author | wenzelm |
Wed, 03 Jul 2002 14:52:57 +0200 | |
changeset 13288 | 9a870391ff66 |
parent 13269 | 3ba9be497c33 |
child 13356 | c9cfe1638bf2 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/univ.thy |
0 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1992 University of Cambridge |
5 |
||
6 |
The cumulative hierarchy and a small universe for recursive types |
|
7 |
||
8 |
Standard notation for Vset(i) is V(i), but users might want V for a variable |
|
516 | 9 |
|
10 |
NOTE: univ(A) could be a translation; would simplify many proofs! |
|
6093 | 11 |
But Ind_Syntax.univ refers to the constant "Univ.univ" |
0 | 12 |
*) |
13 |
||
13269 | 14 |
theory Univ = Epsilon + Cardinal: |
3923 | 15 |
|
13163 | 16 |
constdefs |
17 |
Vfrom :: "[i,i]=>i" |
|
13220 | 18 |
"Vfrom(A,i) == transrec(i, %x f. A Un (\<Union>y\<in>x. Pow(f`y)))" |
0 | 19 |
|
13220 | 20 |
syntax Vset :: "i=>i" |
0 | 21 |
translations |
1478 | 22 |
"Vset(x)" == "Vfrom(0,x)" |
0 | 23 |
|
3923 | 24 |
|
13163 | 25 |
constdefs |
26 |
Vrec :: "[i, [i,i]=>i] =>i" |
|
27 |
"Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)). |
|
28 |
H(z, lam w:Vset(x). g`rank(w)`w)) ` a" |
|
29 |
||
30 |
Vrecursor :: "[[i,i]=>i, i] =>i" |
|
31 |
"Vrecursor(H,a) == transrec(rank(a), %x g. lam z: Vset(succ(x)). |
|
32 |
H(lam w:Vset(x). g`rank(w)`w, z)) ` a" |
|
33 |
||
34 |
univ :: "i=>i" |
|
35 |
"univ(A) == Vfrom(A,nat)" |
|
36 |
||
37 |
||
38 |
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*} |
|
13220 | 39 |
lemma Vfrom: "Vfrom(A,i) = A Un (\<Union>j\<in>i. Pow(Vfrom(A,j)))" |
13269 | 40 |
by (subst Vfrom_def [THEN def_transrec], simp) |
13163 | 41 |
|
42 |
subsubsection{* Monotonicity *} |
|
43 |
||
44 |
lemma Vfrom_mono [rule_format]: |
|
13220 | 45 |
"A<=B ==> \<forall>j. i<=j --> Vfrom(A,i) <= Vfrom(B,j)" |
13163 | 46 |
apply (rule_tac a=i in eps_induct) |
47 |
apply (rule impI [THEN allI]) |
|
48 |
apply (subst Vfrom) |
|
49 |
apply (subst Vfrom) |
|
50 |
apply (erule Un_mono) |
|
51 |
apply (erule UN_mono, blast) |
|
52 |
done |
|
53 |
||
13220 | 54 |
lemma VfromI: "[| a \<in> Vfrom(A,j); j<i |] ==> a \<in> Vfrom(A,i)" |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
55 |
by (blast dest: Vfrom_mono [OF subset_refl le_imp_subset [OF leI]]) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
56 |
|
13163 | 57 |
|
58 |
subsubsection{* A fundamental equality: Vfrom does not require ordinals! *} |
|
59 |
||
60 |
lemma Vfrom_rank_subset1: "Vfrom(A,x) <= Vfrom(A,rank(x))" |
|
61 |
apply (rule_tac a=x in eps_induct) |
|
62 |
apply (subst Vfrom) |
|
63 |
apply (subst Vfrom) |
|
64 |
apply (blast intro!: rank_lt [THEN ltD]) |
|
65 |
done |
|
66 |
||
67 |
lemma Vfrom_rank_subset2: "Vfrom(A,rank(x)) <= Vfrom(A,x)" |
|
68 |
apply (rule_tac a=x in eps_induct) |
|
69 |
apply (subst Vfrom) |
|
70 |
apply (subst Vfrom) |
|
71 |
apply (rule subset_refl [THEN Un_mono]) |
|
72 |
apply (rule UN_least) |
|
13288 | 73 |
txt{*expand @{text "rank(x1) = (\<Union>y\<in>x1. succ(rank(y)))"} in assumptions*} |
13163 | 74 |
apply (erule rank [THEN equalityD1, THEN subsetD, THEN UN_E]) |
75 |
apply (rule subset_trans) |
|
76 |
apply (erule_tac [2] UN_upper) |
|
77 |
apply (rule subset_refl [THEN Vfrom_mono, THEN subset_trans, THEN Pow_mono]) |
|
78 |
apply (erule ltI [THEN le_imp_subset]) |
|
79 |
apply (rule Ord_rank [THEN Ord_succ]) |
|
80 |
apply (erule bspec, assumption) |
|
81 |
done |
|
82 |
||
83 |
lemma Vfrom_rank_eq: "Vfrom(A,rank(x)) = Vfrom(A,x)" |
|
84 |
apply (rule equalityI) |
|
85 |
apply (rule Vfrom_rank_subset2) |
|
86 |
apply (rule Vfrom_rank_subset1) |
|
87 |
done |
|
88 |
||
89 |
||
90 |
subsection{* Basic closure properties *} |
|
91 |
||
13220 | 92 |
lemma zero_in_Vfrom: "y:x ==> 0 \<in> Vfrom(A,x)" |
13163 | 93 |
by (subst Vfrom, blast) |
94 |
||
95 |
lemma i_subset_Vfrom: "i <= Vfrom(A,i)" |
|
96 |
apply (rule_tac a=i in eps_induct) |
|
97 |
apply (subst Vfrom, blast) |
|
98 |
done |
|
99 |
||
100 |
lemma A_subset_Vfrom: "A <= Vfrom(A,i)" |
|
101 |
apply (subst Vfrom) |
|
102 |
apply (rule Un_upper1) |
|
103 |
done |
|
104 |
||
105 |
lemmas A_into_Vfrom = A_subset_Vfrom [THEN subsetD] |
|
106 |
||
13220 | 107 |
lemma subset_mem_Vfrom: "a <= Vfrom(A,i) ==> a \<in> Vfrom(A,succ(i))" |
13163 | 108 |
by (subst Vfrom, blast) |
109 |
||
110 |
subsubsection{* Finite sets and ordered pairs *} |
|
111 |
||
13220 | 112 |
lemma singleton_in_Vfrom: "a \<in> Vfrom(A,i) ==> {a} \<in> Vfrom(A,succ(i))" |
13163 | 113 |
by (rule subset_mem_Vfrom, safe) |
114 |
||
115 |
lemma doubleton_in_Vfrom: |
|
13220 | 116 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i) |] ==> {a,b} \<in> Vfrom(A,succ(i))" |
13163 | 117 |
by (rule subset_mem_Vfrom, safe) |
118 |
||
119 |
lemma Pair_in_Vfrom: |
|
