| author | nipkow | 
| Mon, 29 Jul 2024 15:26:03 +0200 | |
| changeset 80624 | 9f8034d29365 | 
| parent 79566 | f783490c6c99 | 
| child 80612 | e65eed943bee | 
| permissions | -rw-r--r-- | 
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 1 | (* Title: HOL/Set_Interval.thy | 
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 2 | Author: Tobias Nipkow, Clemens Ballarin, Jeremy Avigad | 
| 8924 | 3 | |
| 13735 | 4 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 51334 | 5 | |
| 6 | Modern convention: Ixy stands for an interval where x and y | |
| 7 | describe the lower and upper bound and x,y : {c,o,i}
 | |
| 8 | where c = closed, o = open, i = infinite. | |
| 9 | Examples: Ico = {_ ..< _} and Ici = {_ ..}
 | |
| 8924 | 10 | *) | 
| 11 | ||
| 60758 | 12 | section \<open>Set intervals\<close> | 
| 14577 | 13 | |
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 14 | theory Set_Interval | 
| 76224 
64e8d4afcf10
moved relevant theorems from theory Divides to theory Euclidean_Division
 haftmann parents: 
75669diff
changeset | 15 | imports Parity | 
| 15131 | 16 | begin | 
| 8924 | 17 | |
| 71449 
3cf130a896a3
lemmas about "card A = 2"; prefer iff to implications
 nipkow parents: 
71258diff
changeset | 18 | (* Belongs in Finite_Set but 2 is not available there *) | 
| 
3cf130a896a3
lemmas about "card A = 2"; prefer iff to implications
 nipkow parents: 
71258diff
changeset | 19 | lemma card_2_iff: "card S = 2 \<longleftrightarrow> (\<exists>x y. S = {x,y} \<and> x \<noteq> y)"
 | 
| 71472 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 paulson <lp15@cam.ac.uk> parents: 
71449diff
changeset | 20 | by (auto simp: card_Suc_eq numeral_eq_Suc) | 
| 71449 
3cf130a896a3
lemmas about "card A = 2"; prefer iff to implications
 nipkow parents: 
71258diff
changeset | 21 | |
| 
3cf130a896a3
lemmas about "card A = 2"; prefer iff to implications
 nipkow parents: 
71258diff
changeset | 22 | lemma card_2_iff': "card S = 2 \<longleftrightarrow> (\<exists>x\<in>S. \<exists>y\<in>S. x \<noteq> y \<and> (\<forall>z\<in>S. z = x \<or> z = y))" | 
| 71472 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 paulson <lp15@cam.ac.uk> parents: 
71449diff
changeset | 23 | by (auto simp: card_Suc_eq numeral_eq_Suc) | 
| 71449 
3cf130a896a3
lemmas about "card A = 2"; prefer iff to implications
 nipkow parents: 
71258diff
changeset | 24 | |
| 74965 
9469d9223689
Tiny additions inspired by Roth development
 paulson <lp15@cam.ac.uk> parents: 
74885diff
changeset | 25 | lemma card_3_iff: "card S = 3 \<longleftrightarrow> (\<exists>x y z. S = {x,y,z} \<and> x \<noteq> y \<and> y \<noteq> z \<and> x \<noteq> z)"
 | 
| 
9469d9223689
Tiny additions inspired by Roth development
 paulson <lp15@cam.ac.uk> parents: 
74885diff
changeset | 26 | by (fastforce simp: card_Suc_eq numeral_eq_Suc) | 
| 
9469d9223689
Tiny additions inspired by Roth development
 paulson <lp15@cam.ac.uk> parents: 
74885diff
changeset | 27 | |
| 24691 | 28 | context ord | 
| 29 | begin | |
| 44008 | 30 | |
| 24691 | 31 | definition | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 32 |   lessThan    :: "'a => 'a set" ("(1{..<_})") where
 | 
| 25062 | 33 |   "{..<u} == {x. x < u}"
 | 
| 24691 | 34 | |
| 35 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 36 |   atMost      :: "'a => 'a set" ("(1{.._})") where
 | 
| 25062 | 37 |   "{..u} == {x. x \<le> u}"
 | 
| 24691 | 38 | |
| 39 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 40 |   greaterThan :: "'a => 'a set" ("(1{_<..})") where
 | 
| 25062 | 41 |   "{l<..} == {x. l<x}"
 | 
| 24691 | 42 | |
| 43 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 44 |   atLeast     :: "'a => 'a set" ("(1{_..})") where
 | 
| 25062 | 45 |   "{l..} == {x. l\<le>x}"
 | 
| 24691 | 46 | |
| 47 | definition | |
| 25062 | 48 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 49 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 50 | |
| 51 | definition | |
| 25062 | 52 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 53 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 54 | |
| 55 | definition | |
| 25062 | 56 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 57 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 58 | |
| 59 | definition | |
| 25062 | 60 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 61 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 62 | |
| 63 | end | |
| 8924 | 64 | |
| 13735 | 65 | |
| 69593 | 66 | text\<open>A note of warning when using \<^term>\<open>{..<n}\<close> on type \<^typ>\<open>nat\<close>: it is equivalent to \<^term>\<open>{0::nat..<n}\<close> but some lemmas involving
 | 
| 67 | \<^term>\<open>{m..<n}\<close> may not exist in \<^term>\<open>{..<n}\<close>-form as well.\<close>
 | |
| 15048 | 68 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 69 | syntax (ASCII) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 70 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 71 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 72 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 73 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 74 | |
| 30372 | 75 | syntax (latex output) | 
| 62789 | 76 |   "_UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 77 |   "_UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
 | |
| 78 |   "_INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ \<le> _)/ _)" [0, 0, 10] 10)
 | |
| 79 |   "_INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(\<open>unbreakable\<close>_ < _)/ _)" [0, 0, 10] 10)
 | |
| 14418 | 80 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 81 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 82 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 83 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_<_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 84 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 85 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_<_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 86 | |
| 14418 | 87 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 88 |   "\<Union>i\<le>n. A" \<rightleftharpoons> "\<Union>i\<in>{..n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 89 |   "\<Union>i<n. A" \<rightleftharpoons> "\<Union>i\<in>{..<n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 90 |   "\<Inter>i\<le>n. A" \<rightleftharpoons> "\<Inter>i\<in>{..n}. A"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 91 |   "\<Inter>i<n. A" \<rightleftharpoons> "\<Inter>i\<in>{..<n}. A"
 | 
| 14418 | 92 | |
| 93 | ||
| 60758 | 94 | subsection \<open>Various equivalences\<close> | 
| 13735 | 95 | |
| 67613 | 96 | lemma (in ord) lessThan_iff [iff]: "(i \<in> lessThan k) = (i<k)" | 
| 13850 | 97 | by (simp add: lessThan_def) | 
| 13735 | 98 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 99 | lemma Compl_lessThan [simp]: | 
| 13735 | 100 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 101 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 102 | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 103 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::preorder. {k} - lessThan k = {k}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 104 | by auto | 
| 13735 | 105 | |
| 67613 | 106 | lemma (in ord) greaterThan_iff [iff]: "(i \<in> greaterThan k) = (k<i)" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 107 | by (simp add: greaterThan_def) | 
| 13735 | 108 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 109 | lemma Compl_greaterThan [simp]: | 
| 13735 | 110 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 111 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 112 | |
| 13850 | 113 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 75543 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 114 | by (metis Compl_greaterThan double_complement) | 
| 13735 | 115 | |
| 67613 | 116 | lemma (in ord) atLeast_iff [iff]: "(i \<in> atLeast k) = (k<=i)" | 
| 75543 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 117 | by (simp add: atLeast_def) | 
| 13735 | 118 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 119 | lemma Compl_atLeast [simp]: "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 120 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 121 | |
| 67613 | 122 | lemma (in ord) atMost_iff [iff]: "(i \<in> atMost k) = (i<=k)" | 
| 13850 | 123 | by (simp add: atMost_def) | 
| 13735 | 124 | |
| 14485 | 125 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 126 | by (blast intro: order_antisym) | |
| 13850 | 127 | |
| 50999 | 128 | lemma (in linorder) lessThan_Int_lessThan: "{ a <..} \<inter> { b <..} = { max a b <..}"
 | 
| 129 | by auto | |
| 130 | ||
| 131 | lemma (in linorder) greaterThan_Int_greaterThan: "{..< a} \<inter> {..< b} = {..< min a b}"
 | |
| 132 | by auto | |
| 13850 | 133 | |
| 60758 | 134 | subsection \<open>Logical Equivalences for Set Inclusion and Equality\<close> | 
| 13850 | 135 | |
| 63879 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 136 | lemma atLeast_empty_triv [simp]: "{{}..} = UNIV"
 | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 137 | by auto | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 138 | |
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 139 | lemma atMost_UNIV_triv [simp]: "{..UNIV} = UNIV"
 | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 140 | by auto | 
| 
15bbf6360339
simple new lemmas, mostly about sets
 paulson <lp15@cam.ac.uk> parents: 
63721diff
changeset | 141 | |
| 13850 | 142 | lemma atLeast_subset_iff [iff]: | 
| 75543 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 143 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::preorder))" | 
| 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 144 | by (blast intro: order_trans) | 
| 13850 | 145 | |
| 146 | lemma atLeast_eq_iff [iff]: | |
| 75543 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 147 | "(atLeast x = atLeast y) = (x = (y::'a::order))" | 
| 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 148 | by (blast intro: order_antisym order_trans) | 
| 13850 | 149 | |
| 150 | lemma greaterThan_subset_iff [iff]: | |
| 75543 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 151 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 152 | unfolding greaterThan_def by (auto simp: linorder_not_less [symmetric]) | 
| 13850 | 153 | |
| 154 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 155 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 156 | by (auto simp: elim!: equalityE) | 
| 13850 | 157 | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 158 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::preorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 159 | by (blast intro: order_trans) | 
| 13850 | 160 | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 161 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::order))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 162 | by (blast intro: order_antisym order_trans) | 
| 13850 | 163 | |
| 164 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 165 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 166 | unfolding lessThan_def by (auto simp: linorder_not_less [symmetric]) | 
| 13850 | 167 | |
| 168 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 169 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 170 | by (auto simp: elim!: equalityE) | 
| 13735 | 171 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 172 | lemma lessThan_strict_subset_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 173 | fixes m n :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 174 |   shows "{..<m} < {..<n} \<longleftrightarrow> m < n"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 175 | by (metis leD lessThan_subset_iff linorder_linear not_less_iff_gr_or_eq psubset_eq) | 
| 13735 | 176 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 177 | lemma (in linorder) Ici_subset_Ioi_iff: "{a ..} \<subseteq> {b <..} \<longleftrightarrow> b < a"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 178 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 179 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 180 | lemma (in linorder) Iic_subset_Iio_iff: "{.. a} \<subseteq> {..< b} \<longleftrightarrow> a < b"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 181 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 182 | |
| 62369 | 183 | lemma (in preorder) Ioi_le_Ico: "{a <..} \<subseteq> {a ..}"
 | 
| 184 | by (auto intro: less_imp_le) | |
| 185 | ||
| 60758 | 186 | subsection \<open>Two-sided intervals\<close> | 
| 13735 | 187 | |
| 24691 | 188 | context ord | 
| 189 | begin | |
| 190 | ||
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 191 | lemma greaterThanLessThan_iff [simp]: "(i \<in> {l<..<u}) = (l < i \<and> i < u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 192 | by (simp add: greaterThanLessThan_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 193 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 194 | lemma atLeastLessThan_iff [simp]: "(i \<in> {l..<u}) = (l \<le> i \<and> i < u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 195 | by (simp add: atLeastLessThan_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 196 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 197 | lemma greaterThanAtMost_iff [simp]: "(i \<in> {l<..u}) = (l < i \<and> i \<le> u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 198 | by (simp add: greaterThanAtMost_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 199 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 200 | lemma atLeastAtMost_iff [simp]: "(i \<in> {l..u}) = (l \<le> i \<and> i \<le> u)"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 201 | by (simp add: atLeastAtMost_def) | 
| 13735 | 202 | |
| 60758 | 203 | text \<open>The above four lemmas could be declared as iffs. Unfortunately this | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 204 | breaks many proofs. Since it only helps blast, it is better to leave them | 
| 60758 | 205 | alone.\<close> | 
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 206 | |
| 50999 | 207 | lemma greaterThanLessThan_eq: "{ a <..< b} = { a <..} \<inter> {..< b }"
 | 
| 208 | by auto | |
| 209 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 210 | lemma (in order) atLeastLessThan_eq_atLeastAtMost_diff: | 
| 66936 | 211 |   "{a..<b} = {a..b} - {b}"
 | 
| 212 | by (auto simp add: atLeastLessThan_def atLeastAtMost_def) | |
| 213 | ||
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 214 | lemma (in order) greaterThanAtMost_eq_atLeastAtMost_diff: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 215 |   "{a<..b} = {a..b} - {a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 216 | by (auto simp add: greaterThanAtMost_def atLeastAtMost_def) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 217 | |
| 24691 | 218 | end | 
| 13735 | 219 | |
| 60758 | 220 | subsubsection\<open>Emptyness, singletons, subset\<close> | 
| 15554 | 221 | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 222 | context preorder | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 223 | begin | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 224 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 225 | lemma atLeastatMost_empty_iff[simp]: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 226 |   "{a..b} = {} \<longleftrightarrow> (\<not> a \<le> b)"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 227 | by auto (blast intro: order_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 228 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 229 | lemma atLeastatMost_empty_iff2[simp]: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 230 |   "{} = {a..b} \<longleftrightarrow> (\<not> a \<le> b)"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 231 | by auto (blast intro: order_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 232 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 233 | lemma atLeastLessThan_empty_iff[simp]: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 234 |   "{a..<b} = {} \<longleftrightarrow> (\<not> a < b)"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 235 | by auto (blast intro: le_less_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 236 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 237 | lemma atLeastLessThan_empty_iff2[simp]: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 238 |   "{} = {a..<b} \<longleftrightarrow> (\<not> a < b)"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 239 | by auto (blast intro: le_less_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 240 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 241 | lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> \<not> k < l"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 242 | by auto (blast intro: less_le_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 243 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 244 | lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> \<not> k < l"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 245 | by auto (blast intro: less_le_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 246 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 247 | lemma atLeastatMost_subset_iff[simp]: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 248 |   "{a..b} \<le> {c..d} \<longleftrightarrow> (\<not> a \<le> b) \<or> c \<le> a \<and> b \<le> d"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 249 | unfolding atLeastAtMost_def atLeast_def atMost_def | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 250 | by (blast intro: order_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 251 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 252 | lemma atLeastatMost_psubset_iff: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 253 |   "{a..b} < {c..d} \<longleftrightarrow>
