| author | wenzelm | 
| Fri, 24 May 2024 17:14:02 +0200 | |
| changeset 80190 | 9f3e0d98fbec | 
| parent 67312 | 0d25e02759b7 | 
| child 80768 | c7723cc15de8 | 
| permissions | -rw-r--r-- | 
| 42151 | 1  | 
(* Title: HOL/HOLCF/Sprod.thy  | 
| 
40502
 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 
huffman 
parents: 
40436 
diff
changeset
 | 
2  | 
Author: Franz Regensburger  | 
| 
 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 
huffman 
parents: 
40436 
diff
changeset
 | 
3  | 
Author: Brian Huffman  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
5  | 
|
| 62175 | 6  | 
section \<open>The type of strict products\<close>  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
7  | 
|
| 15577 | 8  | 
theory Sprod  | 
| 67312 | 9  | 
imports Cfun  | 
| 15577 | 10  | 
begin  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
11  | 
|
| 36452 | 12  | 
default_sort pcpo  | 
| 16082 | 13  | 
|
| 67312 | 14  | 
|
| 62175 | 15  | 
subsection \<open>Definition of strict product type\<close>  | 
| 
15591
 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 
huffman 
parents: 
15577 
diff
changeset
 | 
16  | 
|
| 45695 | 17  | 
definition "sprod = {p::'a \<times> 'b. p = \<bottom> \<or> (fst p \<noteq> \<bottom> \<and> snd p \<noteq> \<bottom>)}"
 | 
18  | 
||
| 61998 | 19  | 
pcpodef ('a, 'b) sprod  ("(_ \<otimes>/ _)" [21,20] 20) = "sprod :: ('a \<times> 'b) set"
 | 
| 67312 | 20  | 
by (simp_all add: sprod_def)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
21  | 
|
| 35525 | 22  | 
instance sprod :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 | 
| 67312 | 23  | 
by (rule typedef_chfin [OF type_definition_sprod below_sprod_def])  | 
| 
25827
 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 
huffman 
parents: 
25757 
diff
changeset
 | 
24  | 
|
| 61998 | 25  | 
type_notation (ASCII)  | 
26  | 
sprod (infixr "**" 20)  | 
|
| 61378 | 27  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
28  | 
|
| 62175 | 29  | 
subsection \<open>Definitions of constants\<close>  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
30  | 
|
| 67312 | 31  | 
definition sfst :: "('a ** 'b) \<rightarrow> 'a"
 | 
32  | 
where "sfst = (\<Lambda> p. fst (Rep_sprod p))"  | 
|
| 
25135
 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 
wenzelm 
parents: 
25131 
diff
changeset
 | 
33  | 
|
| 67312 | 34  | 
definition ssnd :: "('a ** 'b) \<rightarrow> 'b"
 | 
35  | 
where "ssnd = (\<Lambda> p. snd (Rep_sprod p))"  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
36  | 
|
| 67312 | 37  | 
definition spair :: "'a \<rightarrow> 'b \<rightarrow> ('a ** 'b)"
 | 
38  | 
where "spair = (\<Lambda> a b. Abs_sprod (seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b))"  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
39  | 
|
| 67312 | 40  | 
definition ssplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a ** 'b) \<rightarrow> 'c"
 | 
41  | 
where "ssplit = (\<Lambda> f p. seq\<cdot>p\<cdot>(f\<cdot>(sfst\<cdot>p)\<cdot>(ssnd\<cdot>p)))"  | 
|
| 
25135
 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 
wenzelm 
parents: 
25131 
diff
changeset
 | 
42  | 
|
| 67312 | 43  | 
syntax "_stuple" :: "[logic, args] \<Rightarrow> logic"  ("(1'(:_,/ _:'))")
 | 
44  | 
translations  | 
|
45  | 
"(:x, y, z:)" \<rightleftharpoons> "(:x, (:y, z:):)"  | 
|
46  | 
"(:x, y:)" \<rightleftharpoons> "CONST spair\<cdot>x\<cdot>y"  | 
|
| 41479 | 47  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
48  | 
translations  | 
| 67312 | 49  | 