13220 | 120 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i) |] ==> <a,b> \<in> Vfrom(A,succ(succ(i)))" |
13163 | 121 |
apply (unfold Pair_def) |
122 |
apply (blast intro: doubleton_in_Vfrom) |
|
123 |
done |
|
124 |
||
13220 | 125 |
lemma succ_in_Vfrom: "a <= Vfrom(A,i) ==> succ(a) \<in> Vfrom(A,succ(succ(i)))" |
13163 | 126 |
apply (intro subset_mem_Vfrom succ_subsetI, assumption) |
127 |
apply (erule subset_trans) |
|
128 |
apply (rule Vfrom_mono [OF subset_refl subset_succI]) |
|
129 |
done |
|
130 |
||
131 |
subsection{* 0, successor and limit equations fof Vfrom *} |
|
132 |
||
133 |
lemma Vfrom_0: "Vfrom(A,0) = A" |
|
134 |
by (subst Vfrom, blast) |
|
135 |
||
136 |
lemma Vfrom_succ_lemma: "Ord(i) ==> Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))" |
|
137 |
apply (rule Vfrom [THEN trans]) |
|
138 |
apply (rule equalityI [THEN subst_context, |
|
139 |
OF _ succI1 [THEN RepFunI, THEN Union_upper]]) |
|
140 |
apply (rule UN_least) |
|
141 |
apply (rule subset_refl [THEN Vfrom_mono, THEN Pow_mono]) |
|
142 |
apply (erule ltI [THEN le_imp_subset]) |
|
143 |
apply (erule Ord_succ) |
|
144 |
done |
|
145 |
||
146 |
lemma Vfrom_succ: "Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))" |
|
147 |
apply (rule_tac x1 = "succ (i)" in Vfrom_rank_eq [THEN subst]) |
|
148 |
apply (rule_tac x1 = "i" in Vfrom_rank_eq [THEN subst]) |
|
149 |
apply (subst rank_succ) |
|
150 |
apply (rule Ord_rank [THEN Vfrom_succ_lemma]) |
|
151 |
done |
|
152 |
||
153 |
(*The premise distinguishes this from Vfrom(A,0); allowing X=0 forces |
|
13220 | 154 |
the conclusion to be Vfrom(A,Union(X)) = A Un (\<Union>y\<in>X. Vfrom(A,y)) *) |
155 |
lemma Vfrom_Union: "y:X ==> Vfrom(A,Union(X)) = (\<Union>y\<in>X. Vfrom(A,y))" |
|
13163 | 156 |
apply (subst Vfrom) |
157 |
apply (rule equalityI) |
|
158 |
txt{*first inclusion*} |
|
159 |
apply (rule Un_least) |
|
160 |
apply (rule A_subset_Vfrom [THEN subset_trans]) |
|
161 |
apply (rule UN_upper, assumption) |
|
162 |
apply (rule UN_least) |
|
163 |
apply (erule UnionE) |
|
164 |
apply (rule subset_trans) |
|
165 |
apply (erule_tac [2] UN_upper, |
|
166 |
subst Vfrom, erule subset_trans [OF UN_upper Un_upper2]) |
|
167 |
txt{*opposite inclusion*} |
|
168 |
apply (rule UN_least) |
|
169 |
apply (subst Vfrom, blast) |
|
170 |
done |
|
171 |
||
172 |
subsection{* Vfrom applied to Limit ordinals *} |
|
173 |
||
174 |
(*NB. limit ordinals are non-empty: |
|
13220 | 175 |
Vfrom(A,0) = A = A Un (\<Union>y\<in>0. Vfrom(A,y)) *) |
13163 | 176 |
lemma Limit_Vfrom_eq: |
13220 | 177 |
"Limit(i) ==> Vfrom(A,i) = (\<Union>y\<in>i. Vfrom(A,y))" |
13163 | 178 |
apply (rule Limit_has_0 [THEN ltD, THEN Vfrom_Union, THEN subst], assumption) |
179 |
apply (simp add: Limit_Union_eq) |
|
180 |
done |
|
181 |
||
182 |
lemma Limit_VfromE: |
|
13220 | 183 |
"[| a \<in> Vfrom(A,i); ~R ==> Limit(i); |
184 |
!!x. [| x<i; a \<in> Vfrom(A,x) |] ==> R |
|
13163 | 185 |
|] ==> R" |
186 |
apply (rule classical) |
|
187 |
apply (rule Limit_Vfrom_eq [THEN equalityD1, THEN subsetD, THEN UN_E]) |
|
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
188 |
prefer 2 apply assumption |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
189 |
apply blast |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
190 |
apply (blast intro: ltI Limit_is_Ord) |
13163 | 191 |
done |
192 |
||
193 |
lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard] |
|
194 |
||
195 |
lemma singleton_in_VLimit: |
|
13220 | 196 |
"[| a \<in> Vfrom(A,i); Limit(i) |] ==> {a} \<in> Vfrom(A,i)" |
13163 | 197 |
apply (erule Limit_VfromE, assumption) |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
198 |
apply (erule singleton_in_Vfrom [THEN VfromI]) |
13163 | 199 |
apply (blast intro: Limit_has_succ) |
200 |
done |
|
201 |
||
202 |
lemmas Vfrom_UnI1 = |
|
203 |
Un_upper1 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard] |
|
204 |
lemmas Vfrom_UnI2 = |
|
205 |
Un_upper2 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard] |
|
206 |
||
207 |
text{*Hard work is finding a single j:i such that {a,b}<=Vfrom(A,j)*} |
|
208 |
lemma doubleton_in_VLimit: |
|
13220 | 209 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i) |] ==> {a,b} \<in> Vfrom(A,i)" |
13163 | 210 |
apply (erule Limit_VfromE, assumption) |
211 |
apply (erule Limit_VfromE, assumption) |
|
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
212 |
apply (blast intro: VfromI [OF doubleton_in_Vfrom] |
13163 | 213 |
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt) |
214 |
done |
|
215 |
||
216 |
lemma Pair_in_VLimit: |
|
13220 | 217 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i) |] ==> <a,b> \<in> Vfrom(A,i)" |
13163 | 218 |
txt{*Infer that a, b occur at ordinals x,xa < i.*} |
219 |
apply (erule Limit_VfromE, assumption) |