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 254 | ((\<not> a \<le> b) \<or> c \<le> a \<and> b \<le> d \<and> (c < a \<or> b < d)) \<and> c \<le> d" | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 255 | by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 256 | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
70746diff
changeset | 257 | lemma atLeastAtMost_subseteq_atLeastLessThan_iff: | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
70746diff
changeset | 258 |   "{a..b} \<subseteq> {c ..< d} \<longleftrightarrow> (a \<le> b \<longrightarrow> c \<le> a \<and> b < d)" 
 | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
70746diff
changeset | 259 | by auto (blast intro: local.order_trans local.le_less_trans elim: )+ | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
70746diff
changeset | 260 | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 261 | lemma Icc_subset_Ici_iff[simp]: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 262 |   "{l..h} \<subseteq> {l'..} = (\<not> l\<le>h \<or> l\<ge>l')"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 263 | by(auto simp: subset_eq intro: order_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 264 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 265 | lemma Icc_subset_Iic_iff[simp]: | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 266 |   "{l..h} \<subseteq> {..h'} = (\<not> l\<le>h \<or> h\<le>h')"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 267 | by(auto simp: subset_eq intro: order_trans) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 268 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 269 | lemma not_Ici_eq_empty[simp]: "{l..} \<noteq> {}"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 270 | by(auto simp: set_eq_iff) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 271 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 272 | lemma not_Iic_eq_empty[simp]: "{..h} \<noteq> {}"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 273 | by(auto simp: set_eq_iff) | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 274 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 275 | lemmas not_empty_eq_Ici_eq_empty[simp] = not_Ici_eq_empty[symmetric] | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 276 | lemmas not_empty_eq_Iic_eq_empty[simp] = not_Iic_eq_empty[symmetric] | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 277 | |
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 278 | end | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 279 | |
| 24691 | 280 | context order | 
| 281 | begin | |
| 15554 | 282 | |
| 77935 
7f240b0dabd9
More new theorems, and a necessary correction
 paulson <lp15@cam.ac.uk> parents: 
76224diff
changeset | 283 | lemma atLeastatMost_empty[simp]: "b < a \<Longrightarrow> {a..b} = {}" 
 | 
| 
7f240b0dabd9
More new theorems, and a necessary correction
 paulson <lp15@cam.ac.uk> parents: 
76224diff
changeset | 284 |   and atLeastatMost_empty'[simp]: "\<not> a \<le> b \<Longrightarrow> {a..b} = {}"
 | 
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 285 | by(auto simp: atLeastAtMost_def atLeast_def atMost_def) | 
| 32400 | 286 | |
| 287 | lemma atLeastLessThan_empty[simp]: | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 288 |   "b \<le> a \<Longrightarrow> {a..<b} = {}"
 | 
| 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 289 | by(auto simp: atLeastLessThan_def) | 
| 15554 | 290 | |
| 32400 | 291 | lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
 | 
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 292 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 32400 | 293 | |
| 29709 | 294 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 295 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 17719 | 296 | |
| 25062 | 297 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 298 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 24691 | 299 | |
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 300 | lemma atLeastAtMost_singleton': "a = b \<Longrightarrow> {a .. b} = {a}" by simp
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 301 | |
| 51334 | 302 | lemma Icc_eq_Icc[simp]: | 
| 303 |   "{l..h} = {l'..h'} = (l=l' \<and> h=h' \<or> \<not> l\<le>h \<and> \<not> l'\<le>h')"
 | |
| 73411 | 304 | by (simp add: order_class.order.eq_iff) (auto intro: order_trans) | 
| 51334 | 305 | |
| 75543 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 306 | lemma (in linorder) Ico_eq_Ico: | 
| 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 307 |   "{l..<h} = {l'..<h'} = (l=l' \<and> h=h' \<or> \<not> l<h \<and> \<not> l'<h')"
 | 
| 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 308 | by (metis atLeastLessThan_empty_iff2 nle_le not_less ord.atLeastLessThan_iff) | 
| 
1910054f8c39
some additional lemmas and a little tidying up
 paulson <lp15@cam.ac.uk> parents: 
75455diff
changeset | 309 | |
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 310 | lemma atLeastAtMost_singleton_iff[simp]: | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 311 |   "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 312 | proof | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 313 |   assume "{a..b} = {c}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 314 | hence *: "\<not> (\<not> a \<le> b)" unfolding atLeastatMost_empty_iff[symmetric] by simp | 
| 60758 | 315 |   with \<open>{a..b} = {c}\<close> have "c \<le> a \<and> b \<le> c" by auto
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 316 | with * show "a = b \<and> b = c" by auto | 
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 317 | qed simp | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 318 | |
| 24691 | 319 | end | 
| 14485 | 320 | |
| 51334 | 321 | context no_top | 
| 322 | begin | |
| 323 | ||
| 324 | (* also holds for no_bot but no_top should suffice *) | |
| 325 | lemma not_UNIV_le_Icc[simp]: "\<not> UNIV \<subseteq> {l..h}"
 | |
| 326 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 327 | ||
| 328 | lemma not_UNIV_le_Iic[simp]: "\<not> UNIV \<subseteq> {..h}"
 | |
| 329 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 330 | ||
| 331 | lemma not_Ici_le_Icc[simp]: "\<not> {l..} \<subseteq> {l'..h'}"
 | |
| 332 | using gt_ex[of h'] | |
| 333 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 334 | ||
| 335 | lemma not_Ici_le_Iic[simp]: "\<not> {l..} \<subseteq> {..h'}"
 | |
| 336 | using gt_ex[of h'] | |
| 337 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 338 | ||
| 339 | end | |
| 340 | ||
| 341 | context no_bot | |
| 342 | begin | |
| 343 | ||
| 344 | lemma not_UNIV_le_Ici[simp]: "\<not> UNIV \<subseteq> {l..}"
 | |
| 345 | using lt_ex[of l] by(auto simp: subset_eq less_le_not_le) | |
| 346 | ||
| 347 | lemma not_Iic_le_Icc[simp]: "\<not> {..h} \<subseteq> {l'..h'}"
 | |
| 348 | using lt_ex[of l'] | |
| 349 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 350 | ||
| 351 | lemma not_Iic_le_Ici[simp]: "\<not> {..h} \<subseteq> {l'..}"
 | |
| 352 | using lt_ex[of l'] | |
| 353 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 354 | ||
| 355 | end | |
| 356 | ||
| 357 | ||
| 358 | context no_top | |
| 359 | begin | |
| 360 | ||
| 361 | (* also holds for no_bot but no_top should suffice *) | |
| 362 | lemma not_UNIV_eq_Icc[simp]: "\<not> UNIV = {l'..h'}"
 | |
| 363 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 364 | ||
| 365 | lemmas not_Icc_eq_UNIV[simp] = not_UNIV_eq_Icc[symmetric] | |
| 366 | ||
| 367 | lemma not_UNIV_eq_Iic[simp]: "\<not> UNIV = {..h'}"
 | |
| 368 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 369 | ||
| 370 | lemmas not_Iic_eq_UNIV[simp] = not_UNIV_eq_Iic[symmetric] | |
| 371 | ||
| 372 | lemma not_Icc_eq_Ici[simp]: "\<not> {l..h} = {l'..}"
 | |
| 373 | unfolding atLeastAtMost_def using not_Ici_le_Iic[of l'] by blast | |
| 374 | ||
| 375 | lemmas not_Ici_eq_Icc[simp] = not_Icc_eq_Ici[symmetric] | |
| 376 | ||
| 377 | (* also holds for no_bot but no_top should suffice *) | |
| 378 | lemma not_Iic_eq_Ici[simp]: "\<not> {..h} = {l'..}"
 | |
| 379 | using not_Ici_le_Iic[of l' h] by blast | |
| 380 | ||
| 381 | lemmas not_Ici_eq_Iic[simp] = not_Iic_eq_Ici[symmetric] | |
| 382 | ||
| 383 | end | |
| 384 | ||
| 385 | context no_bot | |
| 386 | begin | |
| 387 | ||
| 388 | lemma not_UNIV_eq_Ici[simp]: "\<not> UNIV = {l'..}"
 | |
| 389 | using lt_ex[of l'] by(auto simp: set_eq_iff less_le_not_le) | |
| 390 | ||
| 391 | lemmas not_Ici_eq_UNIV[simp] = not_UNIV_eq_Ici[symmetric] | |
| 392 | ||
| 393 | lemma not_Icc_eq_Iic[simp]: "\<not> {l..h} = {..h'}"
 | |
| 394 | unfolding atLeastAtMost_def using not_Iic_le_Ici[of h'] by blast | |
| 395 | ||
| 396 | lemmas not_Iic_eq_Icc[simp] = not_Icc_eq_Iic[symmetric] | |
| 397 | ||
| 398 | end | |
| 399 | ||
| 400 | ||
| 53216 | 401 | context dense_linorder | 
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 402 | begin | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 403 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 404 | lemma greaterThanLessThan_empty_iff[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 405 |   "{ a <..< b } = {} \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 406 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 407 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 408 | lemma greaterThanLessThan_empty_iff2[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 409 |   "{} = { a <..< b } \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 410 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 411 | |
| 42901 | 412 | lemma atLeastLessThan_subseteq_atLeastAtMost_iff: | 
| 413 |   "{a ..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 414 | using dense[of "max a d" "b"] | |
| 415 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 416 | ||
| 417 | lemma greaterThanAtMost_subseteq_atLeastAtMost_iff: | |
| 418 |   "{a <.. b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 419 | using dense[of "a" "min c b"] | |
| 420 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 421 | ||
| 422 | lemma greaterThanLessThan_subseteq_atLeastAtMost_iff: | |
| 423 |   "{a <..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 424 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 425 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 426 | ||
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 427 | lemma greaterThanLessThan_subseteq_greaterThanLessThan: | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 428 |   "{a <..< b} \<subseteq> {c <..< d} \<longleftrightarrow> (a < b \<longrightarrow> a \<ge> c \<and> b \<le> d)"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 429 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 430 | by (force simp: subset_eq Ball_def not_less[symmetric]) | 
| 43657 | 431 | |
| 432 | lemma greaterThanAtMost_subseteq_atLeastLessThan_iff: | |
| 433 |   "{a <.. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 434 | using dense[of "a" "min c b"] | |
| 435 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 436 | ||
| 437 | lemma greaterThanLessThan_subseteq_atLeastLessThan_iff: | |
| 438 |   "{a <..< b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 439 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 440 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 441 | ||
| 56328 | 442 | lemma greaterThanLessThan_subseteq_greaterThanAtMost_iff: | 
| 443 |   "{a <..< b} \<subseteq> { c <.. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 444 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 445 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 446 | ||
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 447 | end | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 448 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 449 | context no_top | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 450 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 451 | |
| 51334 | 452 | lemma greaterThan_non_empty[simp]: "{x <..} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 453 | using gt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 454 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 455 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 456 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 457 | context no_bot | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 458 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 459 | |
| 51334 | 460 | lemma lessThan_non_empty[simp]: "{..< x} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 461 | using lt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 462 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 463 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 464 | |
| 32408 | 465 | lemma (in linorder) atLeastLessThan_subset_iff: | 
| 67091 | 466 |   "{a..<b} \<subseteq> {c..<d} \<Longrightarrow> b \<le> a \<or> c\<le>a \<and> b\<le>d"
 | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 467 | proof (cases "a < b") | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 468 | case True | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 469 |   assume assm: "{a..<b} \<subseteq> {c..<d}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 470 | then have 1: "c \<le> a \<and> a \<le> d" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 471 | using True by (auto simp add: subset_eq Ball_def) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 472 | then have 2: "b \<le> d" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 473 | using assm by (auto simp add: subset_eq) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 474 | from 1 2 show ?thesis | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 475 | by simp | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 476 | qed (auto) | 
| 32408 | 477 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 478 | lemma atLeastLessThan_inj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 479 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 480 |   assumes eq: "{a ..< b} = {c ..< d}" and "a < b" "c < d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 481 | shows "a = c" "b = d" | 
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
70746diff
changeset | 482 | using assms by (metis atLeastLessThan_subset_iff eq less_le_not_le antisym_conv2 subset_refl)+ | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 483 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 484 | lemma atLeastLessThan_eq_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 485 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 486 | assumes "a < b" "c < d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 487 |   shows "{a ..< b} = {c ..< d} \<longleftrightarrow> a = c \<and> b = d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 488 | using atLeastLessThan_inj assms by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 489 | |
| 73411 | 490 | lemma (in linorder) Ioc_inj: | 
| 491 |   \<open>{a <.. b} = {c <.. d} \<longleftrightarrow> (b \<le> a \<and> d \<le> c) \<or> a = c \<and> b = d\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
 | |
| 492 | proof | |
| 493 | assume ?Q | |
| 494 | then show ?P | |
| 495 | by auto | |
| 496 | next | |
| 497 | assume ?P | |
| 498 | then have \<open>a < x \<and> x \<le> b \<longleftrightarrow> c < x \<and> x \<le> d\<close> for x | |
| 499 | by (simp add: set_eq_iff) | |
| 500 | from this [of a] this [of b] this [of c] this [of d] show ?Q | |
| 501 | by auto | |
| 502 | qed | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 503 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 504 | lemma (in order) Iio_Int_singleton: "{..<k} \<inter> {x} = (if x < k then {x} else {})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 505 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 506 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 507 | lemma (in linorder) Ioc_subset_iff: "{a<..b} \<subseteq> {c<..d} \<longleftrightarrow> (b \<le> a \<or> c \<le> a \<and> b \<le> d)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 508 | by (auto simp: subset_eq Ball_def) (metis less_le not_less) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 509 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 510 | lemma (in order_bot) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 51334 | 511 | by (auto simp: set_eq_iff intro: le_bot) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 512 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 513 | lemma (in order_top) atMost_eq_UNIV_iff: "{..x} = UNIV \<longleftrightarrow> x = top"
 | 
| 51334 | 514 | by (auto simp: set_eq_iff intro: top_le) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 515 | |
| 51334 | 516 | lemma (in bounded_lattice) atLeastAtMost_eq_UNIV_iff: | 
| 517 |   "{x..y} = UNIV \<longleftrightarrow> (x = bot \<and> y = top)"
 | |
| 518 | by (auto simp: set_eq_iff intro: top_le le_bot) | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 519 | |
| 56949 | 520 | lemma Iio_eq_empty_iff: "{..< n::'a::{linorder, order_bot}} = {} \<longleftrightarrow> n = bot"
 | 
| 521 | by (auto simp: set_eq_iff not_less le_bot) | |
| 522 | ||
| 68361 | 523 | lemma lessThan_empty_iff: "{..< n::nat} = {} \<longleftrightarrow> n = 0"
 | 
| 56949 | 524 | by (simp add: Iio_eq_empty_iff bot_nat_def) | 
| 525 | ||
| 58970 | 526 | lemma mono_image_least: | 
| 527 |   assumes f_mono: "mono f" and f_img: "f ` {m ..< n} = {m' ..< n'}" "m < n"
 | |
| 528 | shows "f m = m'" | |