"\<Lambda>(CONST spair\<cdot>x\<cdot>y). t" \<rightleftharpoons> "CONST ssplit\<cdot>(\<Lambda> x y. t)"  | 
| 
18078
 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 
huffman 
parents: 
17837 
diff
changeset
 | 
50  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
51  | 
|
| 62175 | 52  | 
subsection \<open>Case analysis\<close>  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
53  | 
|
| 
40767
 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 
huffman 
parents: 
40502 
diff
changeset
 | 
54  | 
lemma spair_sprod: "(seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b) \<in> sprod"  | 
| 67312 | 55  | 
by (simp add: sprod_def seq_conv_if)  | 
| 40083 | 56  | 
|
| 
40767
 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 
huffman 
parents: 
40502 
diff
changeset
 | 
57  | 
lemma Rep_sprod_spair: "Rep_sprod (:a, b:) = (seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b)"  | 
| 67312 | 58  | 
by (simp add: spair_def cont_Abs_sprod Abs_sprod_inverse spair_sprod)  | 
| 40080 | 59  | 
|
| 
40098
 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 
huffman 
parents: 
40095 
diff
changeset
 | 
60  | 
lemmas Rep_sprod_simps =  | 
| 
 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 
huffman 
parents: 
40095 
diff
changeset
 | 
61  | 
Rep_sprod_inject [symmetric] below_sprod_def  | 
| 
44066
 
d74182c93f04
rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
 
huffman 
parents: 
42151 
diff
changeset
 | 
62  | 
prod_eq_iff below_prod_def  | 
| 
40098
 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 
huffman 
parents: 
40095 
diff
changeset
 | 
63  | 
Rep_sprod_strict Rep_sprod_spair  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
64  | 
|
| 35783 | 65  | 
lemma sprodE [case_names bottom spair, cases type: sprod]:  | 
| 40080 | 66  | 
obtains "p = \<bottom>" | x y where "p = (:x, y:)" and "x \<noteq> \<bottom>" and "y \<noteq> \<bottom>"  | 
| 67312 | 67  | 
using Rep_sprod [of p] by (auto simp add: sprod_def Rep_sprod_simps)  | 
| 
16059
 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 
huffman 
parents: 
15930 
diff
changeset
 | 
68  | 
|
| 35783 | 69  | 
lemma sprod_induct [case_names bottom spair, induct type: sprod]:  | 
| 
25757
 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 
huffman 
parents: 
25135 
diff
changeset
 | 
70  | 
"\<lbrakk>P \<bottom>; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> P (:x, y:)\<rbrakk> \<Longrightarrow> P x"  | 
| 67312 | 71  | 
by (cases x) simp_all  | 
72  | 
||
| 
25757
 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 
huffman 
parents: 
25135 
diff
changeset
 | 
73  | 
|
| 62175 | 74  | 
subsection \<open>Properties of \emph{spair}\<close>
 | 
| 
16059
 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 
huffman 
parents: 
15930 
diff
changeset
 | 
75  | 
|
| 
16317
 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 
huffman 
parents: 
16212 
diff
changeset
 | 
76  | 
lemma spair_strict1 [simp]: "(:\<bottom>, y:) = \<bottom>"  | 
| 67312 | 77  | 
by (simp add: Rep_sprod_simps)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
78  | 
|
| 
16317
 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 
huffman 
parents: 
16212 
diff
changeset
 | 
79  | 
lemma spair_strict2 [simp]: "(:x, \<bottom>:) = \<bottom>"  | 
| 67312 | 80  | 
by (simp add: Rep_sprod_simps)  | 
| 25914 | 81  | 
|
| 67312 | 82  | 
lemma spair_bottom_iff [simp]: "(:x, y:) = \<bottom> \<longleftrightarrow> x = \<bottom> \<or> y = \<bottom>"  | 
83  | 
