| author | haftmann | 
| Thu, 16 Sep 2010 16:51:34 +0200 | |
| changeset 39475 | 9cc1ba3c5706 | 
| parent 38621 | d6cb7e625d75 | 
| child 41969 | 1cf3e4107a2a | 
| permissions | -rw-r--r-- | 
| 29197 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 haftmann parents: 
28952diff
changeset | 1 | (* Title: HOL/RealVector.thy | 
| 27552 
15cf4ed9c2a1
re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
 haftmann parents: 
27515diff
changeset | 2 | Author: Brian Huffman | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 3 | *) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 4 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 5 | header {* Vector Spaces and Algebras over the Reals *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 6 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 7 | theory RealVector | 
| 36839 
34dc65df7014
no more RealPow.thy (remaining lemmas moved to RealDef.thy)
 huffman parents: 
36795diff
changeset | 8 | imports RComplete | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 9 | begin | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 10 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 11 | subsection {* Locale for additive functions *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 12 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 13 | locale additive = | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 14 | fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add" | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 15 | assumes add: "f (x + y) = f x + f y" | 
| 27443 | 16 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 17 | |
| 27443 | 18 | lemma zero: "f 0 = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 19 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 20 | have "f 0 = f (0 + 0)" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 21 | also have "\<dots> = f 0 + f 0" by (rule add) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 22 | finally show "f 0 = 0" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 23 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 24 | |
| 27443 | 25 | lemma minus: "f (- x) = - f x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 26 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 27 | have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 28 | also have "\<dots> = - f x + f x" by (simp add: zero) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 29 | finally show "f (- x) = - f x" by (rule add_right_imp_eq) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 30 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 31 | |
| 27443 | 32 | lemma diff: "f (x - y) = f x - f y" | 
| 37887 | 33 | by (simp add: add minus diff_minus) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 34 | |
| 27443 | 35 | lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))" | 
| 22942 | 36 | apply (cases "finite A") | 
| 37 | apply (induct set: finite) | |
| 38 | apply (simp add: zero) | |
| 39 | apply (simp add: add) | |
| 40 | apply (simp add: zero) | |
| 41 | done | |
| 42 | ||
| 27443 | 43 | end | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 44 | |
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 45 | subsection {* Vector spaces *}
 | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 46 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 47 | locale vector_space = | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 48 | fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 49 | assumes scale_right_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 50 | "scale a (x + y) = scale a x + scale a y" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 51 | and scale_left_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 52 | "scale (a + b) x = scale a x + scale b x" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 53 | and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 54 | and scale_one [simp]: "scale 1 x = x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 55 | begin | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 56 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 57 | lemma scale_left_commute: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 58 | "scale a (scale b x) = scale b (scale a x)" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 59 | by (simp add: mult_commute) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 60 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 61 | lemma scale_zero_left [simp]: "scale 0 x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 62 | and scale_minus_left [simp]: "scale (- a) x = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 63 | and scale_left_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 64 | "scale (a - b) x = scale a x - scale b x" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 65 | proof - | 
| 29229 | 66 | interpret s: additive "\<lambda>a. scale a x" | 
| 28823 | 67 | proof qed (rule scale_left_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 68 | show "scale 0 x = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 69 | show "scale (- a) x = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 70 | show "scale (a - b) x = scale a x - scale b x" by (rule s.diff) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 71 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 72 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 73 | lemma scale_zero_right [simp]: "scale a 0 = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 74 | and scale_minus_right [simp]: "scale a (- x) = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 75 | and scale_right_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 76 | "scale a (x - y) = scale a x - scale a y" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 77 | proof - | 
| 29229 | 78 | interpret s: additive "\<lambda>x. scale a x" | 
| 28823 | 79 | proof qed (rule scale_right_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 80 | show "scale a 0 = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 81 | show "scale a (- x) = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 82 | show "scale a (x - y) = scale a x - scale a y" by (rule s.diff) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 83 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 84 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 85 | lemma scale_eq_0_iff [simp]: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 86 | "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 87 | proof cases | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 88 | assume "a = 0" thus ?thesis by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 89 | next | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 90 | assume anz [simp]: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 91 |   { assume "scale a x = 0"
 | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 92 | hence "scale (inverse a) (scale a x) = 0" by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 93 | hence "x = 0" by simp } | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 94 | thus ?thesis by force | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 95 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 96 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 97 | lemma scale_left_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 98 | "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 99 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 100 | assume nonzero: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 101 | assume "scale a x = scale a y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 102 | hence "scale a (x - y) = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 103 | by (simp add: scale_right_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 104 | hence "x - y = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 105 | thus "x = y" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 106 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 107 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 108 | lemma scale_right_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 109 | "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 110 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 111 | assume nonzero: "x \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 112 | assume "scale a x = scale b x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 113 | hence "scale (a - b) x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 114 | by (simp add: scale_left_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 115 | hence "a - b = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 116 | thus "a = b" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 117 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 118 | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 119 | lemma scale_cancel_left [simp]: | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 120 | "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 121 | by (auto intro: scale_left_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 122 | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 123 | lemma scale_cancel_right [simp]: | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 124 | "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 125 | by (auto intro: scale_right_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 126 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 127 | end | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 128 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 129 | subsection {* Real vector spaces *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 130 | |