|
220 |
apply (erule Limit_VfromE, assumption) |
|
221 |
txt{*Infer that succ(succ(x Un xa)) < i *} |
|
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
222 |
apply (blast intro: VfromI [OF Pair_in_Vfrom] |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
223 |
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt) |
13163 | 224 |
done |
225 |
||
226 |
lemma product_VLimit: "Limit(i) ==> Vfrom(A,i) * Vfrom(A,i) <= Vfrom(A,i)" |
|
227 |
by (blast intro: Pair_in_VLimit) |
|
228 |
||
229 |
lemmas Sigma_subset_VLimit = |
|
230 |
subset_trans [OF Sigma_mono product_VLimit] |
|
231 |
||
232 |
lemmas nat_subset_VLimit = |
|
233 |
subset_trans [OF nat_le_Limit [THEN le_imp_subset] i_subset_Vfrom] |
|
234 |
||
13220 | 235 |
lemma nat_into_VLimit: "[| n: nat; Limit(i) |] ==> n \<in> Vfrom(A,i)" |
13163 | 236 |
by (blast intro: nat_subset_VLimit [THEN subsetD]) |
237 |
||
238 |
subsubsection{* Closure under disjoint union *} |
|
239 |
||
240 |
lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard] |
|
241 |
||
13220 | 242 |
lemma one_in_VLimit: "Limit(i) ==> 1 \<in> Vfrom(A,i)" |
13163 | 243 |
by (blast intro: nat_into_VLimit) |
244 |
||
245 |
lemma Inl_in_VLimit: |
|
13220 | 246 |
"[| a \<in> Vfrom(A,i); Limit(i) |] ==> Inl(a) \<in> Vfrom(A,i)" |
13163 | 247 |
apply (unfold Inl_def) |
248 |
apply (blast intro: zero_in_VLimit Pair_in_VLimit) |
|
249 |
done |
|
250 |
||
251 |
lemma Inr_in_VLimit: |
|
13220 | 252 |
"[| b \<in> Vfrom(A,i); Limit(i) |] ==> Inr(b) \<in> Vfrom(A,i)" |
13163 | 253 |
apply (unfold Inr_def) |
254 |
apply (blast intro: one_in_VLimit Pair_in_VLimit) |
|
255 |
done |
|
256 |
||
257 |
lemma sum_VLimit: "Limit(i) ==> Vfrom(C,i)+Vfrom(C,i) <= Vfrom(C,i)" |
|
258 |
by (blast intro!: Inl_in_VLimit Inr_in_VLimit) |
|
259 |
||
260 |
lemmas sum_subset_VLimit = subset_trans [OF sum_mono sum_VLimit] |
|
261 |
||
262 |
||
263 |
||
264 |
subsection{* Properties assuming Transset(A) *} |
|
265 |
||
266 |
lemma Transset_Vfrom: "Transset(A) ==> Transset(Vfrom(A,i))" |
|
267 |
apply (rule_tac a=i in eps_induct) |
|
268 |
apply (subst Vfrom) |
|
269 |
apply (blast intro!: Transset_Union_family Transset_Un Transset_Pow) |
|
270 |
done |
|
271 |
||
272 |
lemma Transset_Vfrom_succ: |
|
273 |
"Transset(A) ==> Vfrom(A, succ(i)) = Pow(Vfrom(A,i))" |
|
274 |
apply (rule Vfrom_succ [THEN trans]) |
|
275 |
apply (rule equalityI [OF _ Un_upper2]) |
|
276 |
apply (rule Un_least [OF _ subset_refl]) |
|
277 |
apply (rule A_subset_Vfrom [THEN subset_trans]) |
|
278 |
apply (erule Transset_Vfrom [THEN Transset_iff_Pow [THEN iffD1]]) |
|
279 |
done |
|
280 |
||
281 |
lemma Transset_Pair_subset: "[| <a,b> <= C; Transset(C) |] ==> a: C & b: C" |
|
282 |
by (unfold Pair_def Transset_def, blast) |
|
283 |
||
284 |
lemma Transset_Pair_subset_VLimit: |
|
285 |
"[| <a,b> <= Vfrom(A,i); Transset(A); Limit(i) |] |
|
13220 | 286 |
==> <a,b> \<in> Vfrom(A,i)" |
13163 | 287 |
apply (erule Transset_Pair_subset [THEN conjE]) |
288 |
apply (erule Transset_Vfrom) |
|
289 |
apply (blast intro: Pair_in_VLimit) |
|
290 |
done |
|
291 |
||
292 |
lemma Union_in_Vfrom: |
|
13220 | 293 |
"[| X \<in> Vfrom(A,j); Transset(A) |] ==> Union(X) \<in> Vfrom(A, succ(j))" |
13163 | 294 |
apply (drule Transset_Vfrom) |
295 |
apply (rule subset_mem_Vfrom) |
|
296 |
apply (unfold Transset_def, blast) |
|
297 |
done |
|
298 |
||
299 |
lemma Union_in_VLimit: |
|
13220 | 300 |
"[| X \<in> Vfrom(A,i); Limit(i); Transset(A) |] ==> Union(X) \<in> Vfrom(A,i)" |
13163 | 301 |
apply (rule Limit_VfromE, assumption+) |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
302 |
apply (blast intro: Limit_has_succ VfromI Union_in_Vfrom) |
13163 | 303 |
done |
304 |
||
305 |
||
306 |
(*** Closure under product/sum applied to elements -- thus Vfrom(A,i) |
|
307 |
is a model of simple type theory provided A is a transitive set |
|
308 |
and i is a limit ordinal |
|
309 |
***) |
|
310 |
||
311 |
text{*General theorem for membership in Vfrom(A,i) when i is a limit ordinal*} |
|
312 |
lemma in_VLimit: |
|
13220 | 313 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); |
314 |
!!x y j. [| j<i; 1:j; x \<in> Vfrom(A,j); y \<in> Vfrom(A,j) |] |
|
315 |
==> EX k. h(x,y) \<in> Vfrom(A,k) & k<i |] |
|
316 |
==> h(a,b) \<in> Vfrom(A,i)" |
|
13163 | 317 |
txt{*Infer that a, b occur at ordinals x,xa < i.*} |
318 |
apply (erule Limit_VfromE, assumption) |
|
319 |
apply (erule Limit_VfromE, assumption, atomize) |
|
320 |
apply (drule_tac x=a in spec) |
|
321 |
apply (drule_tac x=b in spec) |
|
322 |
apply (drule_tac x="x Un xa Un 2" in spec) |
|
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
323 |
apply (simp add: Un_least_lt_iff lt_Ord Vfrom_UnI1 Vfrom_UnI2) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
324 |