by (simp add: Rep_sprod_simps seq_conv_if)  | 
|
| 25914 | 84  | 
|
| 67312 | 85  | 
lemma spair_below_iff: "(:a, b:) \<sqsubseteq> (:c, d:) \<longleftrightarrow> a = \<bottom> \<or> b = \<bottom> \<or> (a \<sqsubseteq> c \<and> b \<sqsubseteq> d)"  | 
86  | 
by (simp add: Rep_sprod_simps seq_conv_if)  | 
|
| 25914 | 87  | 
|
| 67312 | 88  | 
lemma spair_eq_iff: "(:a, b:) = (:c, d:) \<longleftrightarrow> a = c \<and> b = d \<or> (a = \<bottom> \<or> b = \<bottom>) \<and> (c = \<bottom> \<or> d = \<bottom>)"  | 
89  | 
by (simp add: Rep_sprod_simps seq_conv_if)  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
90  | 
|
| 
16317
 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 
huffman 
parents: 
16212 
diff
changeset
 | 
91  | 
lemma spair_strict: "x = \<bottom> \<or> y = \<bottom> \<Longrightarrow> (:x, y:) = \<bottom>"  | 
| 67312 | 92  | 
by simp  | 
| 
16059
 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 
huffman 
parents: 
15930 
diff
changeset
 | 
93  | 
|
| 
16212
 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 
huffman 
parents: 
16082 
diff
changeset
 | 
94  | 
lemma spair_strict_rev: "(:x, y:) \<noteq> \<bottom> \<Longrightarrow> x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>"  | 
| 67312 | 95  | 
by simp  | 
| 
16059
 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 
huffman 
parents: 
15930 
diff
changeset
 | 
96  | 
|
| 25914 | 97  | 
lemma spair_defined: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<noteq> \<bottom>"  | 
| 67312 | 98  | 
by simp  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
99  | 
|
| 
16317
 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 
huffman 
parents: 
16212 
diff
changeset
 | 
100  | 
lemma spair_defined_rev: "(:x, y:) = \<bottom> \<Longrightarrow> x = \<bottom> \<or> y = \<bottom>"  | 
| 67312 | 101  | 
by simp  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
102  | 
|
| 67312 | 103  | 
lemma spair_below: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> (:x, y:) \<sqsubseteq> (:a, b:) \<longleftrightarrow> x \<sqsubseteq> a \<and> y \<sqsubseteq> b"  | 
104  | 
by (simp add: spair_below_iff)  | 
|
| 40095 | 105  | 
|
| 67312 | 106  | 
lemma spair_eq: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> (:x, y:) = (:a, b:) \<longleftrightarrow> x = a \<and> y = b"  | 
107  | 
by (simp add: spair_eq_iff)  | 
|
| 
16317
 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 
huffman 
parents: 
16212 
diff
changeset
 | 
108  | 
|
| 67312 | 109  | 
lemma spair_inject: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> (:x, y:) = (:a, b:) \<Longrightarrow> x = a \<and> y = b"  | 
110  | 
by (rule spair_eq [THEN iffD1])  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
111  | 
|
| 
41430
 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 
huffman 
parents: 
40774 
diff
changeset
 | 
112  | 
lemma inst_sprod_pcpo2: "\<bottom> = (:\<bottom>, \<bottom>:)"  | 
| 67312 | 113  | 
by simp  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
114  | 
|
| 
33504
 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 
huffman 
parents: 
32960 
diff
changeset
 | 
115  | 
lemma sprodE2: "(\<And>x y. p = (:x, y:) \<Longrightarrow> Q) \<Longrightarrow> Q"  | 
| 67312 | 116  | 
by (cases p) (simp only: inst_sprod_pcpo2, simp)  | 
117  | 
||
| 
33504
 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 
huffman 
parents: 
32960 
diff
changeset
 | 
118  | 
|
| 62175 | 119  | 
subsection \<open>Properties of \emph{sfst} and \emph{ssnd}\<close>
 | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
120  | 
|
| 
16212
 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 
huffman 
parents: 
16082 
diff
changeset
 | 
121  | 
lemma sfst_strict [simp]: "sfst\<cdot>\<bottom> = \<bottom>"  | 
| 67312 | 122  | 
by (simp add: sfst_def cont_Rep_sprod Rep_sprod_strict)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
123  | 
|
| 
16212
 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 
huffman 
parents: 
16082 
diff
changeset
 | 
124  | 
lemma ssnd_strict [simp]: "ssnd\<cdot>\<bottom> = \<bottom>"  | 
| 67312 | 125  | 
by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_strict)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
126  | 
|
| 
16212
 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 
huffman 
parents: 
16082 
diff
changeset
 | 
127  | 
lemma sfst_spair [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>(:x, y:) = x"  | 
| 67312 | 128  | 
by (simp add: sfst_def cont_Rep_sprod Rep_sprod_spair)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
129  | 
|
| 
16212
 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 
huffman 
parents: 
16082 
diff
changeset
 | 
130  | 
lemma ssnd_spair [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>(:x, y:) = y"  | 
| 67312 | 131  | 
by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_spair)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
132  | 
|
| 67312 | 133  | 
lemma sfst_bottom_iff [simp]: "sfst\<cdot>p = \<bottom> \<longleftrightarrow> p = \<bottom>"  | 
134  | 
by (cases p) simp_all  | 
|
| 
16777
 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 
huffman 
parents: 
16751 
diff
changeset
 | 
135  | 
|
| 67312 | 136  | 
lemma ssnd_bottom_iff [simp]: "ssnd\<cdot>p = \<bottom> \<longleftrightarrow> p = \<bottom>"  | 
137  | 
by (cases p) simp_all  | 
|
| 
16317
 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 
huffman 
parents: 
16212 
diff
changeset
 | 
138  | 
|
| 
16777
 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 
huffman 
parents: 
16751 
diff
changeset
 | 
139  | 
lemma sfst_defined: "p \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>p \<noteq> \<bottom>"  | 
| 67312 | 140  | 
by simp  | 
| 
16777
 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 
huffman 
parents: 
16751 
diff
changeset
 | 
141  | 
|
| 
 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 
huffman 
parents: 
16751 
diff
changeset
 | 
142  | 
lemma ssnd_defined: "p \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>p \<noteq> \<bottom>"  | 
| 67312 | 143  | 
by simp  | 
| 
16777
 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 
huffman 
parents: 
16751 
diff
changeset
 | 
144  | 
|
| 
40094
 
0295606b6a36
rename lemma surjective_pairing_Sprod2 to spair_sfst_ssnd
 
huffman 
parents: 
40093 
diff
changeset
 | 
145  | 
lemma spair_sfst_ssnd: "(:sfst\<cdot>p, ssnd\<cdot>p:) = p"  | 
| 67312 | 146  | 
by (cases p) simp_all  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
147  | 
|
| 67312 | 148  | 
lemma below_sprod: "x \<sqsubseteq> y \<longleftrightarrow> sfst\<cdot>x \<sqsubseteq> sfst\<cdot>y \<and> ssnd\<cdot>x \<sqsubseteq> ssnd\<cdot>y"  | 
149  | 
by (simp add: Rep_sprod_simps sfst_def ssnd_def cont_Rep_sprod)  | 
|
| 
16317
 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 
huffman 
parents: 
16212 
diff
changeset
 | 
150  | 
|
| 67312 | 151  | 
lemma eq_sprod: "x = y \<longleftrightarrow> sfst\<cdot>x = sfst\<cdot>y \<and> ssnd\<cdot>x = ssnd\<cdot>y"  | 
152  | 
by (auto simp add: po_eq_conv below_sprod)  | 