| 29608 | 131 | class scaleR = | 
| 25062 | 132 | fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) | 
| 24748 | 133 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 134 | |
| 20763 | 135 | abbreviation | 
| 25062 | 136 | divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70) | 
| 24748 | 137 | where | 
| 25062 | 138 | "x /\<^sub>R r == scaleR (inverse r) x" | 
| 24748 | 139 | |
| 140 | end | |
| 141 | ||
| 24588 | 142 | class real_vector = scaleR + ab_group_add + | 
| 25062 | 143 | assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y" | 
| 144 | and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x" | |
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 145 | and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 146 | and scaleR_one: "scaleR 1 x = x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 147 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 148 | interpretation real_vector: | 
| 29229 | 149 | vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector" | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 150 | apply unfold_locales | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 151 | apply (rule scaleR_right_distrib) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 152 | apply (rule scaleR_left_distrib) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 153 | apply (rule scaleR_scaleR) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 154 | apply (rule scaleR_one) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 155 | done | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 156 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 157 | text {* Recover original theorem names *}
 | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 158 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 159 | lemmas scaleR_left_commute = real_vector.scale_left_commute | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 160 | lemmas scaleR_zero_left = real_vector.scale_zero_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 161 | lemmas scaleR_minus_left = real_vector.scale_minus_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 162 | lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 163 | lemmas scaleR_zero_right = real_vector.scale_zero_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 164 | lemmas scaleR_minus_right = real_vector.scale_minus_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 165 | lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 166 | lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 167 | lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 168 | lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 169 | lemmas scaleR_cancel_left = real_vector.scale_cancel_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 170 | lemmas scaleR_cancel_right = real_vector.scale_cancel_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 171 | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 172 | lemma scaleR_minus1_left [simp]: | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 173 | fixes x :: "'a::real_vector" | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 174 | shows "scaleR (-1) x = - x" | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 175 | using scaleR_minus_left [of 1 x] by simp | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 176 | |
| 24588 | 177 | class real_algebra = real_vector + ring + | 
| 25062 | 178 | assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" | 
| 179 | and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 180 | |
| 24588 | 181 | class real_algebra_1 = real_algebra + ring_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 182 | |
| 24588 | 183 | class real_div_algebra = real_algebra_1 + division_ring | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 184 | |
| 24588 | 185 | class real_field = real_div_algebra + field | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 186 | |
| 30069 | 187 | instantiation real :: real_field | 
| 188 | begin | |
| 189 | ||
| 190 | definition | |
| 191 | real_scaleR_def [simp]: "scaleR a x = a * x" | |
| 192 | ||
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 193 | instance proof | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 194 | qed (simp_all add: algebra_simps) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 195 | |
| 30069 | 196 | end | 
| 197 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 198 | interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)" | 
| 28823 | 199 | proof qed (rule scaleR_left_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 200 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 201 | interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)" | 
| 28823 | 202 | proof qed (rule scaleR_right_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 203 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 204 | lemma nonzero_inverse_scaleR_distrib: | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 205 | fixes x :: "'a::real_div_algebra" shows | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 206 | "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20763 | 207 | by (rule inverse_unique, simp) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 208 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 209 | lemma inverse_scaleR_distrib: | 
| 36409 | 210 |   fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}"
 | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 211 | shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 212 | apply (case_tac "a = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 213 | apply (case_tac "x = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 214 | apply (erule (1) nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 215 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 216 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 217 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 218 | subsection {* Embedding of the Reals into any @{text real_algebra_1}:
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 219 | @{term of_real} *}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 220 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 221 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 222 | of_real :: "real \<Rightarrow> 'a::real_algebra_1" where | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 223 | "of_real r = scaleR r 1" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 224 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 225 | lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" | 
| 20763 | 226 | by (simp add: of_real_def) | 
| 227 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 228 | lemma of_real_0 [simp]: "of_real 0 = 0" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 229 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 230 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 231 | lemma of_real_1 [simp]: "of_real 1 = 1" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 232 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 233 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 234 | lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 235 | by (simp add: of_real_def scaleR_left_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 236 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 237 | lemma of_real_minus [simp]: "of_real (- x) = - of_real x" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 238 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 239 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 240 | lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 241 | by (simp add: of_real_def scaleR_left_diff_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 242 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 243 | lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" | 