apply (blast intro: Limit_has_0 Limit_has_succ VfromI) |
13163 | 325 |
done |
326 |
||
327 |
subsubsection{* products *} |
|
328 |
||
329 |
lemma prod_in_Vfrom: |
|
13220 | 330 |
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A) |] |
331 |
==> a*b \<in> Vfrom(A, succ(succ(succ(j))))" |
|
13163 | 332 |
apply (drule Transset_Vfrom) |
333 |
apply (rule subset_mem_Vfrom) |
|
334 |
apply (unfold Transset_def) |
|
335 |
apply (blast intro: Pair_in_Vfrom) |
|
336 |
done |
|
337 |
||
338 |
lemma prod_in_VLimit: |
|
13220 | 339 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |] |
340 |
==> a*b \<in> Vfrom(A,i)" |
|
13163 | 341 |
apply (erule in_VLimit, assumption+) |
342 |
apply (blast intro: prod_in_Vfrom Limit_has_succ) |
|
343 |
done |
|
344 |
||
345 |
subsubsection{* Disjoint sums, aka Quine ordered pairs *} |
|
346 |
||
347 |
lemma sum_in_Vfrom: |
|
13220 | 348 |
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A); 1:j |] |
349 |
==> a+b \<in> Vfrom(A, succ(succ(succ(j))))" |
|
13163 | 350 |
apply (unfold sum_def) |
351 |
apply (drule Transset_Vfrom) |
|
352 |
apply (rule subset_mem_Vfrom) |
|
353 |
apply (unfold Transset_def) |
|
354 |
apply (blast intro: zero_in_Vfrom Pair_in_Vfrom i_subset_Vfrom [THEN subsetD]) |
|
355 |
done |
|
356 |
||
357 |
lemma sum_in_VLimit: |
|
13220 | 358 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |] |
359 |
==> a+b \<in> Vfrom(A,i)" |
|
13163 | 360 |
apply (erule in_VLimit, assumption+) |
361 |
apply (blast intro: sum_in_Vfrom Limit_has_succ) |
|
362 |
done |
|
363 |
||
364 |
subsubsection{* function space! *} |
|
365 |
||
366 |
lemma fun_in_Vfrom: |
|
13220 | 367 |
"[| a \<in> Vfrom(A,j); b \<in> Vfrom(A,j); Transset(A) |] ==> |
368 |
a->b \<in> Vfrom(A, succ(succ(succ(succ(j)))))" |
|
13163 | 369 |
apply (unfold Pi_def) |
370 |
apply (drule Transset_Vfrom) |
|
371 |
apply (rule subset_mem_Vfrom) |
|
372 |
apply (rule Collect_subset [THEN subset_trans]) |
|
373 |
apply (subst Vfrom) |
|
374 |
apply (rule subset_trans [THEN subset_trans]) |
|
375 |
apply (rule_tac [3] Un_upper2) |
|
376 |
apply (rule_tac [2] succI1 [THEN UN_upper]) |
|
377 |
apply (rule Pow_mono) |
|
378 |
apply (unfold Transset_def) |
|
379 |
apply (blast intro: Pair_in_Vfrom) |
|
380 |
done |
|
381 |
||
382 |
lemma fun_in_VLimit: |
|
13220 | 383 |
"[| a \<in> Vfrom(A,i); b \<in> Vfrom(A,i); Limit(i); Transset(A) |] |
384 |
==> a->b \<in> Vfrom(A,i)" |
|
13163 | 385 |
apply (erule in_VLimit, assumption+) |
386 |
apply (blast intro: fun_in_Vfrom Limit_has_succ) |
|
387 |
done |
|
388 |
||
389 |
lemma Pow_in_Vfrom: |
|
13220 | 390 |
"[| a \<in> Vfrom(A,j); Transset(A) |] ==> Pow(a) \<in> Vfrom(A, succ(succ(j)))" |
13163 | 391 |
apply (drule Transset_Vfrom) |
392 |
apply (rule subset_mem_Vfrom) |
|
393 |
apply (unfold Transset_def) |
|
394 |
apply (subst Vfrom, blast) |
|
395 |
done |
|
396 |
||
397 |
lemma Pow_in_VLimit: |
|
13220 | 398 |
"[| a \<in> Vfrom(A,i); Limit(i); Transset(A) |] ==> Pow(a) \<in> Vfrom(A,i)" |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
399 |
by (blast elim: Limit_VfromE intro: Limit_has_succ Pow_in_Vfrom VfromI) |
13163 | 400 |
|
401 |
||
402 |
subsection{* The set Vset(i) *} |
|
403 |
||
13220 | 404 |
lemma Vset: "Vset(i) = (\<Union>j\<in>i. Pow(Vset(j)))" |
13163 | 405 |
by (subst Vfrom, blast) |
406 |
||
407 |
lemmas Vset_succ = Transset_0 [THEN Transset_Vfrom_succ, standard] |
|
408 |
lemmas Transset_Vset = Transset_0 [THEN Transset_Vfrom, standard] |
|
409 |
||
410 |
subsubsection{* Characterisation of the elements of Vset(i) *} |
|
411 |
||
13220 | 412 |
lemma VsetD [rule_format]: "Ord(i) ==> \<forall>b. b \<in> Vset(i) --> rank(b) < i" |
13163 | 413 |
apply (erule trans_induct) |
414 |
apply (subst Vset, safe) |
|
415 |
apply (subst rank) |
|
416 |
apply (blast intro: ltI UN_succ_least_lt) |
|
417 |
done |
|
418 |
||
419 |
lemma VsetI_lemma [rule_format]: |
|
13220 | 420 |
"Ord(i) ==> \<forall>b. rank(b) \<in> i --> b \<in> Vset(i)" |
13163 | 421 |
apply (erule trans_induct) |
422 |
apply (rule allI) |
|
423 |
apply (subst Vset) |
|
424 |
apply (blast intro!: rank_lt [THEN ltD]) |
|
425 |
done |
|
426 |
||
13220 | 427 |
lemma VsetI: "rank(x)<i ==> x \<in> Vset(i)" |
13163 | 428 |
by (blast intro: VsetI_lemma elim: ltE) |
429 |
||
430 |
text{*Merely a lemma for the next result*} |
|
13220 | 431 |
lemma Vset_Ord_rank_iff: "Ord(i) ==> b \<in> Vset(i) <-> rank(b) < i" |
13163 | 432 |
by (blast intro: VsetD VsetI) |
433 |
||
13220 | 434 |
lemma Vset_rank_iff [simp]: "b \<in> Vset(a) <-> rank(b) < rank(a)" |
13163 | 435 |
apply (rule Vfrom_rank_eq [THEN subst]) |
436 |
apply (rule Ord_rank [THEN Vset_Ord_rank_iff]) |
|
437 |
done |
|
438 |
||
439 |
text{*This is rank(rank(a)) = rank(a) *} |
|
440 |