|
| 16751 | 153  | 
|
| 40436 | 154  | 
lemma sfst_below_iff: "sfst\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (:y, ssnd\<cdot>x:)"  | 
| 67312 | 155  | 
by (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp, simp add: below_sprod)  | 
| 25881 | 156  | 
|
| 40436 | 157  | 
lemma ssnd_below_iff: "ssnd\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (:sfst\<cdot>x, y:)"  | 
| 67312 | 158  | 
by (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp, simp add: below_sprod)  | 
159  | 
||
| 25881 | 160  | 
|
| 62175 | 161  | 
subsection \<open>Compactness\<close>  | 
| 25881 | 162  | 
|
163  | 
lemma compact_sfst: "compact x \<Longrightarrow> compact (sfst\<cdot>x)"  | 
|
| 67312 | 164  | 
by (rule compactI) (simp add: sfst_below_iff)  | 
| 25881 | 165  | 
|
166  | 
lemma compact_ssnd: "compact x \<Longrightarrow> compact (ssnd\<cdot>x)"  | 
|
| 67312 | 167  | 
by (rule compactI) (simp add: ssnd_below_iff)  | 
| 25881 | 168  | 
|
| 67312 | 169  | 
lemma compact_spair: "compact x \<Longrightarrow> compact y \<Longrightarrow> compact (:x, y:)"  | 
170  | 
by (rule compact_sprod) (simp add: Rep_sprod_spair seq_conv_if)  | 
|
| 25881 | 171  | 
|
| 67312 | 172  | 
lemma compact_spair_iff: "compact (:x, y:) \<longleftrightarrow> x = \<bottom> \<or> y = \<bottom> \<or> (compact x \<and> compact y)"  | 
173  | 
apply (safe elim!: compact_spair)  | 
|
174  | 
apply (drule compact_sfst, simp)  | 
|
175  | 
apply (drule compact_ssnd, simp)  | 
|
176  | 
apply simp  | 
|
177  | 
apply simp  | 
|
178  | 
done  | 
|
179  | 
||
| 25881 | 180  | 
|
| 62175 | 181  | 
subsection \<open>Properties of \emph{ssplit}\<close>
 | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
182  | 
|
| 
16059
 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 
huffman 
parents: 
15930 
diff
changeset
 | 
183  | 
lemma ssplit1 [simp]: "ssplit\<cdot>f\<cdot>\<bottom> = \<bottom>"  | 
| 67312 | 184  | 
by (simp add: ssplit_def)  | 
| 
15591
 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 
huffman 
parents: 
15577 
diff
changeset
 | 
185  | 
|
| 67312 | 186  | 
lemma ssplit2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> ssplit\<cdot>f\<cdot>(:x, y:) = f\<cdot>x\<cdot>y"  | 
187  | 
by (simp add: ssplit_def)  | 
|
| 
15591
 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 
huffman 
parents: 
15577 
diff
changeset
 | 
188  | 
|
| 16553 | 189  | 
lemma ssplit3 [simp]: "ssplit\<cdot>spair\<cdot>z = z"  | 
| 67312 | 190  | 
by (cases z) simp_all  | 
191  | 
||
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents:  
diff
changeset
 | 
192  | 
|
| 62175 | 193  | 
subsection \<open>Strict product preserves flatness\<close>  | 
| 
25827
 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 
huffman 
parents: 
25757 
diff
changeset
 | 
194  | 
|
| 35525 | 195  | 
instance sprod :: (flat, flat) flat  | 
| 27310 | 196  | 
proof  | 
197  | 
fix x y :: "'a \<otimes> 'b"  | 
|
| 67312 | 198  | 
assume "x \<sqsubseteq> y"  | 
199  | 
then show "x = \<bottom> \<or> x = y"  | 
|
| 27310 | 200  | 
apply (induct x, simp)  | 
201  | 
apply (induct y, simp)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
29138 
diff
changeset
 | 
202  | 
apply (simp add: spair_below_iff flat_below_iff)  | 
| 27310 | 203  | 
done  | 
204  | 
qed  | 
|
| 
25827
 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 
huffman 
parents: 
25757 
diff
changeset
 | 
205  | 
|
| 
26962
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
25914 
diff
changeset
 | 
206  | 
end  |