| 20763 | 244 | by (simp add: of_real_def mult_commute) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 245 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 246 | lemma nonzero_of_real_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 247 | "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 248 | inverse (of_real x :: 'a::real_div_algebra)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 249 | by (simp add: of_real_def nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 250 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 251 | lemma of_real_inverse [simp]: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 252 | "of_real (inverse x) = | 
| 36409 | 253 |    inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 254 | by (simp add: of_real_def inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 255 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 256 | lemma nonzero_of_real_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 257 | "y \<noteq> 0 \<Longrightarrow> of_real (x / y) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 258 | (of_real x / of_real y :: 'a::real_field)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 259 | by (simp add: divide_inverse nonzero_of_real_inverse) | 
| 20722 | 260 | |
| 261 | lemma of_real_divide [simp]: | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 262 | "of_real (x / y) = | 
| 36409 | 263 |    (of_real x / of_real y :: 'a::{real_field, field_inverse_zero})"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 264 | by (simp add: divide_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 265 | |
| 20722 | 266 | lemma of_real_power [simp]: | 
| 31017 | 267 |   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
 | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 268 | by (induct n) simp_all | 
| 20722 | 269 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 270 | lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" | 
| 35216 | 271 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 272 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 273 | lemma inj_of_real: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 274 | "inj of_real" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 275 | by (auto intro: injI) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 276 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 277 | lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 278 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 279 | lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 280 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 281 | fix r | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 282 | show "of_real r = id r" | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 283 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 284 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 285 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 286 | text{*Collapse nested embeddings*}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 287 | lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" | 
| 20772 | 288 | by (induct n) auto | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 289 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 290 | lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 291 | by (cases z rule: int_diff_cases, simp) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 292 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 293 | lemma of_real_number_of_eq: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 294 |   "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 295 | by (simp add: number_of_eq) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 296 | |
| 22912 | 297 | text{*Every real algebra has characteristic zero*}
 | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 298 | |
| 22912 | 299 | instance real_algebra_1 < ring_char_0 | 
| 300 | proof | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 301 | from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" by (rule inj_comp) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 302 | then show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: comp_def) | 
| 22912 | 303 | qed | 
| 304 | ||
| 27553 | 305 | instance real_field < field_char_0 .. | 
| 306 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 307 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 308 | subsection {* The Set of Real Numbers *}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 309 | |
| 37767 | 310 | definition Reals :: "'a::real_algebra_1 set" where | 
| 311 | "Reals = range of_real" | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 312 | |
| 21210 | 313 | notation (xsymbols) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 314 |   Reals  ("\<real>")
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 315 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 316 | lemma Reals_of_real [simp]: "of_real r \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 317 | by (simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 318 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 319 | lemma Reals_of_int [simp]: "of_int z \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 320 | by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) | 
| 20718 | 321 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 322 | lemma Reals_of_nat [simp]: "of_nat n \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 323 | by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 324 | |
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 325 | lemma Reals_number_of [simp]: | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 326 |   "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
 | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 327 | by (subst of_real_number_of_eq [symmetric], rule Reals_of_real) | 
| 20718 | 328 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 329 | lemma Reals_0 [simp]: "0 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 330 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 331 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 332 | apply (rule of_real_0 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 333 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 334 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 335 | lemma Reals_1 [simp]: "1 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 336 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 337 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 338 | apply (rule of_real_1 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 339 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 340 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 341 | lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 342 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 343 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 344 | apply (rule of_real_add [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 345 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 346 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 347 | lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 348 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 349 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 350 | apply (rule of_real_minus [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 351 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 352 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 353 | lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 354 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 355 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 356 | apply (rule of_real_diff [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 357 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 358 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 359 | lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 360 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 361 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 362 | apply (rule of_real_mult [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 363 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 364 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 365 | lemma nonzero_Reals_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 366 | fixes a :: "'a::real_div_algebra" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 367 | shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 368 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 369 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 370 | apply (erule nonzero_of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 371 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 372 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 373 | lemma Reals_inverse [simp]: | 