| 529 | proof - | |
| 530 |   from f_img have "{m' ..< n'} \<noteq> {}"
 | |
| 531 | by (metis atLeastLessThan_empty_iff image_is_empty) | |
| 532 |   with f_img have "m' \<in> f ` {m ..< n}" by auto
 | |
| 533 | then obtain k where "f k = m'" "m \<le> k" by auto | |
| 534 | moreover have "m' \<le> f m" using f_img by auto | |
| 535 | ultimately show "f m = m'" | |
| 536 | using f_mono by (auto elim: monoE[where x=m and y=k]) | |
| 537 | qed | |
| 538 | ||
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 539 | |
| 60758 | 540 | subsection \<open>Infinite intervals\<close> | 
| 56328 | 541 | |
| 542 | context dense_linorder | |
| 543 | begin | |
| 544 | ||
| 545 | lemma infinite_Ioo: | |
| 546 | assumes "a < b" | |
| 547 |   shows "\<not> finite {a<..<b}"
 | |
| 548 | proof | |
| 549 |   assume fin: "finite {a<..<b}"
 | |
| 550 |   moreover have ne: "{a<..<b} \<noteq> {}"
 | |
| 60758 | 551 | using \<open>a < b\<close> by auto | 
| 56328 | 552 |   ultimately have "a < Max {a <..< b}" "Max {a <..< b} < b"
 | 
| 553 |     using Max_in[of "{a <..< b}"] by auto
 | |
| 554 |   then obtain x where "Max {a <..< b} < x" "x < b"
 | |
| 555 |     using dense[of "Max {a<..<b}" b] by auto
 | |
| 556 |   then have "x \<in> {a <..< b}"
 | |
| 60758 | 557 |     using \<open>a < Max {a <..< b}\<close> by auto
 | 
| 56328 | 558 |   then have "x \<le> Max {a <..< b}"
 | 
| 559 | using fin by auto | |
| 60758 | 560 |   with \<open>Max {a <..< b} < x\<close> show False by auto
 | 
| 56328 | 561 | qed | 
| 562 | ||
| 563 | lemma infinite_Icc: "a < b \<Longrightarrow> \<not> finite {a .. b}"
 | |
| 564 | using greaterThanLessThan_subseteq_atLeastAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 565 | by (auto dest: finite_subset) | |
| 566 | ||
| 567 | lemma infinite_Ico: "a < b \<Longrightarrow> \<not> finite {a ..< b}"
 | |
| 568 | using greaterThanLessThan_subseteq_atLeastLessThan_iff[of a b a b] infinite_Ioo[of a b] | |
| 569 | by (auto dest: finite_subset) | |
| 570 | ||
| 571 | lemma infinite_Ioc: "a < b \<Longrightarrow> \<not> finite {a <.. b}"
 | |
| 572 | using greaterThanLessThan_subseteq_greaterThanAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 573 | by (auto dest: finite_subset) | |
| 574 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 575 | lemma infinite_Ioo_iff [simp]: "infinite {a<..<b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 576 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ioo) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 577 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 578 | lemma infinite_Icc_iff [simp]: "infinite {a .. b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 579 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Icc) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 580 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 581 | lemma infinite_Ico_iff [simp]: "infinite {a..<b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 582 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ico) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 583 | |
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 584 | lemma infinite_Ioc_iff [simp]: "infinite {a<..b} \<longleftrightarrow> a < b"
 | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 585 | using not_less_iff_gr_or_eq by (fastforce simp: infinite_Ioc) | 
| 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63935diff
changeset | 586 | |
| 56328 | 587 | end | 
| 588 | ||
| 589 | lemma infinite_Iio: "\<not> finite {..< a :: 'a :: {no_bot, linorder}}"
 | |
| 590 | proof | |
| 591 |   assume "finite {..< a}"
 | |
| 592 |   then have *: "\<And>x. x < a \<Longrightarrow> Min {..< a} \<le> x"
 | |
| 593 | by auto | |
| 594 | obtain x where "x < a" | |
| 595 | using lt_ex by auto | |
| 596 | ||
| 597 |   obtain y where "y < Min {..< a}"
 | |
| 598 | using lt_ex by auto | |
| 599 |   also have "Min {..< a} \<le> x"
 | |
| 60758 | 600 | using \<open>x < a\<close> by fact | 
| 601 | also note \<open>x < a\<close> | |
| 56328 | 602 |   finally have "Min {..< a} \<le> y"
 | 
| 603 | by fact | |
| 60758 | 604 |   with \<open>y < Min {..< a}\<close> show False by auto
 | 
| 56328 | 605 | qed | 
| 606 | ||
| 607 | lemma infinite_Iic: "\<not> finite {.. a :: 'a :: {no_bot, linorder}}"
 | |
| 608 |   using infinite_Iio[of a] finite_subset[of "{..< a}" "{.. a}"]
 | |
| 609 | by (auto simp: subset_eq less_imp_le) | |
| 610 | ||
| 611 | lemma infinite_Ioi: "\<not> finite {a :: 'a :: {no_top, linorder} <..}"
 | |
| 612 | proof | |
| 613 |   assume "finite {a <..}"
 | |
| 614 |   then have *: "\<And>x. a < x \<Longrightarrow> x \<le> Max {a <..}"
 | |
| 615 | by auto | |
| 616 | ||
| 617 |   obtain y where "Max {a <..} < y"
 | |
| 618 | using gt_ex by auto | |
| 619 | ||
| 63540 | 620 | obtain x where x: "a < x" | 
| 56328 | 621 | using gt_ex by auto | 
| 63540 | 622 |   also from x have "x \<le> Max {a <..}"
 | 
| 56328 | 623 | by fact | 
| 60758 | 624 |   also note \<open>Max {a <..} < y\<close>
 | 
| 56328 | 625 |   finally have "y \<le> Max { a <..}"
 | 
| 626 | by fact | |
| 60758 | 627 |   with \<open>Max {a <..} < y\<close> show False by auto
 | 
| 56328 | 628 | qed | 
| 629 | ||
| 630 | lemma infinite_Ici: "\<not> finite {a :: 'a :: {no_top, linorder} ..}"
 | |
| 631 |   using infinite_Ioi[of a] finite_subset[of "{a <..}" "{a ..}"]
 | |
| 632 | by (auto simp: subset_eq less_imp_le) | |
| 633 | ||
| 60758 | 634 | subsubsection \<open>Intersection\<close> | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 635 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 636 | context linorder | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 637 | begin | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 638 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 639 | lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 640 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 641 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 642 | lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 643 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 644 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 645 | lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 646 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 647 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 648 | lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 649 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 650 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 651 | lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 652 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 653 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 654 | lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 655 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 656 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 657 | lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 658 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 659 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 660 | lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 661 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 662 | |
| 50417 | 663 | lemma Int_atMost[simp]: "{..a} \<inter> {..b} = {.. min a b}"
 | 
| 664 | by (auto simp: min_def) | |
| 665 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 666 | lemma Ioc_disjoint: "{a<..b} \<inter> {c<..d} = {} \<longleftrightarrow> b \<le> a \<or> d \<le> c \<or> b \<le> c \<or> d \<le> a"
 | 
| 63092 | 667 | by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 668 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 669 | end | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 670 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 671 | context complete_lattice | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 672 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 673 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 674 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 675 |   shows Sup_atLeast[simp]: "Sup {x ..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 676 |     and Sup_greaterThanAtLeast[simp]: "x < top \<Longrightarrow> Sup {x <..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 677 |     and Sup_atMost[simp]: "Sup {.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 678 |     and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 679 |     and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 680 | by (auto intro!: Sup_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 681 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 682 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 683 |   shows Inf_atMost[simp]: "Inf {.. x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 684 |     and Inf_atMostLessThan[simp]: "top < x \<Longrightarrow> Inf {..< x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 685 |     and Inf_atLeast[simp]: "Inf {x ..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 686 |     and Inf_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Inf { x .. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 687 |     and Inf_atLeastLessThan[simp]: "x < y \<Longrightarrow> Inf { x ..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 688 | by (auto intro!: Inf_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 689 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 690 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 691 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 692 | lemma | 
| 53216 | 693 |   fixes x y :: "'a :: {complete_lattice, dense_linorder}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 694 |   shows Sup_lessThan[simp]: "Sup {..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 695 |     and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 696 |     and Sup_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Sup { x <..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 697 |     and Inf_greaterThan[simp]: "Inf {x <..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 698 |     and Inf_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Inf { x <.. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 699 |     and Inf_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Inf { x <..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 700 | by (auto intro!: Inf_eqI Sup_eqI intro: dense_le dense_le_bounded dense_ge dense_ge_bounded) | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 701 | |
| 60758 | 702 | subsection \<open>Intervals of natural numbers\<close> | 
| 14485 | 703 | |
| 69593 | 704 | subsubsection \<open>The Constant \<^term>\<open>lessThan\<close>\<close> | 
| 15047 | 705 | |
| 14485 | 706 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 707 | by (simp add: lessThan_def) | |
| 708 | ||
| 709 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 710 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 711 | ||
| 60758 | 712 | text \<open>The following proof is convenient in induction proofs where | 
| 39072 | 713 | new elements get indices at the beginning. So it is used to transform | 
| 69593 | 714 | \<^term>\<open>{..<Suc n}\<close> to \<^term>\<open>0::nat\<close> and \<^term>\<open>{..< n}\<close>.\<close>
 | 
| 39072 | 715 | |
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 716 | lemma zero_notin_Suc_image [simp]: "0 \<notin> Suc ` A" | 
| 59000 | 717 | by auto | 
| 718 | ||
| 39072 | 719 | lemma lessThan_Suc_eq_insert_0: "{..<Suc n} = insert 0 (Suc ` {..<n})"
 | 
| 59000 | 720 | by (auto simp: image_iff less_Suc_eq_0_disj) | 
| 39072 | 721 | |
| 14485 | 722 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | 
| 723 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 724 | ||
| 68361 | 725 | lemma atMost_Suc_eq_insert_0: "{.. Suc n} = insert 0 (Suc ` {.. n})"
 | 
| 59000 | 726 | unfolding lessThan_Suc_atMost[symmetric] lessThan_Suc_eq_insert_0[of "Suc n"] .. | 
| 727 | ||
| 69276 | 728 | lemma UN_lessThan_UNIV: "(\<Union>m::nat. lessThan m) = UNIV" | 
| 14485 | 729 | by blast | 
| 730 | ||
| 69593 | 731 | subsubsection \<open>The Constant \<^term>\<open>greaterThan\<close>\<close> | 
| 15047 | 732 | |
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 733 | lemma greaterThan_0: "greaterThan 0 = range Suc" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 734 | unfolding greaterThan_def | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 735 | by (blast dest: gr0_conv_Suc [THEN iffD1]) | 
| 14485 | 736 | |
| 737 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 738 | unfolding greaterThan_def | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 739 | by (auto elim: linorder_neqE) | 
| 14485 | 740 | |
| 69276 | 741 | lemma INT_greaterThan_UNIV: "(\<Inter>m::nat. greaterThan m) = {}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 742 | by blast | 
| 14485 | 743 | |
| 69593 | 744 | subsubsection \<open>The Constant \<^term>\<open>atLeast\<close>\<close> | 
| 15047 | 745 | |
| 14485 | 746 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 747 | by (unfold atLeast_def UNIV_def, simp) | |
| 748 | ||
| 749 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 750 | unfolding atLeast_def by (auto simp: order_le_less Suc_le_eq) | 
| 14485 | 751 | |
| 752 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 753 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 754 | ||
| 69276 | 755 | lemma UN_atLeast_UNIV: "(\<Union>m::nat. atLeast m) = UNIV" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 756 | by blast | 
| 14485 | 757 | |
| 69593 | 758 | subsubsection \<open>The Constant \<^term>\<open>atMost\<close>\<close> | 
| 15047 | 759 | |
| 14485 | 760 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 761 | by (simp add: atMost_def) | 
| 14485 | 762 | |
| 763 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 764 | unfolding atMost_def by (auto simp add: less_Suc_eq order_le_less) | 
| 14485 | 765 | |
| 69276 | 766 | lemma UN_atMost_UNIV: "(\<Union>m::nat. atMost m) = UNIV" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 767 | by blast | 
| 14485 | 768 | |
| 69593 | 769 | subsubsection \<open>The Constant \<^term>\<open>atLeastLessThan\<close>\<close> | 
| 15047 | 770 | |
| 60758 | 771 | text\<open>The orientation of the following 2 rules is tricky. The lhs is | 
| 24449 | 772 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 773 | in this theory --- the reverse orientation complicates proofs (eg | |
| 774 | nontermination). But outside, when the definition of the lhs is rarely | |
| 775 | used, the opposite orientation seems preferable because it reduces a | |
| 60758 | 776 | specific concept to a more general one.\<close> | 
| 28068 | 777 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 778 | lemma atLeast0LessThan [code_abbrev]: "{0::nat..<n} = {..<n}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 779 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 780 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 781 | lemma atLeast0AtMost [code_abbrev]: "{0..n::nat} = {..n}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 782 | by(simp add:atMost_def atLeastAtMost_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 783 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 784 | lemma lessThan_atLeast0: "{..<n} = {0::nat..<n}"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 785 | by (simp add: atLeast0LessThan) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 786 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 787 | lemma atMost_atLeast0: "{..n} = {0::nat..n}"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 788 | by (simp add: atLeast0AtMost) | 
| 24449 | 789 | |
| 790 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 791 | by (simp add: atLeastLessThan_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 792 | |
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 793 | lemma atLeast0_lessThan_Suc: "{0..<Suc n} = insert n {0..<n}"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 794 | by (simp add: atLeast0LessThan lessThan_Suc) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 795 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 796 | lemma atLeast0_lessThan_Suc_eq_insert_0: "{0..<Suc n} = insert 0 (Suc ` {0..<n})"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 797 | by (simp add: atLeast0LessThan lessThan_Suc_eq_insert_0) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 798 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 799 | |
| 69593 | 800 | subsubsection \<open>The Constant \<^term>\<open>atLeastAtMost\<close>\<close> | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 801 | |
| 69198 | 802 | lemma Icc_eq_insert_lb_nat: "m \<le> n \<Longrightarrow> {m..n} = insert m {Suc m..n}"
 | 
| 803 | by auto | |
| 804 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 805 | lemma atLeast0_atMost_Suc: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 806 |   "{0..Suc n} = insert (Suc n) {0..n}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 807 | by (simp add: atLeast0AtMost atMost_Suc) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 808 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 809 | lemma atLeast0_atMost_Suc_eq_insert_0: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 810 |   "{0..Suc n} = insert 0 (Suc ` {0..n})"
 | 
| 68361 | 811 | by (simp add: atLeast0AtMost atMost_Suc_eq_insert_0) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 812 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 813 | |
| 69593 | 814 | subsubsection \<open>Intervals of nats with \<^term>\<open>Suc\<close>\<close> | 
| 15047 | 815 | |