declare Ord_rank [THEN rank_of_Ord, simp] |
|
441 |
||
442 |
lemma rank_Vset: "Ord(i) ==> rank(Vset(i)) = i" |
|
443 |
apply (subst rank) |
|
444 |
apply (rule equalityI, safe) |
|
445 |
apply (blast intro: VsetD [THEN ltD]) |
|
446 |
apply (blast intro: VsetD [THEN ltD] Ord_trans) |
|
447 |
apply (blast intro: i_subset_Vfrom [THEN subsetD] |
|
448 |
Ord_in_Ord [THEN rank_of_Ord, THEN ssubst]) |
|
449 |
done |
|
450 |
||
13269 | 451 |
lemma Finite_Vset: "i \<in> nat ==> Finite(Vset(i))"; |
452 |
apply (erule nat_induct) |
|
453 |
apply (simp add: Vfrom_0) |
|
454 |
apply (simp add: Vset_succ) |
|
455 |
done |
|
456 |
||
13220 | 457 |
subsubsection{* Reasoning about sets in terms of their elements' ranks *} |
0 | 458 |
|
13163 | 459 |
lemma arg_subset_Vset_rank: "a <= Vset(rank(a))" |
460 |
apply (rule subsetI) |
|
461 |
apply (erule rank_lt [THEN VsetI]) |
|
462 |
done |
|
463 |
||
464 |
lemma Int_Vset_subset: |
|
465 |
"[| !!i. Ord(i) ==> a Int Vset(i) <= b |] ==> a <= b" |
|
466 |
apply (rule subset_trans) |
|
467 |
apply (rule Int_greatest [OF subset_refl arg_subset_Vset_rank]) |
|
468 |
apply (blast intro: Ord_rank) |
|
469 |
done |
|
470 |
||
471 |
subsubsection{* Set up an environment for simplification *} |
|
472 |
||
473 |
lemma rank_Inl: "rank(a) < rank(Inl(a))" |
|
474 |
apply (unfold Inl_def) |
|
475 |
apply (rule rank_pair2) |
|
476 |
done |
|
477 |
||
478 |
lemma rank_Inr: "rank(a) < rank(Inr(a))" |
|
479 |
apply (unfold Inr_def) |
|
480 |
apply (rule rank_pair2) |
|
481 |
done |
|
482 |
||
483 |
lemmas rank_rls = rank_Inl rank_Inr rank_pair1 rank_pair2 |
|
484 |
||
485 |
subsubsection{* Recursion over Vset levels! *} |
|
486 |
||
487 |
text{*NOT SUITABLE FOR REWRITING: recursive!*} |
|
488 |
lemma Vrec: "Vrec(a,H) = H(a, lam x:Vset(rank(a)). Vrec(x,H))" |
|
489 |
apply (unfold Vrec_def) |
|
13269 | 490 |
apply (subst transrec, simp) |
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13163
diff
changeset
|
491 |
apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def) |
13163 | 492 |
done |
493 |
||
494 |
text{*This form avoids giant explosions in proofs. NOTE USE OF == *} |
|
495 |
lemma def_Vrec: |
|
496 |
"[| !!x. h(x)==Vrec(x,H) |] ==> |
|
497 |
h(a) = H(a, lam x: Vset(rank(a)). h(x))" |
|
498 |
apply simp |
|
499 |
apply (rule Vrec) |
|
500 |
done |
|
501 |
||
502 |
text{*NOT SUITABLE FOR REWRITING: recursive!*} |
|
503 |
lemma Vrecursor: |
|
504 |
"Vrecursor(H,a) = H(lam x:Vset(rank(a)). Vrecursor(H,x), a)" |
|
505 |
apply (unfold Vrecursor_def) |
|
506 |
apply (subst transrec, simp) |
|
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13163
diff
changeset
|
507 |
apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def) |
13163 | 508 |
done |
509 |
||
510 |
text{*This form avoids giant explosions in proofs. NOTE USE OF == *} |
|
511 |
lemma def_Vrecursor: |
|
512 |
"h == Vrecursor(H) ==> h(a) = H(lam x: Vset(rank(a)). h(x), a)" |
|
513 |
apply simp |
|
514 |
apply (rule Vrecursor) |
|
515 |
done |
|
516 |
||
517 |
||
518 |
subsection{* univ(A) *} |
|
519 |
||
520 |
lemma univ_mono: "A<=B ==> univ(A) <= univ(B)" |
|
521 |
apply (unfold univ_def) |
|
522 |
apply (erule Vfrom_mono) |
|
523 |
apply (rule subset_refl) |
|
524 |
done |
|
525 |
||
526 |
lemma Transset_univ: "Transset(A) ==> Transset(univ(A))" |
|
527 |
apply (unfold univ_def) |
|
528 |
apply (erule Transset_Vfrom) |
|
529 |
done |
|
530 |
||
531 |
subsubsection{* univ(A) as a limit *} |
|
532 |
||
13220 | 533 |
lemma univ_eq_UN: "univ(A) = (\<Union>i\<in>nat. Vfrom(A,i))" |
13163 | 534 |
apply (unfold univ_def) |
535 |
apply (rule Limit_nat [THEN Limit_Vfrom_eq]) |
|
536 |
done |
|
537 |
||
13220 | 538 |
lemma subset_univ_eq_Int: "c <= univ(A) ==> c = (\<Union>i\<in>nat. c Int Vfrom(A,i))" |
13163 | 539 |
apply (rule subset_UN_iff_eq [THEN iffD1]) |
540 |
apply (erule univ_eq_UN [THEN subst]) |
|
541 |
done |
|
542 |
||
543 |
lemma univ_Int_Vfrom_subset: |
|
544 |
"[| a <= univ(X); |
|
545 |
!!i. i:nat ==> a Int Vfrom(X,i) <= b |] |
|
546 |
==> a <= b" |
|
547 |
apply (subst subset_univ_eq_Int, assumption) |
|
548 |
apply (rule UN_least, simp) |
|
549 |
done |
|
550 |
||
551 |
lemma univ_Int_Vfrom_eq: |
|
552 |
"[| a <= univ(X); b <= univ(X); |
|
553 |
!!i. i:nat ==> a Int Vfrom(X,i) = b Int Vfrom(X,i) |
|
554 |
|] ==> a = b" |
|
555 |
apply (rule equalityI) |
|
556 |
apply (rule univ_Int_Vfrom_subset, assumption) |
|
557 |
apply (blast elim: equalityCE) |
|
558 |
apply (rule univ_Int_Vfrom_subset, assumption) |
|
559 |
apply (blast elim: equalityCE) |
|
560 |
done |
|
561 |
||
562 |
subsubsection{* Closure properties *} |
|
563 |
||
13220 | 564 |
lemma zero_in_univ: "0 \<in> univ(A)" |
13163 | 565 |
apply (unfold univ_def) |
566 |
apply (rule nat_0I [THEN zero_in_Vfrom]) |
|
567 |
done |