| 36409 | 374 |   fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 375 | shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 376 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 377 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 378 | apply (rule of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 379 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 380 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 381 | lemma nonzero_Reals_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 382 | fixes a b :: "'a::real_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 383 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 384 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 385 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 386 | apply (erule nonzero_of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 387 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 388 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 389 | lemma Reals_divide [simp]: | 
| 36409 | 390 |   fixes a b :: "'a::{real_field, field_inverse_zero}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 391 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 392 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 393 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 394 | apply (rule of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 395 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 396 | |
| 20722 | 397 | lemma Reals_power [simp]: | 
| 31017 | 398 |   fixes a :: "'a::{real_algebra_1}"
 | 
| 20722 | 399 | shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals" | 
| 400 | apply (auto simp add: Reals_def) | |
| 401 | apply (rule range_eqI) | |
| 402 | apply (rule of_real_power [symmetric]) | |
| 403 | done | |
| 404 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 405 | lemma Reals_cases [cases set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 406 | assumes "q \<in> \<real>" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 407 | obtains (of_real) r where "q = of_real r" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 408 | unfolding Reals_def | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 409 | proof - | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 410 | from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def . | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 411 | then obtain r where "q = of_real r" .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 412 | then show thesis .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 413 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 414 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 415 | lemma Reals_induct [case_names of_real, induct set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 416 | "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 417 | by (rule Reals_cases) auto | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 418 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 419 | |
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 420 | subsection {* Topological spaces *}
 | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 421 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 422 | class "open" = | 
| 31494 | 423 | fixes "open" :: "'a set \<Rightarrow> bool" | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 424 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 425 | class topological_space = "open" + | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 426 | assumes open_UNIV [simp, intro]: "open UNIV" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 427 | assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 428 | assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)" | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 429 | begin | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 430 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 431 | definition | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 432 | closed :: "'a set \<Rightarrow> bool" where | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 433 | "closed S \<longleftrightarrow> open (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 434 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 435 | lemma open_empty [intro, simp]: "open {}"
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 436 |   using open_Union [of "{}"] by simp
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 437 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 438 | lemma open_Un [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 439 |   using open_Union [of "{S, T}"] by simp
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 440 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 441 | lemma open_UN [intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 442 | unfolding UN_eq by (rule open_Union) auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 443 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 444 | lemma open_INT [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 445 | by (induct set: finite) auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 446 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 447 | lemma open_Inter [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 448 | unfolding Inter_def by (rule open_INT) | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 449 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 450 | lemma closed_empty [intro, simp]:  "closed {}"
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 451 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 452 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 453 | lemma closed_Un [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 454 | unfolding closed_def by auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 455 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 456 | lemma closed_Inter [intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 457 | unfolding closed_def Inter_def by auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 458 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 459 | lemma closed_UNIV [intro, simp]: "closed UNIV" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 460 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 461 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 462 | lemma closed_Int [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 463 | unfolding closed_def by auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 464 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 465 | lemma closed_INT [intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 466 | unfolding closed_def by auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 467 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 468 | lemma closed_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 469 | by (induct set: finite) auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 470 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 471 | lemma closed_Union [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 472 | unfolding Union_def by (rule closed_UN) | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 473 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 474 | lemma open_closed: "open S \<longleftrightarrow> closed (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 475 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 476 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 477 | lemma closed_open: "closed S \<longleftrightarrow> open (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 478 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 479 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 480 | lemma open_Diff [intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 481 | unfolding closed_open Diff_eq by (rule open_Int) | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 482 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 483 | lemma closed_Diff [intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 484 | unfolding open_closed Diff_eq by (rule closed_Int) | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 485 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 486 | lemma open_Compl [intro]: "closed S \<Longrightarrow> open (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 487 | unfolding closed_open . | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 488 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 489 | lemma closed_Compl [intro]: "open S \<Longrightarrow> closed (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 490 | unfolding open_closed . | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 491 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 492 | end | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 493 | |
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 494 | |
| 31289 | 495 | subsection {* Metric spaces *}
 | 
| 496 | ||
| 497 | class dist = | |
| 498 | fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real" | |
| 499 | ||