| 60758 | 816 | text\<open>Not a simprule because the RHS is too messy.\<close> | 
| 15047 | 817 | lemma atLeastLessThanSuc: | 
| 818 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 819 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 820 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 821 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 822 | by (auto simp add: atLeastLessThan_def) | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 823 | |
| 15045 | 824 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 825 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 826 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 827 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 828 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 829 | greaterThanAtMost_def) | 
| 14485 | 830 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 831 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 832 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 833 | greaterThanLessThan_def) | 
| 834 | ||
| 15554 | 835 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 71699 | 836 | by auto | 
| 15554 | 837 | |
| 45932 | 838 | lemma atLeastAtMost_insertL: "m \<le> n \<Longrightarrow> insert m {Suc m..n} = {m ..n}"
 | 
| 71699 | 839 | by auto | 
| 45932 | 840 | |
| 69593 | 841 | text \<open>The analogous result is useful on \<^typ>\<open>int\<close>:\<close> | 
| 43157 | 842 | (* here, because we don't have an own int section *) | 
| 843 | lemma atLeastAtMostPlus1_int_conv: | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 844 |   "m \<le> 1+n \<Longrightarrow> {m..1+n} = insert (1+n) {m..n::int}"
 | 
| 43157 | 845 | by (auto intro: set_eqI) | 
| 846 | ||
| 33044 | 847 | lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 848 | by (induct k) (simp_all add: atLeastLessThanSuc) | 
| 33044 | 849 | |
| 66936 | 850 | |
| 60758 | 851 | subsubsection \<open>Intervals and numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 852 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 853 | lemma lessThan_nat_numeral: \<comment> \<open>Evaluation for specific numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 854 | "lessThan (numeral k :: nat) = insert (pred_numeral k) (lessThan (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 855 | by (simp add: numeral_eq_Suc lessThan_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 856 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 857 | lemma atMost_nat_numeral: \<comment> \<open>Evaluation for specific numerals\<close> | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 858 | "atMost (numeral k :: nat) = insert (numeral k) (atMost (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 859 | by (simp add: numeral_eq_Suc atMost_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 860 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 861 | lemma atLeastLessThan_nat_numeral: \<comment> \<open>Evaluation for specific numerals\<close> | 
| 62369 | 862 | "atLeastLessThan m (numeral k :: nat) = | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 863 | (if m \<le> (pred_numeral k) then insert (pred_numeral k) (atLeastLessThan m (pred_numeral k)) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 864 |                  else {})"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 865 | by (simp add: numeral_eq_Suc atLeastLessThanSuc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 866 | |
| 66936 | 867 | |
| 60758 | 868 | subsubsection \<open>Image\<close> | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 869 | |
| 66936 | 870 | context linordered_semidom | 
| 871 | begin | |
| 872 | ||
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 873 | lemma image_add_atLeast[simp]: "plus k ` {i..} = {k + i..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 874 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 875 | have "n = k + (n - k)" if "i + k \<le> n" for n | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 876 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 877 | have "n = (n - (k + i)) + (k + i)" using that | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 878 | by (metis add_commute le_add_diff_inverse) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 879 | then show "n = k + (n - k)" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 880 | by (metis local.add_diff_cancel_left' add_assoc add_commute) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 881 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 882 | then show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 883 | by (fastforce simp: add_le_imp_le_diff add.commute) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 884 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 885 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 886 | lemma image_add_atLeastAtMost [simp]: | 
| 66936 | 887 |   "plus k ` {i..j} = {i + k..j + k}" (is "?A = ?B")
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 888 | proof | 
| 66936 | 889 | show "?A \<subseteq> ?B" | 
| 890 | by (auto simp add: ac_simps) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 891 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 892 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 893 | proof | 
| 66936 | 894 | fix n | 
| 895 | assume "n \<in> ?B" | |
| 896 | then have "i \<le> n - k" | |
| 897 | by (simp add: add_le_imp_le_diff) | |
| 898 | have "n = n - k + k" | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 899 | proof - | 
| 66936 | 900 | from \<open>n \<in> ?B\<close> have "n = n - (i + k) + (i + k)" | 
| 901 | by simp | |
| 902 | also have "\<dots> = n - k - i + i + k" | |
| 903 | by (simp add: algebra_simps) | |
| 904 | also have "\<dots> = n - k + k" | |
| 905 | using \<open>i \<le> n - k\<close> by simp | |
| 906 | finally show ?thesis . | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 907 | qed | 
| 66936 | 908 |     moreover have "n - k \<in> {i..j}"
 | 
| 909 | using \<open>n \<in> ?B\<close> | |
| 910 | by (auto simp: add_le_imp_le_diff add_le_add_imp_diff_le) | |
| 911 | ultimately show "n \<in> ?A" | |
| 912 | by (simp add: ac_simps) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 913 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 914 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 915 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 916 | lemma image_add_atLeastAtMost' [simp]: | 
| 66936 | 917 |   "(\<lambda>n. n + k) ` {i..j} = {i + k..j + k}"
 | 
| 918 | by (simp add: add.commute [of _ k]) | |
| 919 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 920 | lemma image_add_atLeastLessThan [simp]: | 
| 66936 | 921 |   "plus k ` {i..<j} = {i + k..<j + k}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 922 | by (simp add: image_set_diff atLeastLessThan_eq_atLeastAtMost_diff ac_simps) | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 923 | |
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 924 | lemma image_add_atLeastLessThan' [simp]: | 
| 66936 | 925 |   "(\<lambda>n. n + k) ` {i..<j} = {i + k..<j + k}"
 | 
| 926 | by (simp add: add.commute [of _ k]) | |
| 927 | ||
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 928 | lemma image_add_greaterThanAtMost[simp]: "(+) c ` {a<..b} = {c + a<..c + b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 929 | by (simp add: image_set_diff greaterThanAtMost_eq_atLeastAtMost_diff ac_simps) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 930 | |
| 66936 | 931 | end | 
| 932 | ||
| 35580 | 933 | context ordered_ab_group_add | 
| 934 | begin | |
| 935 | ||
| 936 | lemma | |
| 937 | fixes x :: 'a | |
| 938 |   shows image_uminus_greaterThan[simp]: "uminus ` {x<..} = {..<-x}"
 | |
| 939 |   and image_uminus_atLeast[simp]: "uminus ` {x..} = {..-x}"
 | |
| 940 | proof safe | |
| 941 | fix y assume "y < -x" | |
| 942 | hence *: "x < -y" using neg_less_iff_less[of "-y" x] by simp | |
| 943 |   have "- (-y) \<in> uminus ` {x<..}"
 | |
| 944 | by (rule imageI) (simp add: *) | |
| 945 |   thus "y \<in> uminus ` {x<..}" by simp
 | |
| 946 | next | |
| 947 | fix y assume "y \<le> -x" | |
| 948 |   have "- (-y) \<in> uminus ` {x..}"
 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 949 | by (rule imageI) (use \<open>y \<le> -x\<close>[THEN le_imp_neg_le] in \<open>simp\<close>) | 
| 35580 | 950 |   thus "y \<in> uminus ` {x..}" by simp
 | 
| 951 | qed simp_all | |
| 952 | ||
| 953 | lemma | |
| 954 | fixes x :: 'a | |
| 955 |   shows image_uminus_lessThan[simp]: "uminus ` {..<x} = {-x<..}"
 | |
| 956 |   and image_uminus_atMost[simp]: "uminus ` {..x} = {-x..}"
 | |
| 957 | proof - | |
| 958 |   have "uminus ` {..<x} = uminus ` uminus ` {-x<..}"
 | |
| 959 |     and "uminus ` {..x} = uminus ` uminus ` {-x..}" by simp_all
 | |
| 960 |   thus "uminus ` {..<x} = {-x<..}" and "uminus ` {..x} = {-x..}"
 | |
| 961 | by (simp_all add: image_image | |
| 962 | del: image_uminus_greaterThan image_uminus_atLeast) | |
| 963 | qed | |
| 964 | ||
| 965 | lemma | |
| 966 | fixes x :: 'a | |
| 967 |   shows image_uminus_atLeastAtMost[simp]: "uminus ` {x..y} = {-y..-x}"
 | |
| 968 |   and image_uminus_greaterThanAtMost[simp]: "uminus ` {x<..y} = {-y..<-x}"
 | |
| 969 |   and image_uminus_atLeastLessThan[simp]: "uminus ` {x..<y} = {-y<..-x}"
 | |
| 970 |   and image_uminus_greaterThanLessThan[simp]: "uminus ` {x<..<y} = {-y<..<-x}"
 | |
| 971 | by (simp_all add: atLeastAtMost_def greaterThanAtMost_def atLeastLessThan_def | |
| 972 | greaterThanLessThan_def image_Int[OF inj_uminus] Int_commute) | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 973 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 974 | lemma image_add_atMost[simp]: "(+) c ` {..a} = {..c + a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 975 | by (auto intro!: image_eqI[where x="x - c" for x] simp: algebra_simps) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 976 | |
| 35580 | 977 | end | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 978 | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 979 | lemma image_Suc_atLeastAtMost [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 980 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 981 | using image_add_atLeastAtMost [of 1 i j] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 982 | by (simp only: plus_1_eq_Suc) simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 983 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 984 | lemma image_Suc_atLeastLessThan [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 985 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 986 | using image_add_atLeastLessThan [of 1 i j] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 987 | by (simp only: plus_1_eq_Suc) simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 988 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 989 | corollary image_Suc_atMost: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 990 |   "Suc ` {..n} = {1..Suc n}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 991 | by (simp add: atMost_atLeast0 atLeastLessThanSuc_atLeastAtMost) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 992 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 993 | corollary image_Suc_lessThan: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 994 |   "Suc ` {..<n} = {1..n}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 995 | by (simp add: lessThan_atLeast0 atLeastLessThanSuc_atLeastAtMost) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 996 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 997 | lemma image_diff_atLeastAtMost [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 998 |   fixes d::"'a::linordered_idom" shows "((-) d ` {a..b}) = {d-b..d-a}"
 | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 999 | proof | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1000 |   show "{d - b..d - a} \<subseteq> (-) d ` {a..b}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1001 | proof | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1002 | fix x | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1003 |     assume "x \<in> {d - b..d - a}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1004 |     then have "d - x \<in> {a..b}" and "x = d - (d - x)"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1005 | by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1006 |     then show "x \<in> (-) d ` {a..b}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1007 | by (rule rev_image_eqI) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1008 | qed | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1009 | qed(auto) | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1010 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1011 | lemma image_diff_atLeastLessThan [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1012 | fixes a b c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1013 |   shows "(-) c ` {a..<b} = {c - b<..c - a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1014 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1015 |   have "(-) c ` {a..<b} = (+) c ` uminus ` {a ..<b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1016 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1017 |   also have "\<dots> = {c - b<..c - a}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1018 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1019 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1020 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1021 | lemma image_minus_const_greaterThanAtMost[simp]: | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1022 | fixes a b c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1023 |   shows "(-) c ` {a<..b} = {c - b..<c - a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1024 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1025 |   have "(-) c ` {a<..b} = (+) c ` uminus ` {a<..b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1026 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1027 |   also have "\<dots> = {c - b..<c - a}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1028 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1029 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1030 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1031 | lemma image_minus_const_atLeast[simp]: | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1032 | fixes a c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1033 |   shows "(-) c ` {a..} = {..c - a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1034 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1035 |   have "(-) c ` {a..} = (+) c ` uminus ` {a ..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1036 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1037 |   also have "\<dots> = {..c - a}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1038 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1039 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1040 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1041 | lemma image_minus_const_AtMost[simp]: | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1042 | fixes b c::"'a::linordered_idom" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1043 |   shows "(-) c ` {..b} = {c - b..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1044 | proof - | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1045 |   have "(-) c ` {..b} = (+) c ` uminus ` {..b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1046 | unfolding image_image by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1047 |   also have "\<dots> = {c - b..}" by simp
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1048 | finally show ?thesis by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1049 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1050 | |
| 67727 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1051 | lemma image_minus_const_atLeastAtMost' [simp]: | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1052 |   "(\<lambda>t. t-d)`{a..b} = {a-d..b-d}" for d::"'a::linordered_idom"
 | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1053 | by (metis (no_types, lifting) diff_conv_add_uminus image_add_atLeastAtMost' image_cong) | 
| 
ce3e87a51488
moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
 immler parents: 
67685diff
changeset | 1054 | |
| 69502 | 1055 | context linordered_field | 
| 1056 | begin | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1057 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1058 | lemma image_mult_atLeastAtMost [simp]: | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 1059 |   "((*) d ` {a..b}) = {d*a..d*b}" if "d>0"
 | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1060 | using that | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1061 | by (auto simp: field_simps mult_le_cancel_right intro: rev_image_eqI [where x="x/d" for x]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1062 | |
| 69502 | 1063 | lemma image_divide_atLeastAtMost [simp]: | 
| 1064 |   "((\<lambda>c. c / d) ` {a..b}) = {a/d..b/d}" if "d>0"
 | |
| 1065 | proof - | |
| 1066 | from that have "inverse d > 0" | |
| 1067 | by simp | |
| 1068 | with image_mult_atLeastAtMost [of "inverse d" a b] | |
| 1069 |   have "(*) (inverse d) ` {a..b} = {inverse d * a..inverse d * b}"
 | |
| 1070 | by blast | |
| 1071 | moreover have "(*) (inverse d) = (\<lambda>c. c / d)" | |
| 1072 | by (simp add: fun_eq_iff field_simps) | |
| 1073 | ultimately show ?thesis | |
| 1074 | by simp | |
| 1075 | qed | |
| 1076 | ||
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1077 | lemma image_mult_atLeastAtMost_if: | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 1078 |   "(*) c ` {x .. y} =
 | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1079 |     (if c > 0 then {c * x .. c * y} else if x \<le> y then {c * y .. c * x} else {})"
 | 
| 69768 | 1080 | proof (cases "c = 0 \<or> x > y") | 
| 1081 | case True | |
| 1082 | then show ?thesis | |
| 1083 | by auto | |
| 1084 | next | |
| 1085 | case False | |
| 1086 | then have "x \<le> y" | |
| 1087 | by auto | |
| 1088 | from False consider "c < 0"| "c > 0" | |
| 1089 | by (auto simp add: neq_iff) | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1090 | then show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1091 | proof cases | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1092 | case 1 | 
| 69768 | 1093 |     have "(*) c ` {x..y} = {c * y..c * x}"
 | 
| 1094 | proof (rule set_eqI) | |
| 1095 | fix d | |
| 1096 | from 1 have "inj (\<lambda>z. z / c)" | |
| 1097 | by (auto intro: injI) | |
| 1098 |       then have "d \<in> (*) c ` {x..y} \<longleftrightarrow> d / c \<in> (\<lambda>z. z div c) ` (*) c ` {x..y}"
 | |
| 1099 | by (subst inj_image_mem_iff) simp_all | |
| 1100 |       also have "\<dots> \<longleftrightarrow> d / c \<in> {x..y}"
 | |
| 1101 | using 1 by (simp add: image_image) | |
| 1102 |       also have "\<dots> \<longleftrightarrow> d \<in> {c * y..c * x}"
 | |
| 1103 | by (auto simp add: field_simps 1) | |
| 1104 |       finally show "d \<in> (*) c ` {x..y} \<longleftrightarrow> d \<in> {c * y..c * x}" .
 | |
| 1105 | qed | |
| 1106 | with \<open>x \<le> y\<close> show ?thesis | |
| 1107 | by auto | |
| 1108 | qed (simp add: mult_left_mono_neg) | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1109 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1110 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1111 | lemma image_mult_atLeastAtMost_if': | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1112 |   "(\<lambda>x. x * c) ` {x..y} =
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1113 |     (if x \<le> y then if c > 0 then {x * c .. y * c} else {y * c .. x * c} else {})"
 | 
| 69768 | 1114 | using image_mult_atLeastAtMost_if [of c x y] by (auto simp add: ac_simps) | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1115 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1116 | lemma image_affinity_atLeastAtMost: | 
| 69768 | 1117 |   "((\<lambda>x. m * x + c) ` {a..b}) = (if {a..b} = {} then {}
 | 
| 1118 |             else if 0 \<le> m then {m * a + c .. m * b + c}
 | |
| 1119 |             else {m * b + c .. m * a + c})"
 | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1120 | proof - | 
| 69768 | 1121 | have *: "(\<lambda>x. m * x + c) = ((\<lambda>x. x + c) \<circ> (*) m)" | 
| 1122 | by (simp add: fun_eq_iff) | |
| 1123 | show ?thesis by (simp only: * image_comp [symmetric] image_mult_atLeastAtMost_if) | |
| 1124 | (auto simp add: mult_le_cancel_left) | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1125 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1126 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1127 | lemma image_affinity_atLeastAtMost_diff: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1128 |   "((\<lambda>x. m*x - c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1129 |             else if 0 \<le> m then {m*a - c .. m*b - c}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1130 |             else {m*b - c .. m*a - c})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1131 | using image_affinity_atLeastAtMost [of m "-c" a b] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1132 | by simp | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1133 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1134 | lemma image_affinity_atLeastAtMost_div: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1135 |   "((\<lambda>x. x/m + c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1136 |             else if 0 \<le> m then {a/m + c .. b/m + c}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1137 |             else {b/m + c .. a/m + c})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1138 | using image_affinity_atLeastAtMost [of "inverse m" c a b] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1139 | by (simp add: field_class.field_divide_inverse algebra_simps inverse_eq_divide) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1140 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1141 | lemma image_affinity_atLeastAtMost_div_diff: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1142 |   "((\<lambda>x. x/m - c) ` {a..b}) = (if {a..b}={} then {}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1143 |             else if 0 \<le> m then {a/m - c .. b/m - c}
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1144 |             else {b/m - c .. a/m - c})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1145 | using image_affinity_atLeastAtMost_diff [of "inverse m" c a b] | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1146 | by (simp add: field_class.field_divide_inverse algebra_simps inverse_eq_divide) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1147 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1148 | end | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1149 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1150 | lemma atLeast1_lessThan_eq_remove0: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1151 |   "{Suc 0..<n} = {..<n} - {0}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1152 | by auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1153 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1154 | lemma atLeast1_atMost_eq_remove0: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1155 |   "{Suc 0..n} = {..n} - {0}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1156 | by auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1157 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1158 | lemma image_add_int_atLeastLessThan: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1159 |     "(\<lambda>x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1160 | by safe auto | 
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1161 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1162 | lemma image_minus_const_atLeastLessThan_nat: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1163 | fixes c :: nat | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1164 |   shows "(\<lambda>i. i - c) ` {x ..< y} =
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1165 |       (if c < y then {x - c ..< y - c} else if x < y then {0} else {})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1166 | (is "_ = ?right") | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1167 | proof safe | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1168 | fix a assume a: "a \<in> ?right" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1169 |   show "a \<in> (\<lambda>i. i - c) ` {x ..< y}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1170 | proof cases | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1171 | assume "c < y" with a show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1172 | by (auto intro!: image_eqI[of _ _ "a + c"]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1173 | next | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1174 | assume "\<not> c < y" with a show ?thesis | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1175 | by (auto intro!: image_eqI[of _ _ x] split: if_split_asm) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1176 | qed | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1177 | qed auto | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1178 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1179 | lemma image_int_atLeastLessThan: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1180 |   "int ` {a..<b} = {int a..<int b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1181 | by (auto intro!: image_eqI [where x = "nat x" for x]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1182 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1183 | lemma image_int_atLeastAtMost: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1184 |   "int ` {a..b} = {int a..int b}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1185 | by (auto intro!: image_eqI [where x = "nat x" for x]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1186 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67613diff
changeset | 1187 | |
| 60758 | 1188 | subsubsection \<open>Finiteness\<close> | 
| 14485 | 1189 | |
| 15045 | 1190 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 1191 | by (induct k) (simp_all add: lessThan_Suc) | 
| 1192 | ||
| 1193 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 1194 | by (induct k) (simp_all add: atMost_Suc) | |
| 1195 | ||
| 1196 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 1197 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1198 | by (simp add: greaterThanLessThan_def) | 
| 14485 | 1199 | |
| 1200 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 1201 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1202 | by (simp add: atLeastLessThan_def) | 
| 14485 | 1203 | |
| 1204 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 1205 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1206 | by (simp add: greaterThanAtMost_def) | 
| 14485 | 1207 | |
| 1208 | lemma finite_atLeastAtMost [iff]: | |
| 1209 |   fixes l :: nat shows "finite {l..u}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1210 | by (simp add: atLeastAtMost_def) | 
| 14485 | 1211 | |
| 60758 | 1212 | text \<open>A bounded set of natural numbers is finite.\<close> | 
| 67613 | 1213 | lemma bounded_nat_set_is_finite: "(\<forall>i\<in>N. i < (n::nat)) \<Longrightarrow> finite N" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1214 | by (rule finite_subset [OF _ finite_lessThan]) auto | 
| 28068 | 1215 | |
| 60758 | 1216 | text \<open>A set of natural numbers is finite iff it is bounded.\<close> | 
| 31044 | 1217 | lemma finite_nat_set_iff_bounded: | 
| 67091 | 1218 | "finite(N::nat set) = (\<exists>m. \<forall>n\<in>N. n<m)" (is "?F = ?B") | 
| 31044 | 1219 | proof | 
| 1220 | assume f:?F show ?B | |
| 60758 | 1221 | using Max_ge[OF \<open>?F\<close>, simplified less_Suc_eq_le[symmetric]] by blast | 
| 31044 | 1222 | next | 
| 60758 | 1223 | assume ?B show ?F using \<open>?B\<close> by(blast intro:bounded_nat_set_is_finite) | 
| 31044 | 1224 | qed | 
| 1225 | ||
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1226 | lemma finite_nat_set_iff_bounded_le: "finite(N::nat set) = (\<exists>m. \<forall>n\<in>N. n\<le>m)" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1227 | unfolding finite_nat_set_iff_bounded | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1228 | by (blast dest:less_imp_le_nat le_imp_less_Suc) | 
| 31044 | 1229 | |
| 28068 | 1230 | lemma finite_less_ub: | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1231 |      "\<And>f::nat\<Rightarrow>nat. (!!n. n \<le> f n) \<Longrightarrow> finite {n. f n \<le> u}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1232 |   by (rule finite_subset[of _ "{..u}"])
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1233 | (auto intro: order_trans) | 
| 14485 | 1234 | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1235 | lemma bounded_Max_nat: | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1236 | fixes P :: "nat \<Rightarrow> bool" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1237 | assumes x: "P x" and M: "\<And>x. P x \<Longrightarrow> x \<le> M" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1238 | obtains m where "P m" "\<And>x. P x \<Longrightarrow> x \<le> m" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1239 | proof - | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1240 |   have "finite {x. P x}"
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1241 | using M finite_nat_set_iff_bounded_le by auto | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1242 |   then have "Max {x. P x} \<in> {x. P x}"
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1243 | using Max_in x by auto | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1244 | then show ?thesis | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1245 |     by (simp add: \<open>finite {x. P x}\<close> that)
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1246 | qed | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 1247 | |
| 56328 | 1248 | |
| 60758 | 1249 | text\<open>Any subset of an interval of natural numbers the size of the | 
| 1250 | subset is exactly that interval.\<close> | |
| 24853 | 1251 | |
| 1252 | lemma subset_card_intvl_is_intvl: | |
| 55085 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1253 |   assumes "A \<subseteq> {k..<k + card A}"
 | 
| 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 1254 |   shows "A = {k..<k + card A}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1255 | proof (cases "finite A") | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1256 | case True | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1257 | from this and assms show ?thesis | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1258 | proof (induct A rule: finite_linorder_max_induct) | 
| 24853 | 1259 | case empty thus ?case by auto | 
| 1260 | next | |
| 33434 | 1261 | case (insert b A) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1262 | hence *: "b \<notin> A" by auto | 
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 1263 |     with insert have "A \<le> {k..<k + card A}" and "b = k + card A"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1264 | by fastforce+ | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1265 | with insert * show ?case by auto | 
| 24853 | 1266 | qed | 
| 1267 | next | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1268 | case False | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1269 | with assms show ?thesis by simp | 
| 24853 | 1270 | qed | 
| 1271 | ||
| 1272 | ||
| 60758 | 1273 | subsubsection \<open>Proving Inclusions and Equalities between Unions\<close> | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1274 | |
| 36755 | 1275 | lemma UN_le_eq_Un0: | 
| 1276 |   "(\<Union>i\<le>n::nat. M i) = (\<Union>i\<in>{1..n}. M i) \<union> M 0" (is "?A = ?B")
 | |
| 1277 | proof | |
| 67613 | 1278 | show "?A \<subseteq> ?B" | 
| 36755 | 1279 | proof | 
| 67613 | 1280 | fix x assume "x \<in> ?A" | 
| 1281 | then obtain i where i: "i\<le>n" "x \<in> M i" by auto | |
| 1282 | show "x \<in> ?B" | |
| 36755 | 1283 | proof(cases i) | 
| 1284 | case 0 with i show ?thesis by simp | |
| 1285 | next | |
| 1286 | case (Suc j) with i show ?thesis by auto | |
| 1287 | qed | |
| 1288 | qed | |
| 1289 | next | |
| 67613 | 1290 | show "?B \<subseteq> ?A" by fastforce | 
| 36755 | 1291 | qed | 
| 1292 | ||
| 1293 | lemma UN_le_add_shift: | |
| 1294 |   "(\<Union>i\<le>n::nat. M(i+k)) = (\<Union>i\<in>{k..n+k}. M i)" (is "?A = ?B")
 | |
| 1295 | proof | |
| 67613 | 1296 | show "?A \<subseteq> ?B" by fastforce | 
| 36755 | 1297 | next | 
| 67613 | 1298 | show "?B \<subseteq> ?A" | 
| 36755 | 1299 | proof | 
| 67613 | 1300 | fix x assume "x \<in> ?B" | 
| 1301 |     then obtain i where i: "i \<in> {k..n+k}" "x \<in> M(i)" by auto
 | |
| 67091 | 1302 | hence "i-k\<le>n \<and> x \<in> M((i-k)+k)" by auto | 
| 1303 | thus "x \<in> ?A" by blast | |
| 36755 | 1304 | qed | 
| 1305 | qed | |
| 1306 | ||
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1307 | lemma UN_le_add_shift_strict: | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1308 |   "(\<Union>i<n::nat. M(i+k)) = (\<Union>i\<in>{k..<n+k}. M i)" (is "?A = ?B")
 | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1309 | proof | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1310 | show "?B \<subseteq> ?A" | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1311 | proof | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1312 | fix x assume "x \<in> ?B" | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1313 |     then obtain i where i: "i \<in> {k..<n+k}" "x \<in> M(i)" by auto
 | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1314 | then have "i - k < n \<and> x \<in> M((i-k) + k)" by auto | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1315 | then show "x \<in> ?A" using UN_le_add_shift by blast | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1316 | qed | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1317 | qed (fastforce) | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 1318 | |
| 62369 | 1319 | lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
 | 
| 1320 | by (auto simp add: atLeast0LessThan) | |
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1321 | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1322 | lemma UN_finite_subset: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1323 |   "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
 | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1324 | by (subst UN_UN_finite_eq [symmetric]) blast | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1325 | |
| 62369 | 1326 | lemma UN_finite2_subset: | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1327 |   assumes "\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1328 | shows "(\<Union>n. A n) \<subseteq> (\<Union>n. B n)" | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1329 | proof (rule UN_finite_subset, rule subsetI) | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1330 | fix n and a | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1331 |   from assms have "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n + k}. B i)" .