|
568 |
||
13255 | 569 |
lemma zero_subset_univ: "{0} <= univ(A)" |
570 |
by (blast intro: zero_in_univ) |
|
571 |
||
13163 | 572 |
lemma A_subset_univ: "A <= univ(A)" |
573 |
apply (unfold univ_def) |
|
574 |
apply (rule A_subset_Vfrom) |
|
575 |
done |
|
576 |
||
577 |
lemmas A_into_univ = A_subset_univ [THEN subsetD, standard] |
|
578 |
||
579 |
subsubsection{* Closure under unordered and ordered pairs *} |
|
580 |
||
13220 | 581 |
lemma singleton_in_univ: "a: univ(A) ==> {a} \<in> univ(A)" |
13163 | 582 |
apply (unfold univ_def) |
583 |
apply (blast intro: singleton_in_VLimit Limit_nat) |
|
584 |
done |
|
585 |
||
586 |
lemma doubleton_in_univ: |
|
13220 | 587 |
"[| a: univ(A); b: univ(A) |] ==> {a,b} \<in> univ(A)" |
13163 | 588 |
apply (unfold univ_def) |
589 |
apply (blast intro: doubleton_in_VLimit Limit_nat) |
|
590 |
done |
|
591 |
||
592 |
lemma Pair_in_univ: |
|
13220 | 593 |
"[| a: univ(A); b: univ(A) |] ==> <a,b> \<in> univ(A)" |
13163 | 594 |
apply (unfold univ_def) |
595 |
apply (blast intro: Pair_in_VLimit Limit_nat) |
|
596 |
done |
|
597 |
||
598 |
lemma Union_in_univ: |
|
13220 | 599 |
"[| X: univ(A); Transset(A) |] ==> Union(X) \<in> univ(A)" |
13163 | 600 |
apply (unfold univ_def) |
601 |
apply (blast intro: Union_in_VLimit Limit_nat) |
|
602 |
done |
|
603 |
||
604 |
lemma product_univ: "univ(A)*univ(A) <= univ(A)" |
|
605 |
apply (unfold univ_def) |
|
606 |
apply (rule Limit_nat [THEN product_VLimit]) |
|
607 |
done |
|
608 |
||
609 |
||
610 |
subsubsection{* The natural numbers *} |
|
611 |
||
612 |
lemma nat_subset_univ: "nat <= univ(A)" |
|
613 |
apply (unfold univ_def) |
|
614 |
apply (rule i_subset_Vfrom) |
|
615 |
done |
|
616 |
||
617 |
text{* n:nat ==> n:univ(A) *} |
|
618 |
lemmas nat_into_univ = nat_subset_univ [THEN subsetD, standard] |
|
619 |
||
620 |
subsubsection{* instances for 1 and 2 *} |
|
621 |
||
13220 | 622 |
lemma one_in_univ: "1 \<in> univ(A)" |
13163 | 623 |
apply (unfold univ_def) |
624 |
apply (rule Limit_nat [THEN one_in_VLimit]) |
|
625 |
done |
|
626 |
||
627 |
text{*unused!*} |
|
13220 | 628 |
lemma two_in_univ: "2 \<in> univ(A)" |
13163 | 629 |
by (blast intro: nat_into_univ) |
630 |
||
631 |
lemma bool_subset_univ: "bool <= univ(A)" |
|
632 |
apply (unfold bool_def) |
|
633 |
apply (blast intro!: zero_in_univ one_in_univ) |
|
634 |
done |
|
635 |
||
636 |
lemmas bool_into_univ = bool_subset_univ [THEN subsetD, standard] |
|
637 |
||
638 |
||
639 |
subsubsection{* Closure under disjoint union *} |
|
640 |
||
13220 | 641 |
lemma Inl_in_univ: "a: univ(A) ==> Inl(a) \<in> univ(A)" |
13163 | 642 |
apply (unfold univ_def) |
643 |
apply (erule Inl_in_VLimit [OF _ Limit_nat]) |
|
644 |
done |
|
645 |
||
13220 | 646 |
lemma Inr_in_univ: "b: univ(A) ==> Inr(b) \<in> univ(A)" |
13163 | 647 |
apply (unfold univ_def) |
648 |
apply (erule Inr_in_VLimit [OF _ Limit_nat]) |
|
649 |
done |
|
650 |
||
651 |
lemma sum_univ: "univ(C)+univ(C) <= univ(C)" |
|
652 |
apply (unfold univ_def) |
|
653 |
apply (rule Limit_nat [THEN sum_VLimit]) |
|
654 |
done |
|
655 |
||
656 |
lemmas sum_subset_univ = subset_trans [OF sum_mono sum_univ] |
|
657 |
||
13255 | 658 |
lemma Sigma_subset_univ: |
659 |
"[|A \<subseteq> univ(D); \<And>x. x \<in> A \<Longrightarrow> B(x) \<subseteq> univ(D)|] ==> Sigma(A,B) \<subseteq> univ(D)" |
|
660 |
apply (simp add: univ_def) |
|
661 |
apply (blast intro: Sigma_subset_VLimit del: subsetI) |
|
662 |
done |
|
13163 | 663 |
|
13255 | 664 |
|
665 |
(*Closure under binary union -- use Un_least |
|
666 |
Closure under Collect -- use Collect_subset [THEN subset_trans] |
|
667 |
Closure under RepFun -- use RepFun_subset *) |
|
13163 | 668 |
|
669 |
||
670 |
subsection{* Finite Branching Closure Properties *} |
|
671 |
||
672 |
subsubsection{* Closure under finite powerset *} |
|
673 |
||
674 |
lemma Fin_Vfrom_lemma: |
|
675 |
"[| b: Fin(Vfrom(A,i)); Limit(i) |] ==> EX j. b <= Vfrom(A,j) & j<i" |
|
676 |
apply (erule Fin_induct) |
|
677 |
apply (blast dest!: Limit_has_0, safe) |
|
678 |
apply (erule Limit_VfromE, assumption) |
|
679 |
apply (blast intro!: Un_least_lt intro: Vfrom_UnI1 Vfrom_UnI2) |
|
680 |
done |
|
0 | 681 |
|
13163 | 682 |
lemma Fin_VLimit: "Limit(i) ==> Fin(Vfrom(A,i)) <= Vfrom(A,i)" |
683 |
apply (rule subsetI) |
|
684 |
apply (drule Fin_Vfrom_lemma, safe) |
|
685 |
apply (rule Vfrom [THEN ssubst]) |
|
686 |
apply (blast dest!: ltD) |
|
687 |
done |
|
688 |
||
689 |
lemmas Fin_subset_VLimit = subset_trans [OF Fin_mono Fin_VLimit] |
|
690 |
||
691 |
lemma Fin_univ: "Fin(univ(A)) <= univ(A)" |
|
692 |
apply (unfold univ_def) |
|
693 |
apply (rule Limit_nat [THEN Fin_VLimit]) |
|
694 |
done |
|
695 |
||
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13185
diff
changeset
|
696 |