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 500 | class open_dist = "open" + dist + | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 501 | assumes open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 502 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 503 | class metric_space = open_dist + | 
| 31289 | 504 | assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y" | 
| 505 | assumes dist_triangle2: "dist x y \<le> dist x z + dist y z" | |
| 506 | begin | |
| 507 | ||
| 508 | lemma dist_self [simp]: "dist x x = 0" | |
| 509 | by simp | |
| 510 | ||
| 511 | lemma zero_le_dist [simp]: "0 \<le> dist x y" | |
| 512 | using dist_triangle2 [of x x y] by simp | |
| 513 | ||
| 514 | lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y" | |
| 515 | by (simp add: less_le) | |
| 516 | ||
| 517 | lemma dist_not_less_zero [simp]: "\<not> dist x y < 0" | |
| 518 | by (simp add: not_less) | |
| 519 | ||
| 520 | lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y" | |
| 521 | by (simp add: le_less) | |
| 522 | ||
| 523 | lemma dist_commute: "dist x y = dist y x" | |
| 524 | proof (rule order_antisym) | |
| 525 | show "dist x y \<le> dist y x" | |
| 526 | using dist_triangle2 [of x y x] by simp | |
| 527 | show "dist y x \<le> dist x y" | |
| 528 | using dist_triangle2 [of y x y] by simp | |
| 529 | qed | |
| 530 | ||
| 531 | lemma dist_triangle: "dist x z \<le> dist x y + dist y z" | |
| 532 | using dist_triangle2 [of x z y] by (simp add: dist_commute) | |
| 533 | ||
| 31565 | 534 | lemma dist_triangle3: "dist x y \<le> dist a x + dist a y" | 
| 535 | using dist_triangle2 [of x y a] by (simp add: dist_commute) | |
| 536 | ||
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 537 | subclass topological_space | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 538 | proof | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 539 | have "\<exists>e::real. 0 < e" | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 540 | by (fast intro: zero_less_one) | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 541 | then show "open UNIV" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 542 | unfolding open_dist by simp | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 543 | next | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 544 | fix S T assume "open S" "open T" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 545 | then show "open (S \<inter> T)" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 546 | unfolding open_dist | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 547 | apply clarify | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 548 | apply (drule (1) bspec)+ | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 549 | apply (clarify, rename_tac r s) | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 550 | apply (rule_tac x="min r s" in exI, simp) | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 551 | done | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 552 | next | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 553 | fix K assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 554 | unfolding open_dist by fast | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 555 | qed | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 556 | |
| 31289 | 557 | end | 
| 558 | ||
| 559 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 560 | subsection {* Real normed vector spaces *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 561 | |
| 29608 | 562 | class norm = | 
| 22636 | 563 | fixes norm :: "'a \<Rightarrow> real" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 564 | |
| 24520 | 565 | class sgn_div_norm = scaleR + norm + sgn + | 
| 25062 | 566 | assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" | 
| 24506 | 567 | |
| 31289 | 568 | class dist_norm = dist + norm + minus + | 
| 569 | assumes dist_norm: "dist x y = norm (x - y)" | |
| 570 | ||
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 571 | class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist + | 
| 24588 | 572 | assumes norm_ge_zero [simp]: "0 \<le> norm x" | 
| 25062 | 573 | and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0" | 
| 574 | and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 575 | and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 576 | |
| 24588 | 577 | class real_normed_algebra = real_algebra + real_normed_vector + | 
| 25062 | 578 | assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 579 | |
| 24588 | 580 | class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + | 
| 25062 | 581 | assumes norm_one [simp]: "norm 1 = 1" | 
| 22852 | 582 | |
| 24588 | 583 | class real_normed_div_algebra = real_div_algebra + real_normed_vector + | 
| 25062 | 584 | assumes norm_mult: "norm (x * y) = norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 585 | |
| 24588 | 586 | class real_normed_field = real_field + real_normed_div_algebra | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 587 | |
| 22852 | 588 | instance real_normed_div_algebra < real_normed_algebra_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 589 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 590 | fix x y :: 'a | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 591 | show "norm (x * y) \<le> norm x * norm y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 592 | by (simp add: norm_mult) | 
| 22852 | 593 | next | 
| 594 | have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" | |
| 595 | by (rule norm_mult) | |
| 596 | thus "norm (1::'a) = 1" by simp | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 597 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 598 | |
| 22852 | 599 | lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 600 | by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 601 | |
| 22852 | 602 | lemma zero_less_norm_iff [simp]: | 
| 603 | fixes x :: "'a::real_normed_vector" | |
| 604 | shows "(0 < norm x) = (x \<noteq> 0)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 605 | by (simp add: order_less_le) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 606 | |
| 22852 | 607 | lemma norm_not_less_zero [simp]: | 
| 608 | fixes x :: "'a::real_normed_vector" | |
| 609 | shows "\<not> norm x < 0" | |
| 20828 | 610 | by (simp add: linorder_not_less) | 
| 611 | ||
| 22852 | 612 | lemma norm_le_zero_iff [simp]: | 
| 613 | fixes x :: "'a::real_normed_vector" | |
| 614 | shows "(norm x \<le> 0) = (x = 0)" | |
| 20828 | 615 | by (simp add: order_le_less) | 
| 616 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 617 | lemma norm_minus_cancel [simp]: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 618 | fixes x :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 619 | shows "norm (- x) = norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 620 | proof - | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 621 | have "norm (- x) = norm (scaleR (- 1) x)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 622 | by (simp only: scaleR_minus_left scaleR_one) | 
| 20533 | 623 | also have "\<dots> = \<bar>- 1\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 624 | by (rule norm_scaleR) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 625 | finally show ?thesis by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 626 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 627 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 628 | lemma norm_minus_commute: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 629 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 630 | shows "norm (a - b) = norm (b - a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 631 | proof - | 
| 22898 | 632 | have "norm (- (b - a)) = norm (b - a)" | 
| 633 | by (rule norm_minus_cancel) | |
| 634 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 635 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 636 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 637 | lemma norm_triangle_ineq2: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 638 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 639 | shows "norm a - norm b \<le> norm (a - b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 640 | proof - | 
| 20533 | 641 | have "norm (a - b + b) \<le> norm (a - b) + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 642 | by (rule norm_triangle_ineq) | 
