Sigma_def, blast) |
13240 | 99 |
|
100 |
lemma SigmaE2 [elim!]: |
|
46953 | 101 |
"[| <a,b> \<in> Sigma(A,B); |
102 |
[| a \<in> A; b \<in> B(a) |] ==> P |
|
13240 | 103 |
|] ==> P" |
46953 | 104 |
by (unfold Sigma_def, blast) |
13240 | 105 |
|
106 |
lemma Sigma_cong: |
|
46953 | 107 |
"[| A=A'; !!x. x \<in> A' ==> B(x)=B'(x) |] ==> |
13240 | 108 |
Sigma(A,B) = Sigma(A',B')" |
109 |
by (simp add: Sigma_def) |
|
110 |
||
111 |
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause |
|
112 |
flex-flex pairs and the "Check your prover" error. Most |
|
113 |
Sigmas and Pis are abbreviated as * or -> *) |
|
114 |
||
115 |
lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0" |
|
116 |
by blast |
|
117 |
||
118 |
lemma Sigma_empty2 [simp]: "A*0 = 0" |
|
119 |
by blast |
|
120 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
121 |
lemma Sigma_empty_iff: "A*B=0 \<longleftrightarrow> A=0 | B=0" |
13240 | 122 |
by blast |
123 |
||
124 |
||
60770 | 125 |
subsection\<open>Projections @{term fst} and @{term snd}\<close> |
13240 | 126 |
|
127 |
lemma fst_conv [simp]: "fst(<a,b>) = a" |
|
13544 | 128 |
by (simp add: fst_def) |
13240 | 129 |
|
130 |
lemma snd_conv [simp]: "snd(<a,b>) = b" |
|
13544 | 131 |
by (simp add: snd_def) |
13240 | 132 |
|
46953 | 133 |
lemma fst_type [TC]: "p \<in> Sigma(A,B) ==> fst(p) \<in> A" |
13240 | 134 |
by auto |
135 |
||
46953 | 136 |
lemma snd_type [TC]: "p \<in> Sigma(A,B) ==> snd(p) \<in> B(fst(p))" |
13240 | 137 |
by auto |
138 |
||
46953 | 139 |
lemma Pair_fst_snd_eq: "a \<in> Sigma(A,B) ==> <fst(a),snd(a)> = a" |
13240 | 140 |
by auto |
141 |
||
142 |
||
60770 | 143 |
subsection\<open>The Eliminator, @{term split}\<close> |
13240 | 144 |
|
145 |
(*A META-equality, so that it applies to higher types as well...*) |
|
146 |
lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)" |
|
147 |
by (simp add: split_def) |
|
148 |
||
149 |
lemma split_type [TC]: |
|
46953 | 150 |
"[| p \<in> Sigma(A,B); |
151 |
!!x y.[| x \<in> A; y \<in> B(x) |] ==> c(x,y):C(<x,y>) |
|
46820 | 152 |
|] ==> split(%x y. c(x,y), p) \<in> C(p)" |
46953 | 153 |
by (erule SigmaE, auto) |
13240 | 154 |
|
46953 | 155 |
lemma expand_split: |
156 |
"u \<in> A*B ==> |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
157 |
R(split(c,u)) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B. u = <x,y> \<longrightarrow> R(c(x,y)))" |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
158 |
by (auto simp add: split_def) |
13240 | 159 |
|
160 |
||
60770 | 161 |
subsection\<open>A version of @{term split} for Formulae: Result Type @{typ o}\<close> |
13240 | 162 |
|
163 |
lemma splitI: "R(a,b) ==> split(R, <a,b>)" |
|
164 |
by (simp add: split_def) |
|
165 |
||
166 |
lemma splitE: |
|
46953 | 167 |
"[| split(R,z); z \<in> Sigma(A,B); |
168 |
!!x y. [| z = <x,y>; R(x,y) |] ==> P |
|
13240 | 169 |
|] ==> P" |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
170 |
by (auto simp add: split_def) |
13240 | 171 |
|
172 |
lemma splitD: "split(R,<a,b>) ==> R(a,b)" |
|
173 |
by (simp add: split_def) |
|
174 |
||
60770 | 175 |
text \<open> |
14864 | 176 |
\bigskip Complex rules for Sigma. |
60770 | 177 |
\<close> |
14864 | 178 |
|
179 |
lemma split_paired_Bex_Sigma [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
180 |
"(\<exists>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<exists>x \<in> A. \<exists>y \<in> B(x). P(<x,y>))" |
14864 | 181 |
by blast |
182 |
||
183 |
lemma split_paired_Ball_Sigma [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
184 |
"(\<forall>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> B(x). P(<x,y>))" |
14864 | 185 |
by blast |
186 |
||
9570
e16e168984e1
installation of cancellation simprocs for the integers
paulson
parents:
2469
diff
changeset
|
187 |
end |
124 | 188 |
|
2469 | 189 |