5078
|
1 |
<!-- $Id$ -->
|
|
2 |
<HTML><HEAD><TITLE>HOL/Real/README</TITLE></HEAD><BODY>
|
|
3 |
|
|
4 |
<H2>Real--Dedekind Cut Construction of the Real Line</H2>
|
|
5 |
|
|
6 |
<UL>
|
5947
|
7 |
<LI><A HREF="PNat.html">PNat</A> The positive integers (very much the same as <A HREF="../Nat.html">Nat.thy</A>!)
|
|
8 |
<LI><A HREF="PRat.html">PRat</A> The positive rationals
|
|
9 |
<LI><A HREF="PReal.html">PReal</A> The positive reals constructed using Dedekind cuts
|
10156
|
10 |
<LI><A HREF="RealDef.html">RealDef</A> The real numbers
|
|
11 |
<LI><A HREF="RealOrd.html">RealOrd</A> More real numbers theorems- ordering
|
|
12 |
properties
|
|
13 |
<LI><A HREF="RealInt.html">RealInt</A> Embedding of the integers in the reals
|
|
14 |
<LI><A HREF="RealBin.html">RealBin</A> Binary arithmetic for the reals
|
|
15 |
|
5947
|
16 |
<LI><A HREF="Lubs.html">Lubs</A> Definition of upper bounds, lubs and so on.
|
5078
|
17 |
(Useful e.g. in Fleuriot's NSA theory)
|
5947
|
18 |
<LI><A HREF="RComplete.html">RComplete</A> Proof of completeness of reals in form of the supremum
|
5078
|
19 |
property. Also proofs that the reals have the Archimedean
|
|
20 |
property.
|
5947
|
21 |
<LI><A HREF="RealAbs.html">RealAbs</A> The absolute value function defined for the reals
|
10156
|
22 |
</ul>
|
|
23 |
|
|
24 |
<H2>Hyperreal--Ultrapower Construction of the Non-Standard Reals</H2>
|
|
25 |
<LI> See J. D. Fleuriot and L. C. Paulson. Mechanizing Nonstandard
|
|
26 |
Real Analysis. LMS J. Computation and Mathematics 3 (2000), 140-190.
|
|
27 |
|
|
28 |
<UL>
|
|
29 |
<LI><A HREF="Zorn.html">Zorn</A>
|
|
30 |
Zorn's Lemma: proof based on the <A HREF="../../../ZF/Zorn.html">ZF version</A>
|
|
31 |
|
|
32 |
<LI><A HREF="Filter.html">Filter</A>
|
|
33 |
Theory of Filters and Ultrafilters.
|
|
34 |
Main result is a version of the Ultrafilter Theorem proved using
|
|
35 |
Zorn's Lemma.
|
|
36 |
|
|
37 |
<LI><A HREF="HyperDef.html">HyperDef</A>
|
|
38 |
Ultrapower construction of the hyperreals
|
|
39 |
|
|
40 |
<LI><A HREF="HyperOrd.html">HyperOrd</A>
|
|
41 |
More hyperreal numbers theorems- ordering properties
|
|
42 |
|
|
43 |
<LI><A HREF="HRealAbs.html">HRealAbs</A> The absolute value function
|
|
44 |
defined for the hyperreals
|
|
45 |
|
|
46 |
|
|
47 |
<LI><A HREF="NSA.html">NSA</A>
|
|
48 |
Theory defining sets of infinite numbers, infinitesimals,
|
|
49 |
the infinitely close relation, and their various algebraic properties.
|
|
50 |
|
|
51 |
<LI><A HREF="HyperNat.html">HyperNat</A>
|
|
52 |
Ultrapower construction of the hypernaturals
|
|
53 |
|
|
54 |
<LI><A HREF="HyperPow.html">HyperPow</A>
|
|
55 |
Powers theory for the hyperreals
|
|
56 |
|
|
57 |
<LI><A HREF="Star.html">Star</A>
|
|
58 |
Nonstandard extensions of real sets and real functions
|
|
59 |
|
|
60 |
<LI><A HREF="NatStar.html">NatStar</A>
|
|
61 |
Nonstandard extensions of sets of naturals and functions on the natural
|
|
62 |
numbers
|
|
63 |
|
|
64 |
<LI><A HREF="SEQ.html">SEQ</A>
|
|
65 |
Theory of sequences developed using standard and nonstandard analysis
|
|
66 |
|
|
67 |
<LI><A HREF="Lim.html">Lim</A>
|
|
68 |
Theory of limits, continuous functions, and derivatives
|
|
69 |
|
|
70 |
<LI><A HREF="Series.html">Series</A>
|
|
71 |
Standard theory of finite summation and infinite series
|
|
72 |
|
|
73 |
|
|
74 |
|
5078
|
75 |
</UL>
|
|
76 |
|
|
77 |
<P>Last modified on $Date$
|
|
78 |
|
|
79 |
<HR>
|
|
80 |
|
|
81 |
<ADDRESS>
|
|
82 |
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
|
|
83 |
</ADDRESS>
|
|
84 |
</BODY></HTML>
|