| 22898 | 643 | thus ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 644 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 645 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 646 | lemma norm_triangle_ineq3: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 647 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 648 | shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 649 | apply (subst abs_le_iff) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 650 | apply auto | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 651 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 652 | apply (subst norm_minus_commute) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 653 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 654 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 655 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 656 | lemma norm_triangle_ineq4: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 657 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 658 | shows "norm (a - b) \<le> norm a + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 659 | proof - | 
| 22898 | 660 | have "norm (a + - b) \<le> norm a + norm (- b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 661 | by (rule norm_triangle_ineq) | 
| 22898 | 662 | thus ?thesis | 
| 663 | by (simp only: diff_minus norm_minus_cancel) | |
| 664 | qed | |
| 665 | ||
| 666 | lemma norm_diff_ineq: | |
| 667 | fixes a b :: "'a::real_normed_vector" | |
| 668 | shows "norm a - norm b \<le> norm (a + b)" | |
| 669 | proof - | |
| 670 | have "norm a - norm (- b) \<le> norm (a - - b)" | |
| 671 | by (rule norm_triangle_ineq2) | |
| 672 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 673 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 674 | |
| 20551 | 675 | lemma norm_diff_triangle_ineq: | 
| 676 | fixes a b c d :: "'a::real_normed_vector" | |
| 677 | shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)" | |
| 678 | proof - | |
| 679 | have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" | |
| 680 | by (simp add: diff_minus add_ac) | |
| 681 | also have "\<dots> \<le> norm (a - c) + norm (b - d)" | |
| 682 | by (rule norm_triangle_ineq) | |
| 683 | finally show ?thesis . | |
| 684 | qed | |
| 685 | ||
| 22857 | 686 | lemma abs_norm_cancel [simp]: | 
| 687 | fixes a :: "'a::real_normed_vector" | |
| 688 | shows "\<bar>norm a\<bar> = norm a" | |
| 689 | by (rule abs_of_nonneg [OF norm_ge_zero]) | |
| 690 | ||
| 22880 | 691 | lemma norm_add_less: | 
| 692 | fixes x y :: "'a::real_normed_vector" | |
| 693 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s" | |
| 694 | by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) | |
| 695 | ||
| 696 | lemma norm_mult_less: | |
| 697 | fixes x y :: "'a::real_normed_algebra" | |
| 698 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s" | |
| 699 | apply (rule order_le_less_trans [OF norm_mult_ineq]) | |
| 700 | apply (simp add: mult_strict_mono') | |
| 701 | done | |
| 702 | ||
| 22857 | 703 | lemma norm_of_real [simp]: | 
| 704 | "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 705 | unfolding of_real_def by simp | 
| 20560 | 706 | |
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 707 | lemma norm_number_of [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 708 |   "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
 | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 709 | = \<bar>number_of w\<bar>" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 710 | by (subst of_real_number_of_eq [symmetric], rule norm_of_real) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 711 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 712 | lemma norm_of_int [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 713 | "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 714 | by (subst of_real_of_int_eq [symmetric], rule norm_of_real) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 715 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 716 | lemma norm_of_nat [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 717 | "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 718 | apply (subst of_real_of_nat_eq [symmetric]) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 719 | apply (subst norm_of_real, simp) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 720 | done | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 721 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 722 | lemma nonzero_norm_inverse: | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 723 | fixes a :: "'a::real_normed_div_algebra" | 
| 20533 | 724 | shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 725 | apply (rule inverse_unique [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 726 | apply (simp add: norm_mult [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 727 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 728 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 729 | lemma norm_inverse: | 
| 36409 | 730 |   fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}"
 | 
| 20533 | 731 | shows "norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 732 | apply (case_tac "a = 0", simp) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 733 | apply (erule nonzero_norm_inverse) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 734 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 735 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 736 | lemma nonzero_norm_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 737 | fixes a b :: "'a::real_normed_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 738 | shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 739 | by (simp add: divide_inverse norm_mult nonzero_norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 740 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 741 | lemma norm_divide: | 
| 36409 | 742 |   fixes a b :: "'a::{real_normed_field, field_inverse_zero}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 743 | shows "norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 744 | by (simp add: divide_inverse norm_mult norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 745 | |
| 22852 | 746 | lemma norm_power_ineq: | 
| 31017 | 747 |   fixes x :: "'a::{real_normed_algebra_1}"
 | 
| 22852 | 748 | shows "norm (x ^ n) \<le> norm x ^ n" | 
| 749 | proof (induct n) | |
| 750 | case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp | |
| 751 | next | |
| 752 | case (Suc n) | |
| 753 | have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)" | |
| 754 | by (rule norm_mult_ineq) | |
| 755 | also from Suc have "\<dots> \<le> norm x * norm x ^ n" | |
| 756 | using norm_ge_zero by (rule mult_left_mono) | |
| 757 | finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 758 | by simp | 
| 22852 | 759 | qed | 
| 760 | ||
| 20684 | 761 | lemma norm_power: | 
| 31017 | 762 |   fixes x :: "'a::{real_normed_div_algebra}"
 | 
| 20684 | 763 | shows "norm (x ^ n) = norm x ^ n" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 764 | by (induct n) (simp_all add: norm_mult) | 
| 20684 | 765 | |
| 31289 | 766 | text {* Every normed vector space is a metric space. *}
 | 
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 767 | |
| 31289 | 768 | instance real_normed_vector < metric_space | 
| 769 | proof | |
| 770 | fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y" | |
| 771 | unfolding dist_norm by simp | |
| 772 | next | |
| 773 | fix x y z :: 'a show "dist x y \<le> dist x z + dist y z" | |
| 774 | unfolding dist_norm | |
| 775 | using norm_triangle_ineq4 [of "x - z" "y - z"] by simp | |
| 776 | qed | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 777 | |
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 778 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 779 | subsection {* Class instances for real numbers *}
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 780 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 781 | instantiation real :: real_normed_field | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 782 | begin | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 783 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 784 | definition real_norm_def [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 785 | "norm r = \<bar>r\<bar>" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 786 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 787 | definition dist_real_def: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 788 | "dist x y = \<bar>x - y\<bar>" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 789 | |
| 37767 | 790 | definition open_real_def: | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 791 | "open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 792 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 793 | instance | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 794 | apply (intro_classes, unfold real_norm_def real_scaleR_def) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 795 | apply (rule dist_real_def) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 796 | apply (rule open_real_def) | 
| 36795 
e05e1283c550
new construction of real numbers using Cauchy sequences
 huffman parents: 
36409diff