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1332 |   moreover assume "a \<in> (\<Union>i\<in>{0..<n}. A i)"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1333 |   ultimately have "a \<in> (\<Union>i\<in>{0..<n + k}. B i)" by blast
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1334 | then show "a \<in> (\<Union>i. B i)" by (auto simp add: UN_UN_finite_eq) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62128diff
changeset | 1335 | qed | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1336 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1337 | lemma UN_finite2_eq: | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1338 |   assumes "(\<And>n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n + k}. B i))"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1339 | shows "(\<Union>n. A n) = (\<Union>n. B n)" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1340 | proof (rule subset_antisym [OF UN_finite_subset UN_finite2_subset]) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1341 | fix n | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1342 |   show "\<Union> (A ` {0..<n}) \<subseteq> (\<Union>n. B n)"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1343 | using assms by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1344 | next | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1345 | fix n | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1346 |   show "\<Union> (B ` {0..<n}) \<subseteq> \<Union> (A ` {0..<n + k})"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1347 | using assms by (force simp add: atLeastLessThan_add_Un [of 0])+ | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1348 | qed | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1349 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1350 | |
| 60758 | 1351 | subsubsection \<open>Cardinality\<close> | 
| 14485 | 1352 | |
| 15045 | 1353 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 1354 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 1355 | |
| 1356 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 1357 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 1358 | ||
| 15045 | 1359 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1360 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1361 |   have "(\<lambda>x. x + l) ` {..<u - l} \<subseteq> {l..<u}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1362 | by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1363 |   moreover have "{l..<u} \<subseteq> (\<lambda>x. x + l) ` {..<u-l}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1364 | proof | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1365 | fix x | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1366 |     assume *: "x \<in> {l..<u}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1367 |     then have "x - l \<in> {..< u -l}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1368 | by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1369 |     then have "(x - l) + l \<in> (\<lambda>x. x + l) ` {..< u -l}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1370 | by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1371 |     then show "x \<in> (\<lambda>x. x + l) ` {..<u - l}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1372 | using * by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1373 | qed | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1374 |   ultimately have "{l..<u} = (\<lambda>x. x + l) ` {..<u-l}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1375 | by auto | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1376 |   then have "card {l..<u} = card {..<u-l}"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1377 | by (simp add: card_image inj_on_def) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1378 | then show ?thesis | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1379 | by simp | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1380 | qed | 
| 14485 | 1381 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1382 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 1383 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 1384 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1385 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 1386 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 1387 | ||
| 15045 | 1388 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 1389 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 1390 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1391 | lemma subset_eq_atLeast0_lessThan_finite: | 
| 63365 | 1392 | fixes n :: nat | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1393 |   assumes "N \<subseteq> {0..<n}"
 | 
| 63915 | 1394 | shows "finite N" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1395 | using assms finite_atLeastLessThan by (rule finite_subset) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1396 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1397 | lemma subset_eq_atLeast0_atMost_finite: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1398 | fixes n :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1399 |   assumes "N \<subseteq> {0..n}"
 | 
| 63915 | 1400 | shows "finite N" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1401 | using assms finite_atLeastAtMost by (rule finite_subset) | 
| 63365 | 1402 | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1403 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1404 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1405 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1406 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1407 | done | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1408 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1409 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1410 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1411 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1412 | |
| 31438 | 1413 | lemma finite_same_card_bij: | 
| 67091 | 1414 | "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> \<exists>h. bij_betw h A B" | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1415 | apply(drule ex_bij_betw_finite_nat) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1416 | apply(drule ex_bij_betw_nat_finite) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1417 | apply(auto intro!:bij_betw_trans) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1418 | done | 
| 31438 | 1419 | |
| 1420 | lemma ex_bij_betw_nat_finite_1: | |
| 1421 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1422 | by (rule finite_same_card_bij) auto | 
| 31438 | 1423 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1424 | lemma bij_betw_iff_card: | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1425 | assumes "finite A" "finite B" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1426 | shows "(\<exists>f. bij_betw f A B) \<longleftrightarrow> (card A = card B)" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1427 | proof | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1428 | assume "card A = card B" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1429 |   moreover obtain f where "bij_betw f A {0 ..< card A}"
 | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1430 | using assms ex_bij_betw_finite_nat by blast | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1431 |   moreover obtain g where "bij_betw g {0 ..< card B} B"
 | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1432 | using assms ex_bij_betw_nat_finite by blast | 
| 67091 | 1433 | ultimately have "bij_betw (g \<circ> f) A B" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1434 | by (auto simp: bij_betw_trans) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1435 | thus "(\<exists>f. bij_betw f A B)" by blast | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63099diff
changeset | 1436 | qed (auto simp: bij_betw_same_card) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1437 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1438 | lemma subset_eq_atLeast0_lessThan_card: | 
| 63365 | 1439 | fixes n :: nat | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1440 |   assumes "N \<subseteq> {0..<n}"
 | 
| 63365 | 1441 | shows "card N \<le> n" | 
| 1442 | proof - | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1443 |   from assms finite_lessThan have "card N \<le> card {0..<n}"
 | 
| 63365 | 1444 | using card_mono by blast | 
| 1445 | then show ?thesis by simp | |
| 1446 | qed | |
| 1447 | ||
| 69235 | 1448 | text \<open>Relational version of @{thm [source] card_inj_on_le}:\<close>
 | 
| 1449 | lemma card_le_if_inj_on_rel: | |
| 1450 | assumes "finite B" | |
| 1451 | "\<And>a. a \<in> A \<Longrightarrow> \<exists>b. b\<in>B \<and> r a b" | |
| 1452 | "\<And>a1 a2 b. \<lbrakk> a1 \<in> A; a2 \<in> A; b \<in> B; r a1 b; r a2 b \<rbrakk> \<Longrightarrow> a1 = a2" | |
| 1453 | shows "card A \<le> card B" | |
| 1454 | proof - | |
| 1455 | let ?P = "\<lambda>a b. b \<in> B \<and> r a b" | |
| 1456 | let ?f = "\<lambda>a. SOME b. ?P a b" | |
| 1457 | have 1: "?f ` A \<subseteq> B" by (auto intro: someI2_ex[OF assms(2)]) | |
| 1458 | have "inj_on ?f A" | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1459 | unfolding inj_on_def | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1460 | proof safe | 
| 69235 | 1461 | fix a1 a2 assume asms: "a1 \<in> A" "a2 \<in> A" "?f a1 = ?f a2" | 
| 1462 | have 0: "?f a1 \<in> B" using "1" \<open>a1 \<in> A\<close> by blast | |
| 1463 | have 1: "r a1 (?f a1)" using someI_ex[OF assms(2)[OF \<open>a1 \<in> A\<close>]] by blast | |
| 1464 | have 2: "r a2 (?f a1)" using someI_ex[OF assms(2)[OF \<open>a2 \<in> A\<close>]] asms(3) by auto | |
| 1465 | show "a1 = a2" using assms(3)[OF asms(1,2) 0 1 2] . | |
| 1466 | qed | |
| 1467 | with 1 show ?thesis using card_inj_on_le[of ?f A B] assms(1) by simp | |
| 1468 | qed | |
| 1469 | ||
| 73555 | 1470 | lemma inj_on_funpow_least: \<^marker>\<open>contributor \<open>Lars Noschinski\<close>\<close> | 
| 1471 |   \<open>inj_on (\<lambda>k. (f ^^ k) s) {0..<n}\<close>
 | |
| 1472 | if \<open>(f ^^ n) s = s\<close> \<open>\<And>m. 0 < m \<Longrightarrow> m < n \<Longrightarrow> (f ^^ m) s \<noteq> s\<close> | |
| 1473 | proof - | |
| 1474 |   { fix k l assume A: "k < n" "l < n" "k \<noteq> l" "(f ^^ k) s = (f ^^ l) s"
 | |
| 1475 | define k' l' where "k' = min k l" and "l' = max k l" | |
| 1476 | with A have A': "k' < l'" "(f ^^ k') s = (f ^^ l') s" "l' < n" | |
| 1477 | by (auto simp: min_def max_def) | |
| 1478 | ||
| 1479 | have "s = (f ^^ ((n - l') + l')) s" using that \<open>l' < n\<close> by simp | |
| 1480 | also have "\<dots> = (f ^^ (n - l')) ((f ^^ l') s)" by (simp add: funpow_add) | |
| 1481 | also have "(f ^^ l') s = (f ^^ k') s" by (simp add: A') | |
| 1482 | also have "(f ^^ (n - l')) \<dots> = (f ^^ (n - l' + k')) s" by (simp add: funpow_add) | |
| 1483 | finally have "(f ^^ (n - l' + k')) s = s" by simp | |
| 1484 | moreover have "n - l' + k' < n" "0 < n - l' + k'"using A' by linarith+ | |
| 1485 | ultimately have False using that(2) by auto | |
| 1486 | } | |
| 1487 | then show ?thesis by (intro inj_onI) auto | |
| 1488 | qed | |
| 1489 | ||
| 63365 | 1490 | |
| 60758 | 1491 | subsection \<open>Intervals of integers\<close> | 
| 14485 | 1492 | |
| 15045 | 1493 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 1494 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 1495 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1496 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 1497 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 1498 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1499 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1500 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 1501 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 1502 | ||
| 60758 | 1503 | subsubsection \<open>Finiteness\<close> | 
| 14485 | 1504 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1505 | lemma image_atLeastZeroLessThan_int: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1506 | assumes "0 \<le> u" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1507 |   shows "{(0::int)..<u} = int ` {..<nat u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1508 | unfolding image_def lessThan_def | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1509 | proof | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1510 |   show "{0..<u} \<subseteq> {y. \<exists>x\<in>{x. x < nat u}. y = int x}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1511 | proof | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1512 | fix x | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1513 |     assume "x \<in> {0..<u}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1514 | then have "x = int (nat x)" and "nat x < nat u" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1515 | by (auto simp add: zless_nat_eq_int_zless [THEN sym]) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1516 | then have "\<exists>xa<nat u. x = int xa" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1517 | using exI[of _ "(nat x)"] by simp | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1518 |     then show "x \<in> {y. \<exists>x\<in>{x. x < nat u}. y = int x}"
 | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1519 | by simp | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1520 | qed | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1521 | qed (auto) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1522 | |
| 14485 | 1523 | |
| 15045 | 1524 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1525 | proof (cases "0 \<le> u") | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1526 | case True | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1527 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1528 | by (auto simp: image_atLeastZeroLessThan_int) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1529 | qed auto | 
| 14485 | 1530 | |
| 15045 | 1531 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1532 | by (simp only: image_add_int_atLeastLessThan [symmetric, of l] finite_imageI finite_atLeastZeroLessThan_int) | 
| 14485 | 1533 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1534 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 1535 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 1536 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1537 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 1538 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 1539 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1540 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 1541 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 1542 | ||
| 24853 | 1543 | |
| 60758 | 1544 | subsubsection \<open>Cardinality\<close> | 
| 14485 | 1545 | |
| 15045 | 1546 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1547 | proof (cases "0 \<le> u") | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1548 | case True | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1549 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1550 | by (auto simp: image_atLeastZeroLessThan_int card_image inj_on_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1551 | qed auto | 
| 14485 | 1552 | |
| 15045 | 1553 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1554 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1555 |   have "card {l..<u} = card {0..<u-l}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1556 | apply (subst image_add_int_atLeastLessThan [symmetric]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1557 | apply (rule card_image) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1558 | apply (simp add: inj_on_def) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1559 | done | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1560 | then show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1561 | by (simp add: card_atLeastZeroLessThan_int) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1562 | qed | 