subsubsection{* Closure under finite powers: functions from a natural number *} |
13163 | 697 |
|
698 |
lemma nat_fun_VLimit: |
|
699 |
"[| n: nat; Limit(i) |] ==> n -> Vfrom(A,i) <= Vfrom(A,i)" |
|
700 |
apply (erule nat_fun_subset_Fin [THEN subset_trans]) |
|
701 |
apply (blast del: subsetI |
|
702 |
intro: subset_refl Fin_subset_VLimit Sigma_subset_VLimit nat_subset_VLimit) |
|
703 |
done |
|
704 |
||
705 |
lemmas nat_fun_subset_VLimit = subset_trans [OF Pi_mono nat_fun_VLimit] |
|
706 |
||
707 |
lemma nat_fun_univ: "n: nat ==> n -> univ(A) <= univ(A)" |
|
708 |
apply (unfold univ_def) |
|
709 |
apply (erule nat_fun_VLimit [OF _ Limit_nat]) |
|
710 |
done |
|
711 |
||
712 |
||
713 |
subsubsection{* Closure under finite function space *} |
|
714 |
||
715 |
text{*General but seldom-used version; normally the domain is fixed*} |
|
716 |
lemma FiniteFun_VLimit1: |
|
717 |
"Limit(i) ==> Vfrom(A,i) -||> Vfrom(A,i) <= Vfrom(A,i)" |
|
718 |
apply (rule FiniteFun.dom_subset [THEN subset_trans]) |
|
719 |
apply (blast del: subsetI |
|
720 |
intro: Fin_subset_VLimit Sigma_subset_VLimit subset_refl) |
|
721 |
done |
|
722 |
||
723 |
lemma FiniteFun_univ1: "univ(A) -||> univ(A) <= univ(A)" |
|
724 |
apply (unfold univ_def) |
|
725 |
apply (rule Limit_nat [THEN FiniteFun_VLimit1]) |
|
726 |
done |
|
727 |
||
728 |
text{*Version for a fixed domain*} |
|
729 |
lemma FiniteFun_VLimit: |
|
730 |
"[| W <= Vfrom(A,i); Limit(i) |] ==> W -||> Vfrom(A,i) <= Vfrom(A,i)" |
|
731 |
apply (rule subset_trans) |
|
732 |
apply (erule FiniteFun_mono [OF _ subset_refl]) |
|
733 |
apply (erule FiniteFun_VLimit1) |
|
734 |
done |
|
735 |
||
736 |
lemma FiniteFun_univ: |
|
737 |
"W <= univ(A) ==> W -||> univ(A) <= univ(A)" |
|
738 |
apply (unfold univ_def) |
|
739 |
apply (erule FiniteFun_VLimit [OF _ Limit_nat]) |
|
740 |
done |
|
741 |
||
742 |
lemma FiniteFun_in_univ: |
|
13220 | 743 |
"[| f: W -||> univ(A); W <= univ(A) |] ==> f \<in> univ(A)" |
13163 | 744 |
by (erule FiniteFun_univ [THEN subsetD], assumption) |
745 |
||
746 |
text{*Remove <= from the rule above*} |
|
747 |
lemmas FiniteFun_in_univ' = FiniteFun_in_univ [OF _ subsetI] |
|
748 |
||
749 |
||
750 |
subsection{** For QUniv. Properties of Vfrom analogous to the "take-lemma" **} |
|
751 |
||
752 |
subsection{* Intersecting a*b with Vfrom... *} |
|
753 |
||
754 |
text{*This version says a, b exist one level down, in the smaller set Vfrom(X,i)*} |
|
755 |
lemma doubleton_in_Vfrom_D: |
|
13220 | 756 |
"[| {a,b} \<in> Vfrom(X,succ(i)); Transset(X) |] |
757 |
==> a \<in> Vfrom(X,i) & b \<in> Vfrom(X,i)" |
|
13163 | 758 |
by (drule Transset_Vfrom_succ [THEN equalityD1, THEN subsetD, THEN PowD], |
759 |
assumption, fast) |
|
760 |
||
761 |
text{*This weaker version says a, b exist at the same level*} |
|
762 |
lemmas Vfrom_doubleton_D = Transset_Vfrom [THEN Transset_doubleton_D, standard] |
|
763 |
||
13220 | 764 |
(** Using only the weaker theorem would prove <a,b> \<in> Vfrom(X,i) |
765 |
implies a, b \<in> Vfrom(X,i), which is useless for induction. |
|
766 |
Using only the stronger theorem would prove <a,b> \<in> Vfrom(X,succ(succ(i))) |
|
767 |
implies a, b \<in> Vfrom(X,i), leaving the succ(i) case untreated. |
|
13163 | 768 |
The combination gives a reduction by precisely one level, which is |
769 |
most convenient for proofs. |
|
770 |
**) |
|
771 |
||
772 |
lemma Pair_in_Vfrom_D: |
|
13220 | 773 |
"[| <a,b> \<in> Vfrom(X,succ(i)); Transset(X) |] |
774 |
==> a \<in> Vfrom(X,i) & b \<in> Vfrom(X,i)" |
|
13163 | 775 |
apply (unfold Pair_def) |
776 |
apply (blast dest!: doubleton_in_Vfrom_D Vfrom_doubleton_D) |
|
777 |
done |
|
778 |
||
779 |
lemma product_Int_Vfrom_subset: |
|
780 |
"Transset(X) ==> |
|
781 |
(a*b) Int Vfrom(X, succ(i)) <= (a Int Vfrom(X,i)) * (b Int Vfrom(X,i))" |
|
782 |
by (blast dest!: Pair_in_Vfrom_D) |
|
783 |
||
784 |
||
785 |
ML |
|
786 |
{* |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3940
diff
changeset
|
787 |
|
13163 | 788 |
val Vfrom = thm "Vfrom"; |
789 |
val Vfrom_mono = thm "Vfrom_mono"; |
|
790 |
val Vfrom_rank_subset1 = thm "Vfrom_rank_subset1"; |
|
791 |
val Vfrom_rank_subset2 = thm "Vfrom_rank_subset2"; |
|
792 |
val Vfrom_rank_eq = thm "Vfrom_rank_eq"; |
|
793 |
val zero_in_Vfrom = thm "zero_in_Vfrom"; |
|
794 |
val i_subset_Vfrom = thm "i_subset_Vfrom"; |
|
795 |
val A_subset_Vfrom = thm "A_subset_Vfrom"; |
|
796 |
val subset_mem_Vfrom = thm "subset_mem_Vfrom"; |
|
797 |
val singleton_in_Vfrom = thm "singleton_in_Vfrom"; |
|
798 |
val doubleton_in_Vfrom = thm "doubleton_in_Vfrom"; |
|
799 |
val Pair_in_Vfrom = thm "Pair_in_Vfrom"; |
|
800 |
val succ_in_Vfrom = thm "succ_in_Vfrom"; |
|
801 |
val Vfrom_0 = thm "Vfrom_0"; |
|
802 |
val Vfrom_succ = thm "Vfrom_succ"; |
|
803 |
val Vfrom_Union = thm "Vfrom_Union"; |