changeset | 797 | apply (simp add: sgn_real_def) | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 798 | apply (rule abs_ge_zero) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 799 | apply (rule abs_eq_0) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 800 | apply (rule abs_triangle_ineq) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 801 | apply (rule abs_mult) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 802 | apply (rule abs_mult) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 803 | done | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 804 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 805 | end | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 806 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 807 | lemma open_real_lessThan [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 808 |   fixes a :: real shows "open {..<a}"
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 809 | unfolding open_real_def dist_real_def | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 810 | proof (clarify) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 811 | fix x assume "x < a" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 812 |   hence "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 813 |   thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 814 | qed | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 815 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 816 | lemma open_real_greaterThan [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 817 |   fixes a :: real shows "open {a<..}"
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 818 | unfolding open_real_def dist_real_def | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 819 | proof (clarify) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 820 | fix x assume "a < x" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 821 |   hence "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 822 |   thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 823 | qed | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 824 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 825 | lemma open_real_greaterThanLessThan [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 826 |   fixes a b :: real shows "open {a<..<b}"
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 827 | proof - | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 828 |   have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 829 |   thus "open {a<..<b}" by (simp add: open_Int)
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 830 | qed | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 831 | |
| 31567 | 832 | lemma closed_real_atMost [simp]: | 
| 833 |   fixes a :: real shows "closed {..a}"
 | |
| 834 | unfolding closed_open by simp | |
| 835 | ||
| 836 | lemma closed_real_atLeast [simp]: | |
| 837 |   fixes a :: real shows "closed {a..}"
 | |
| 838 | unfolding closed_open by simp | |
| 839 | ||
| 840 | lemma closed_real_atLeastAtMost [simp]: | |
| 841 |   fixes a b :: real shows "closed {a..b}"
 | |
| 842 | proof - | |
| 843 |   have "{a..b} = {a..} \<inter> {..b}" by auto
 | |
| 844 |   thus "closed {a..b}" by (simp add: closed_Int)
 | |
| 845 | qed | |
| 846 | ||
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 847 | |
| 31446 | 848 | subsection {* Extra type constraints *}
 | 
| 849 | ||
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 850 | text {* Only allow @{term "open"} in class @{text topological_space}. *}
 | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 851 | |
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 852 | setup {* Sign.add_const_constraint
 | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 853 |   (@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"}) *}
 | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 854 | |
| 31446 | 855 | text {* Only allow @{term dist} in class @{text metric_space}. *}
 | 
| 856 | ||
| 857 | setup {* Sign.add_const_constraint
 | |
| 858 |   (@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
 | |
| 859 | ||
| 860 | text {* Only allow @{term norm} in class @{text real_normed_vector}. *}
 | |
| 861 | ||
| 862 | setup {* Sign.add_const_constraint
 | |
| 863 |   (@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
 | |
| 864 | ||
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 865 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 866 | subsection {* Sign function *}
 | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 867 | |
| 24506 | 868 | lemma norm_sgn: | 
| 869 | "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 870 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 871 | |
| 24506 | 872 | lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" | 
| 873 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 874 | |
| 24506 | 875 | lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" | 
| 876 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 877 | |
| 24506 | 878 | lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" | 
| 879 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 880 | |
| 24506 | 881 | lemma sgn_scaleR: | 
| 882 | "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 883 | by (simp add: sgn_div_norm mult_ac) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 884 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 885 | lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" | 
| 24506 | 886 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 887 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 888 | lemma sgn_of_real: | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 889 | "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 890 | unfolding of_real_def by (simp only: sgn_scaleR sgn_one) | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 891 | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 892 | lemma sgn_mult: | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 893 | fixes x y :: "'a::real_normed_div_algebra" | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 894 | shows "sgn (x * y) = sgn x * sgn y" | 
| 24506 | 895 | by (simp add: sgn_div_norm norm_mult mult_commute) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 896 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 897 | lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>" | 
| 24506 | 898 | by (simp add: sgn_div_norm divide_inverse) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 899 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 900 | lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 901 | unfolding real_sgn_eq by simp | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 902 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 903 | lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 904 | unfolding real_sgn_eq by simp | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 905 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 906 | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 907 | subsection {* Bounded Linear and Bilinear Operators *}
 | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 908 | |
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 909 | locale bounded_linear = additive + | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 910 | constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 911 | assumes scaleR: "f (scaleR r x) = scaleR r (f x)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 912 | assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | 
| 27443 | 913 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 914 | |
| 27443 | 915 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 916 | "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 917 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 918 | obtain K where K: "\<And>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 919 | using bounded by fast | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 920 | show ?thesis | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 921 | proof (intro exI impI conjI allI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 922 | show "0 < max 1 K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 923 | by (rule order_less_le_trans [OF zero_less_one le_maxI1]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 924 | next | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 925 | fix x | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 926 | have "norm (f x) \<le> norm x * K" using K . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 927 | also have "\<dots> \<le> norm x * max 1 K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 928 | by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 929 | finally show "norm (f x) \<le> norm x * max 1 K" . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 930 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 931 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 932 | |