| 14485 | 1563 | |
| 1564 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1565 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1566 | apply (auto simp add: algebra_simps) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1567 | done | 
| 14485 | 1568 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1569 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1570 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 1571 | |
| 15045 | 1572 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1573 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 1574 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1575 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1576 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1577 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1578 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1579 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1580 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1581 | lemma card_less: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1582 | assumes zero_in_M: "0 \<in> M" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1583 |   shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1584 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1585 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1586 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1587 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1588 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1589 | lemma card_less_Suc2: | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1590 |   assumes "0 \<notin> M" shows "card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1591 | proof - | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1592 | have *: "\<lbrakk>j \<in> M; j < Suc i\<rbrakk> \<Longrightarrow> j - Suc 0 < i \<and> Suc (j - Suc 0) \<in> M \<and> Suc 0 \<le> j" for j | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1593 | by (cases j) (use assms in auto) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1594 | show ?thesis | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1595 | proof (rule card_bij_eq) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1596 |     show "inj_on Suc {k. Suc k \<in> M \<and> k < i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1597 | by force | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1598 |     show "inj_on (\<lambda>x. x - Suc 0) {k \<in> M. k < Suc i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1599 | by (rule inj_on_diff_nat) (use * in blast) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1600 | qed (use * in auto) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1601 | qed | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1602 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1603 | lemma card_less_Suc: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1604 | assumes "0 \<in> M" | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1605 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1606 | proof - | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1607 |   have "Suc (card {k. Suc k \<in> M \<and> k < i}) = Suc (card {k. Suc k \<in> M - {0} \<and> k < i})"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1608 | by simp | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1609 |   also have "\<dots> = Suc (card {k \<in> M - {0}. k < Suc i})"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1610 | apply (subst card_less_Suc2) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1611 | using assms by auto | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1612 |   also have "\<dots> = Suc (card ({k \<in> M. k < Suc i} - {0}))"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1613 | by (force intro: arg_cong [where f=card]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1614 |   also have "\<dots> = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 72302 
d7d90ed4c74e
fixed some remarkably ugly proofs
 paulson <lp15@cam.ac.uk> parents: 
72268diff
changeset | 1615 | by (simp add: card.insert_remove) | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1616 |   also have "... = card {k \<in> M. k < Suc i}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1617 | using assms | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1618 | by (force simp add: intro: arg_cong [where f=card]) | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1619 | finally show ?thesis. | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1620 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1621 | |
| 73139 | 1622 | lemma card_le_Suc_Max: "finite S \<Longrightarrow> card S \<le> Suc (Max S)" | 
| 1623 | proof (rule classical) | |
| 1624 | assume "finite S" and "\<not> Suc (Max S) \<ge> card S" | |
| 1625 | then have "Suc (Max S) < card S" | |
| 1626 | by simp | |
| 74885 | 1627 |   with \<open>finite S\<close> have "S \<subseteq> {0..Max S}"
 | 
| 73139 | 1628 | by auto | 
| 1629 |   hence "card S \<le> card {0..Max S}"
 | |
| 1630 | by (intro card_mono; auto) | |
| 1631 | thus "card S \<le> Suc (Max S)" | |
| 1632 | by simp | |
| 1633 | qed | |
| 14485 | 1634 | |
| 64267 | 1635 | subsection \<open>Lemmas useful with the summation operator sum\<close> | 
| 13850 | 1636 | |
| 60758 | 1637 | text \<open>For examples, see Algebra/poly/UnivPoly2.thy\<close> | 
| 13735 | 1638 | |
| 60758 | 1639 | subsubsection \<open>Disjoint Unions\<close> | 
| 13735 | 1640 | |
| 60758 | 1641 | text \<open>Singletons and open intervals\<close> | 
| 13735 | 1642 | |
| 1643 | lemma ivl_disj_un_singleton: | |
| 15045 | 1644 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 1645 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 1646 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 1647 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1648 |   "(l::'a::linorder) \<le> u ==> {l} Un {l<..u} = {l..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1649 |   "(l::'a::linorder) \<le> u ==> {l..<u} Un {u} = {l..u}"
 | 
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1650 | by auto | 
| 13735 | 1651 | |
| 60758 | 1652 | text \<open>One- and two-sided intervals\<close> | 
| 13735 | 1653 | |
| 1654 | lemma ivl_disj_un_one: | |
| 15045 | 1655 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1656 |   "(l::'a::linorder) \<le> u ==> {..<l} Un {l..<u} = {..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1657 |   "(l::'a::linorder) \<le> u ==> {..l} Un {l<..u} = {..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1658 |   "(l::'a::linorder) \<le> u ==> {..<l} Un {l..u} = {..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1659 |   "(l::'a::linorder) \<le> u ==> {l<..u} Un {u<..} = {l<..}"
 | 
| 15045 | 1660 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1661 |   "(l::'a::linorder) \<le> u ==> {l..u} Un {u<..} = {l..}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1662 |   "(l::'a::linorder) \<le> u ==> {l..<u} Un {u..} = {l..}"
 | 
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1663 | by auto | 
| 13735 | 1664 | |
| 60758 | 1665 | text \<open>Two- and two-sided intervals\<close> | 
| 13735 | 1666 | |
| 1667 | lemma ivl_disj_un_two: | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1668 |   "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1669 |   "[| (l::'a::linorder) \<le> m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1670 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1671 |   "[| (l::'a::linorder) \<le> m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1672 |   "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1673 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1674 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..<m} Un {m..u} = {l..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1675 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..m} Un {m<..u} = {l..u}"
 | 
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1676 | by auto | 
| 13735 | 1677 | |
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1678 | lemma ivl_disj_un_two_touch: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1679 |   "[| (l::'a::linorder) < m; m < u |] ==> {l<..m} Un {m..<u} = {l<..<u}"
 | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1680 |   "[| (l::'a::linorder) \<le> m; m < u |] ==> {l..m} Un {m..<u} = {l..<u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1681 |   "[| (l::'a::linorder) < m; m \<le> u |] ==> {l<..m} Un {m..u} = {l<..u}"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1682 |   "[| (l::'a::linorder) \<le> m; m \<le> u |] ==> {l..m} Un {m..u} = {l..u}"
 | 
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1683 | by auto | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1684 | |
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1685 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two ivl_disj_un_two_touch | 
| 13735 | 1686 | |
| 60758 | 1687 | subsubsection \<open>Disjoint Intersections\<close> | 
| 13735 | 1688 | |
| 60758 | 1689 | text \<open>One- and two-sided intervals\<close> | 
| 13735 | 1690 | |
| 1691 | lemma ivl_disj_int_one: | |
| 15045 | 1692 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 1693 |   "{..<l} Int {l..<u} = {}"
 | |
| 1694 |   "{..l} Int {l<..u} = {}"
 | |
| 1695 |   "{..<l} Int {l..u} = {}"
 | |
| 1696 |   "{l<..u} Int {u<..} = {}"
 | |
| 1697 |   "{l<..<u} Int {u..} = {}"
 | |
| 1698 |   "{l..u} Int {u<..} = {}"
 | |
| 1699 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1700 | by auto | 
| 13735 | 1701 | |
| 60758 | 1702 | text \<open>Two- and two-sided intervals\<close> | 
| 13735 | 1703 | |
| 1704 | lemma ivl_disj_int_two: | |
| 15045 | 1705 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 1706 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 1707 |   "{l..<m} Int {m..<u} = {}"
 | |
| 1708 |   "{l..m} Int {m<..<u} = {}"
 | |
| 1709 |   "{l<..<m} Int {m..u} = {}"
 | |
| 1710 |   "{l<..m} Int {m<..u} = {}"
 | |
| 1711 |   "{l..<m} Int {m..u} = {}"
 | |
| 1712 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1713 | by auto | 
| 13735 | 1714 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 1715 | lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two | 
| 13735 | 1716 | |
| 60758 | 1717 | subsubsection \<open>Some Differences\<close> | 
| 15542 | 1718 | |
| 1719 | lemma ivl_diff[simp]: | |
| 1720 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 1721 | by(auto) | |
| 1722 | ||
| 56194 | 1723 | lemma (in linorder) lessThan_minus_lessThan [simp]: | 
| 1724 |   "{..< n} - {..< m} = {m ..< n}"
 | |
| 1725 | by auto | |
| 1726 | ||
| 60762 | 1727 | lemma (in linorder) atLeastAtMost_diff_ends: | 
| 1728 |   "{a..b} - {a, b} = {a<..<b}"
 | |
| 1729 | by auto | |
| 1730 | ||
| 15542 | 1731 | |
| 60758 | 1732 | subsubsection \<open>Some Subset Conditions\<close> | 
| 15542 | 1733 | |
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1734 | lemma ivl_subset [simp]: "({i..<j} \<subseteq> {m..<n}) = (j \<le> i \<or> m \<le> i \<and> j \<le> (n::'a::linorder))"
 | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1735 | using linorder_class.le_less_linear[of i n] | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1736 | by safe (force intro: leI)+ | 
| 15542 | 1737 | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1738 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1739 | subsection \<open>Generic big monoid operation over intervals\<close> | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1740 | |
| 66936 | 1741 | context semiring_char_0 | 
| 1742 | begin | |
| 1743 | ||
| 1744 | lemma inj_on_of_nat [simp]: | |
| 1745 | "inj_on of_nat N" | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 1746 | by (rule inj_onI) simp | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1747 | |
| 66936 | 1748 | lemma bij_betw_of_nat [simp]: | 
| 1749 | "bij_betw of_nat N A \<longleftrightarrow> of_nat ` N = A" | |
| 1750 | by (simp add: bij_betw_def) | |
| 1751 | ||
| 75101 | 1752 | lemma Nats_infinite: "infinite (\<nat> :: 'a set)" | 
| 1753 | by (metis Nats_def finite_imageD infinite_UNIV_char_0 inj_on_of_nat) | |
| 1754 | ||
| 66936 | 1755 | end | 
| 1756 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1757 | context comm_monoid_set | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1758 | begin | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1759 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1760 | lemma atLeastLessThan_reindex: | 
| 66936 | 1761 |   "F g {h m..<h n} = F (g \<circ> h) {m..<n}"
 | 
| 1762 |   if "bij_betw h {m..<n} {h m..<h n}" for m n ::nat
 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1763 | proof - | 
| 66936 | 1764 |   from that have "inj_on h {m..<n}" and "h ` {m..<n} = {h m..<h n}"
 | 
| 1765 | by (simp_all add: bij_betw_def) | |
| 1766 | then show ?thesis | |
| 1767 |     using reindex [of h "{m..<n}" g] by simp
 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1768 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1769 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1770 | lemma atLeastAtMost_reindex: | 
| 66936 | 1771 |   "F g {h m..h n} = F (g \<circ> h) {m..n}"
 | 
| 1772 |   if "bij_betw h {m..n} {h m..h n}" for m n ::nat
 | |
| 1773 | proof - | |
| 1774 |   from that have "inj_on h {m..n}" and "h ` {m..n} = {h m..h n}"
 | |
| 1775 | by (simp_all add: bij_betw_def) | |
| 1776 | then show ?thesis | |
| 1777 |     using reindex [of h "{m..n}" g] by simp
 | |
| 1778 | qed | |
| 1779 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1780 | lemma atLeastLessThan_shift_bounds: | 
| 66936 | 1781 |   "F g {m + k..<n + k} = F (g \<circ> plus k) {m..<n}"
 | 
| 1782 | for m n k :: nat | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1783 | using atLeastLessThan_reindex [of "plus k" m n g] | 
| 66936 | 1784 | by (simp add: ac_simps) | 
| 1785 | ||
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1786 | lemma atLeastAtMost_shift_bounds: | 
| 66936 | 1787 |   "F g {m + k..n + k} = F (g \<circ> plus k) {m..n}"
 | 
| 1788 | for m n k :: nat | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1789 | using atLeastAtMost_reindex [of "plus k" m n g] | 
| 66936 | 1790 | by (simp add: ac_simps) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1791 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1792 | lemma atLeast_Suc_lessThan_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1793 |   "F g {Suc m..<Suc n} = F (g \<circ> Suc) {m..<n}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1794 | using atLeastLessThan_shift_bounds [of _ _ 1] | 
| 66936 | 1795 | by (simp add: plus_1_eq_Suc) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1796 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1797 | lemma atLeast_Suc_atMost_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1798 |   "F g {Suc m..Suc n} = F (g \<circ> Suc) {m..n}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1799 | using atLeastAtMost_shift_bounds [of _ _ 1] | 
| 66936 | 1800 | by (simp add: plus_1_eq_Suc) | 
| 1801 | ||
| 74969 | 1802 | lemma atLeast_atMost_pred_shift: | 
| 1803 |   "F (g \<circ> (\<lambda>n. n - Suc 0)) {Suc m..Suc n} = F g {m..n}"
 | |
| 1804 | unfolding atLeast_Suc_atMost_Suc_shift by simp | |
| 1805 | ||
| 1806 | lemma atLeast_lessThan_pred_shift: | |
| 1807 |   "F (g \<circ> (\<lambda>n. n - Suc 0)) {Suc m..<Suc n} = F g {m..<n}"
 | |
| 1808 | unfolding atLeast_Suc_lessThan_Suc_shift by simp | |
| 1809 | ||
| 66936 | 1810 | lemma atLeast_int_lessThan_int_shift: | 