|
804 |
val Limit_Vfrom_eq = thm "Limit_Vfrom_eq"; |
|
805 |
val zero_in_VLimit = thm "zero_in_VLimit"; |
|
806 |
val singleton_in_VLimit = thm "singleton_in_VLimit"; |
|
807 |
val Vfrom_UnI1 = thm "Vfrom_UnI1"; |
|
808 |
val Vfrom_UnI2 = thm "Vfrom_UnI2"; |
|
809 |
val doubleton_in_VLimit = thm "doubleton_in_VLimit"; |
|
810 |
val Pair_in_VLimit = thm "Pair_in_VLimit"; |
|
811 |
val product_VLimit = thm "product_VLimit"; |
|
812 |
val Sigma_subset_VLimit = thm "Sigma_subset_VLimit"; |
|
813 |
val nat_subset_VLimit = thm "nat_subset_VLimit"; |
|
814 |
val nat_into_VLimit = thm "nat_into_VLimit"; |
|
815 |
val zero_in_VLimit = thm "zero_in_VLimit"; |
|
816 |
val one_in_VLimit = thm "one_in_VLimit"; |
|
817 |
val Inl_in_VLimit = thm "Inl_in_VLimit"; |
|
818 |
val Inr_in_VLimit = thm "Inr_in_VLimit"; |
|
819 |
val sum_VLimit = thm "sum_VLimit"; |
|
820 |
val sum_subset_VLimit = thm "sum_subset_VLimit"; |
|
821 |
val Transset_Vfrom = thm "Transset_Vfrom"; |
|
822 |
val Transset_Vfrom_succ = thm "Transset_Vfrom_succ"; |
|
823 |
val Transset_Pair_subset = thm "Transset_Pair_subset"; |
|
824 |
val Union_in_Vfrom = thm "Union_in_Vfrom"; |
|
825 |
val Union_in_VLimit = thm "Union_in_VLimit"; |
|
826 |
val in_VLimit = thm "in_VLimit"; |
|
827 |
val prod_in_Vfrom = thm "prod_in_Vfrom"; |
|
828 |
val prod_in_VLimit = thm "prod_in_VLimit"; |
|
829 |
val sum_in_Vfrom = thm "sum_in_Vfrom"; |
|
830 |
val sum_in_VLimit = thm "sum_in_VLimit"; |
|
831 |
val fun_in_Vfrom = thm "fun_in_Vfrom"; |
|
832 |
val fun_in_VLimit = thm "fun_in_VLimit"; |
|
833 |
val Pow_in_Vfrom = thm "Pow_in_Vfrom"; |
|
834 |
val Pow_in_VLimit = thm "Pow_in_VLimit"; |
|
835 |
val Vset = thm "Vset"; |
|
836 |
val Vset_succ = thm "Vset_succ"; |
|
837 |
val Transset_Vset = thm "Transset_Vset"; |
|
838 |
val VsetD = thm "VsetD"; |
|
839 |
val VsetI = thm "VsetI"; |
|
840 |
val Vset_Ord_rank_iff = thm "Vset_Ord_rank_iff"; |
|
841 |
val Vset_rank_iff = thm "Vset_rank_iff"; |
|
842 |
val rank_Vset = thm "rank_Vset"; |
|
843 |
val arg_subset_Vset_rank = thm "arg_subset_Vset_rank"; |
|
844 |
val Int_Vset_subset = thm "Int_Vset_subset"; |
|
845 |
val rank_Inl = thm "rank_Inl"; |
|
846 |
val rank_Inr = thm "rank_Inr"; |
|
847 |
val Vrec = thm "Vrec"; |
|
848 |
val def_Vrec = thm "def_Vrec"; |
|
849 |
val Vrecursor = thm "Vrecursor"; |
|
850 |
val def_Vrecursor = thm "def_Vrecursor"; |
|
851 |
val univ_mono = thm "univ_mono"; |
|
852 |
val Transset_univ = thm "Transset_univ"; |
|
853 |
val univ_eq_UN = thm "univ_eq_UN"; |
|
854 |
val subset_univ_eq_Int = thm "subset_univ_eq_Int"; |
|
855 |
val univ_Int_Vfrom_subset = thm "univ_Int_Vfrom_subset"; |
|
856 |
val univ_Int_Vfrom_eq = thm "univ_Int_Vfrom_eq"; |
|
857 |
val zero_in_univ = thm "zero_in_univ"; |
|
858 |
val A_subset_univ = thm "A_subset_univ"; |
|
859 |
val A_into_univ = thm "A_into_univ"; |
|
860 |
val singleton_in_univ = thm "singleton_in_univ"; |
|
861 |
val doubleton_in_univ = thm "doubleton_in_univ"; |
|
862 |
val Pair_in_univ = thm "Pair_in_univ"; |
|
863 |
val Union_in_univ = thm "Union_in_univ"; |
|
864 |
val product_univ = thm "product_univ"; |
|
865 |
val nat_subset_univ = thm "nat_subset_univ"; |
|
866 |
val nat_into_univ = thm "nat_into_univ"; |
|
867 |
val one_in_univ = thm "one_in_univ"; |
|
868 |
val two_in_univ = thm "two_in_univ"; |
|
869 |
val bool_subset_univ = thm "bool_subset_univ"; |
|
870 |
val bool_into_univ = thm "bool_into_univ"; |
|
871 |
val Inl_in_univ = thm "Inl_in_univ"; |
|
872 |
val Inr_in_univ = thm "Inr_in_univ"; |
|
873 |
val sum_univ = thm "sum_univ"; |
|
874 |
val sum_subset_univ = thm "sum_subset_univ"; |
|
875 |
val Fin_VLimit = thm "Fin_VLimit"; |
|
876 |
val Fin_subset_VLimit = thm "Fin_subset_VLimit"; |
|
877 |
val Fin_univ = thm "Fin_univ"; |
|
878 |
val nat_fun_VLimit = thm "nat_fun_VLimit"; |
|
879 |
val nat_fun_subset_VLimit = thm "nat_fun_subset_VLimit"; |
|
880 |
val nat_fun_univ = thm "nat_fun_univ"; |
|
881 |
val FiniteFun_VLimit1 = thm "FiniteFun_VLimit1"; |
|
882 |
val FiniteFun_univ1 = thm "FiniteFun_univ1"; |
|
883 |
val FiniteFun_VLimit = thm "FiniteFun_VLimit"; |
|
884 |
val FiniteFun_univ = thm "FiniteFun_univ"; |
|
885 |
val FiniteFun_in_univ = thm "FiniteFun_in_univ"; |
|
886 |
val FiniteFun_in_univ' = thm "FiniteFun_in_univ'"; |
|
887 |
val doubleton_in_Vfrom_D = thm "doubleton_in_Vfrom_D"; |
|
888 |
val Vfrom_doubleton_D = thm "Vfrom_doubleton_D"; |
|
889 |
val Pair_in_Vfrom_D = thm "Pair_in_Vfrom_D"; |
|
890 |
val product_Int_Vfrom_subset = thm "product_Int_Vfrom_subset"; |
|
891 |
||
892 |
val rank_rls = thms "rank_rls"; |
|
893 |
val rank_ss = simpset() addsimps [VsetI] |
|
894 |
addsimps rank_rls @ (rank_rls RLN (2, [lt_trans])); |
|
895 |
||
896 |
*} |
|
0 | 897 |
|
898 |
end |