| 27443 | 933 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 934 | "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 935 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 936 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 937 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 938 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 939 | |
| 27443 | 940 | end | 
| 941 | ||
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 942 | locale bounded_bilinear = | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 943 | fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 944 | \<Rightarrow> 'c::real_normed_vector" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 945 | (infixl "**" 70) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 946 | assumes add_left: "prod (a + a') b = prod a b + prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 947 | assumes add_right: "prod a (b + b') = prod a b + prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 948 | assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 949 | assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 950 | assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K" | 
| 27443 | 951 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 952 | |
| 27443 | 953 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 954 | "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 955 | apply (cut_tac bounded, erule exE) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 956 | apply (rule_tac x="max 1 K" in exI, safe) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 957 | apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 958 | apply (drule spec, drule spec, erule order_trans) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 959 | apply (rule mult_left_mono [OF le_maxI2]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 960 | apply (intro mult_nonneg_nonneg norm_ge_zero) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 961 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 962 | |
| 27443 | 963 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 964 | "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 965 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 966 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 967 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 968 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 969 | |
| 27443 | 970 | lemma additive_right: "additive (\<lambda>b. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 971 | by (rule additive.intro, rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 972 | |
| 27443 | 973 | lemma additive_left: "additive (\<lambda>a. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 974 | by (rule additive.intro, rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 975 | |
| 27443 | 976 | lemma zero_left: "prod 0 b = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 977 | by (rule additive.zero [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 978 | |
| 27443 | 979 | lemma zero_right: "prod a 0 = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 980 | by (rule additive.zero [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 981 | |
| 27443 | 982 | lemma minus_left: "prod (- a) b = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 983 | by (rule additive.minus [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 984 | |
| 27443 | 985 | lemma minus_right: "prod a (- b) = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 986 | by (rule additive.minus [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 987 | |
| 27443 | 988 | lemma diff_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 989 | "prod (a - a') b = prod a b - prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 990 | by (rule additive.diff [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 991 | |
| 27443 | 992 | lemma diff_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 993 | "prod a (b - b') = prod a b - prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 994 | by (rule additive.diff [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 995 | |
| 27443 | 996 | lemma bounded_linear_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 997 | "bounded_linear (\<lambda>a. a ** b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 998 | apply (unfold_locales) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 999 | apply (rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1000 | apply (rule scaleR_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1001 | apply (cut_tac bounded, safe) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1002 | apply (rule_tac x="norm b * K" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1003 | apply (simp add: mult_ac) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1004 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1005 | |
| 27443 | 1006 | lemma bounded_linear_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1007 | "bounded_linear (\<lambda>b. a ** b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1008 | apply (unfold_locales) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1009 | apply (rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1010 | apply (rule scaleR_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1011 | apply (cut_tac bounded, safe) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1012 | apply (rule_tac x="norm a * K" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1013 | apply (simp add: mult_ac) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1014 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1015 | |
| 27443 | 1016 | lemma prod_diff_prod: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1017 | "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1018 | by (simp add: diff_left diff_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1019 | |
| 27443 | 1020 | end | 
| 1021 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1022 | interpretation mult: | 
| 29229 | 1023 | bounded_bilinear "op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1024 | apply (rule bounded_bilinear.intro) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1025 | apply (rule left_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1026 | apply (rule right_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1027 | apply (rule mult_scaleR_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1028 | apply (rule mult_scaleR_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1029 | apply (rule_tac x="1" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1030 | apply (simp add: norm_mult_ineq) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1031 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1032 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1033 | interpretation mult_left: | 
| 29229 | 1034 | bounded_linear "(\<lambda>x::'a::real_normed_algebra. x * y)" | 
| 23127 | 1035 | by (rule mult.bounded_linear_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1036 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1037 | interpretation mult_right: | 
| 29229 | 1038 | bounded_linear "(\<lambda>y::'a::real_normed_algebra. x * y)" | 
| 23127 | 1039 | by (rule mult.bounded_linear_right) | 
| 1040 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1041 | interpretation divide: | 
| 29229 | 1042 | bounded_linear "(\<lambda>x::'a::real_normed_field. x / y)" | 
| 23127 | 1043 | unfolding divide_inverse by (rule mult.bounded_linear_left) | 
| 23120 | 1044 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1045 | interpretation scaleR: bounded_bilinear "scaleR" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1046 | apply (rule bounded_bilinear.intro) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1047 | apply (rule scaleR_left_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1048 | apply (rule scaleR_right_distrib) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1049 | apply simp | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1050 | apply (rule scaleR_left_commute) | 
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 1051 | apply (rule_tac x="1" in exI, simp) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1052 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1053 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1054 | interpretation scaleR_left: bounded_linear "\<lambda>r. scaleR r x" | 
| 23127 | 1055 | by (rule scaleR.bounded_linear_left) | 
| 1056 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1057 | interpretation scaleR_right: bounded_linear "\<lambda>x. scaleR r x" | 
| 23127 | 1058 | by (rule scaleR.bounded_linear_right) | 
| 1059 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 1060 | interpretation of_real: bounded_linear "\<lambda>r. of_real r" | 
| 23127 | 1061 | unfolding of_real_def by (rule scaleR.bounded_linear_left) | 
| 22625 | 1062 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 1063 | end |