| 1811 |   "F g {int m..<int n} = F (g \<circ> int) {m..<n}"
 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1812 | by (rule atLeastLessThan_reindex) | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1813 | (simp add: image_int_atLeastLessThan) | 
| 66936 | 1814 | |
| 1815 | lemma atLeast_int_atMost_int_shift: | |
| 1816 |   "F g {int m..int n} = F (g \<circ> int) {m..n}"
 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1817 | by (rule atLeastAtMost_reindex) | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1818 | (simp add: image_int_atLeastAtMost) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1819 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1820 | lemma atLeast0_lessThan_Suc: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1821 |   "F g {0..<Suc n} = F g {0..<n} \<^bold>* g n"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1822 | by (simp add: atLeast0_lessThan_Suc ac_simps) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1823 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1824 | lemma atLeast0_atMost_Suc: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1825 |   "F g {0..Suc n} = F g {0..n} \<^bold>* g (Suc n)"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1826 | by (simp add: atLeast0_atMost_Suc ac_simps) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1827 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1828 | lemma atLeast0_lessThan_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1829 |   "F g {0..<Suc n} = g 0 \<^bold>* F (g \<circ> Suc) {0..<n}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1830 | by (simp add: atLeast0_lessThan_Suc_eq_insert_0 atLeast_Suc_lessThan_Suc_shift) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1831 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1832 | lemma atLeast0_atMost_Suc_shift: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1833 |   "F g {0..Suc n} = g 0 \<^bold>* F (g \<circ> Suc) {0..n}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1834 | by (simp add: atLeast0_atMost_Suc_eq_insert_0 atLeast_Suc_atMost_Suc_shift) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1835 | |
| 67987 | 1836 | lemma atLeast_Suc_lessThan: | 
| 1837 |   "F g {m..<n} = g m \<^bold>* F g {Suc m..<n}" if "m < n"
 | |
| 1838 | proof - | |
| 1839 |   from that have "{m..<n} = insert m {Suc m..<n}"
 | |
| 1840 | by auto | |
| 1841 | then show ?thesis by simp | |
| 1842 | qed | |
| 1843 | ||
| 1844 | lemma atLeast_Suc_atMost: | |
| 1845 |   "F g {m..n} = g m \<^bold>* F g {Suc m..n}" if "m \<le> n"
 | |
| 1846 | proof - | |
| 1847 |   from that have "{m..n} = insert m {Suc m..n}"
 | |
| 1848 | by auto | |
| 1849 | then show ?thesis by simp | |
| 1850 | qed | |
| 1851 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1852 | lemma ivl_cong: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1853 | "a = c \<Longrightarrow> b = d \<Longrightarrow> (\<And>x. c \<le> x \<Longrightarrow> x < d \<Longrightarrow> g x = h x) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1854 |     \<Longrightarrow> F g {a..<b} = F h {c..<d}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1855 | by (rule cong) simp_all | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1856 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1857 | lemma atLeastLessThan_shift_0: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1858 | fixes m n p :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1859 |   shows "F g {m..<n} = F (g \<circ> plus m) {0..<n - m}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1860 | using atLeastLessThan_shift_bounds [of g 0 m "n - m"] | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1861 | by (cases "m \<le> n") simp_all | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1862 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1863 | lemma atLeastAtMost_shift_0: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1864 | fixes m n p :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1865 | assumes "m \<le> n" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1866 |   shows "F g {m..n} = F (g \<circ> plus m) {0..n - m}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1867 | using assms atLeastAtMost_shift_bounds [of g 0 m "n - m"] by simp | 
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1868 | |
| 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1869 | lemma atLeastLessThan_concat: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1870 | fixes m n p :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1871 |   shows "m \<le> n \<Longrightarrow> n \<le> p \<Longrightarrow> F g {m..<n} \<^bold>* F g {n..<p} = F g {m..<p}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1872 | by (simp add: union_disjoint [symmetric] ivl_disj_un) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1873 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1874 | lemma atLeastLessThan_rev: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1875 |   "F g {n..<m} = F (\<lambda>i. g (m + n - Suc i)) {n..<m}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1876 | by (rule reindex_bij_witness [where i="\<lambda>i. m + n - Suc i" and j="\<lambda>i. m + n - Suc i"], auto) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1877 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1878 | lemma atLeastAtMost_rev: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1879 | fixes n m :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1880 |   shows "F g {n..m} = F (\<lambda>i. g (m + n - i)) {n..m}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1881 | by (rule reindex_bij_witness [where i="\<lambda>i. m + n - i" and j="\<lambda>i. m + n - i"]) auto | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1882 | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1883 | lemma atLeastLessThan_rev_at_least_Suc_atMost: | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1884 |   "F g {n..<m} = F (\<lambda>i. g (m + n - i)) {Suc n..m}"
 | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 1885 | unfolding atLeastLessThan_rev [of g n m] | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1886 | by (cases m) (simp_all add: atLeast_Suc_atMost_Suc_shift atLeastLessThanSuc_atLeastAtMost) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1887 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1888 | end | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1889 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1890 | |
| 60758 | 1891 | subsection \<open>Summation indexed over intervals\<close> | 
| 15042 | 1892 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1893 | syntax (ASCII) | 
| 64267 | 1894 |   "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 1895 |   "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 1896 |   "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<_./ _)" [0,0,10] 10)
 | |
| 1897 |   "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1898 | |
| 15056 | 1899 | syntax (latex_sum output) | 
| 64267 | 1900 | "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1901 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ = _\<^latex>\<open>}^{\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64267 | 1902 | "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1903 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ = _\<^latex>\<open>}^{<\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64267 | 1904 | "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1905 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ < _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 64267 | 1906 | "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 1907 |  ("(3\<^latex>\<open>$\\sum_{\<close>_ \<le> _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1908 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1909 | syntax | 
| 64267 | 1910 |   "_from_to_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 1911 |   "_from_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 1912 |   "_upt_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | |
| 1913 |   "_upto_sum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 1914 | |
| 15048 | 1915 | translations | 
| 64267 | 1916 |   "\<Sum>x=a..b. t" == "CONST sum (\<lambda>x. t) {a..b}"
 | 
| 1917 |   "\<Sum>x=a..<b. t" == "CONST sum (\<lambda>x. t) {a..<b}"
 | |
| 1918 |   "\<Sum>i\<le>n. t" == "CONST sum (\<lambda>i. t) {..n}"
 | |
| 1919 |   "\<Sum>i<n. t" == "CONST sum (\<lambda>i. t) {..<n}"
 | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1920 | |
| 60758 | 1921 | text\<open>The above introduces some pretty alternative syntaxes for | 
| 15056 | 1922 | summation over intervals: | 
| 15052 | 1923 | \begin{center}
 | 
| 1924 | \begin{tabular}{lll}
 | |
| 15056 | 1925 | Old & New & \LaTeX\\ | 
| 69593 | 1926 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & \<^term>\<open>\<Sum>x=a..b. e\<close> & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | 
| 1927 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & \<^term>\<open>\<Sum>x=a..<b. e\<close> & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 1928 | @{term[source]"\<Sum>x\<in>{..b}. e"} & \<^term>\<open>\<Sum>x\<le>b. e\<close> & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | |
| 1929 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & \<^term>\<open>\<Sum>x<b. e\<close> & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | |
| 15052 | 1930 | \end{tabular}
 | 
| 1931 | \end{center}
 | |
| 15056 | 1932 | The left column shows the term before introduction of the new syntax, | 
| 1933 | the middle column shows the new (default) syntax, and the right column | |
| 1934 | shows a special syntax. The latter is only meaningful for latex output | |
| 1935 | and has to be activated explicitly by setting the print mode to | |
| 61799 | 1936 | \<open>latex_sum\<close> (e.g.\ via \<open>mode = latex_sum\<close> in | 
| 15056 | 1937 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 1938 | works well with italic-style formulae, not tt-style. | |
| 15052 | 1939 | |
| 69593 | 1940 | Note that for uniformity on \<^typ>\<open>nat\<close> it is better to use | 
| 1941 | \<^term>\<open>\<Sum>x::nat=0..<n. e\<close> rather than \<open>\<Sum>x<n. e\<close>: \<open>sum\<close> may | |
| 1942 | not provide all lemmas available for \<^term>\<open>{m..<n}\<close> also in the
 | |
| 1943 | special form for \<^term>\<open>{..<n}\<close>.\<close>
 | |
| 15052 | 1944 | |
| 60758 | 1945 | text\<open>This congruence rule should be used for sums over intervals as | 
| 64267 | 1946 | the standard theorem @{text[source]sum.cong} does not work well
 | 
| 69593 | 1947 | with the simplifier who adds the unsimplified premise \<^term>\<open>x\<in>B\<close> to | 
| 60758 | 1948 | the context.\<close> | 
| 15542 | 1949 | |
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1950 | context comm_monoid_set | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1951 | begin | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1952 | |
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1953 | lemma zero_middle: | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1954 | assumes "1 \<le> p" "k \<le> p" | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1955 |   shows "F (\<lambda>j. if j < k then g j else if j = k then \<^bold>1 else h (j - Suc 0)) {..p}
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1956 |        = F (\<lambda>j. if j < k then g j else h j) {..p - Suc 0}"  (is "?lhs = ?rhs")
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1957 | proof - | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1958 |   have [simp]: "{..p - Suc 0} \<inter> {j. j < k} = {..<k}" "{..p - Suc 0} \<inter> - {j. j < k} = {k..p - Suc 0}"
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1959 | using assms by auto | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1960 |   have "?lhs = F g {..<k} \<^bold>* F (\<lambda>j. if j = k then \<^bold>1 else h (j - Suc 0)) {k..p}"
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1961 |     using union_disjoint [of "{..<k}" "{k..p}"] assms
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1962 | by (simp add: ivl_disj_int_one ivl_disj_un_one) | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1963 |   also have "\<dots> = F g {..<k} \<^bold>* F (\<lambda>j.  h (j - Suc 0)) {Suc k..p}"
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1964 | by (simp add: atLeast_Suc_atMost [of k p] assms) | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1965 |   also have "\<dots> = F g {..<k} \<^bold>* F h {k .. p - Suc 0}"
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1966 |     using reindex [of Suc "{k..p - Suc 0}"] assms by simp
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1967 | also have "\<dots> = ?rhs" | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1968 | by (simp add: If_cases) | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1969 | finally show ?thesis . | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1970 | qed | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1971 | |
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1972 | lemma atMost_Suc [simp]: | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1973 |   "F g {..Suc n} = F g {..n} \<^bold>* g (Suc n)"
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1974 | by (simp add: atMost_Suc ac_simps) | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1975 | |
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1976 | lemma lessThan_Suc [simp]: | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1977 |   "F g {..<Suc n} = F g {..<n} \<^bold>* g n"
 | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1978 | by (simp add: lessThan_Suc ac_simps) | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1979 | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1980 | lemma cl_ivl_Suc [simp]: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1981 |   "F g {m..Suc n} = (if Suc n < m then \<^bold>1 else F g {m..n} \<^bold>* g(Suc n))"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1982 | by (auto simp: ac_simps atLeastAtMostSuc_conv) | 
| 15561 | 1983 | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1984 | lemma op_ivl_Suc [simp]: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1985 |   "F g {m..<Suc n} = (if n < m then \<^bold>1 else F g {m..<n} \<^bold>* g(n))"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 1986 | by (auto simp: ac_simps atLeastLessThanSuc) | 
| 28068 | 1987 | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1988 | lemma head: | 
| 28068 | 1989 | fixes n :: nat | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 1990 | assumes mn: "m \<le> n" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1991 |   shows "F g {m..n} = g m \<^bold>* F g {m<..n}" (is "?lhs = ?rhs")
 | 
| 28068 | 1992 | proof - | 
| 1993 | from mn | |
| 1994 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 1995 | by (auto intro: ivl_disj_un_singleton) | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1996 |   hence "?lhs = F g ({m} \<union> {m<..n})"
 | 
| 28068 | 1997 | by (simp add: atLeast0LessThan) | 
| 1998 | also have "\<dots> = ?rhs" by simp | |
| 1999 | finally show ?thesis . | |
| 2000 | qed | |
| 2001 | ||
| 72686 | 2002 | lemma last_plus: | 
| 2003 |   fixes n::nat  shows "m \<le> n \<Longrightarrow> F g {m..n} = g n \<^bold>* F g {m..<n}"
 | |
| 2004 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost commute) | |
| 2005 | ||
| 2006 | lemma head_if: | |
| 2007 | fixes n :: nat | |
| 2008 |   shows "F g {m..n} = (if n < m then \<^bold>1 else  F g {m..<n} \<^bold>* g(n))"
 | |
| 2009 | by (simp add: commute last_plus) | |
| 2010 | ||
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2011 | lemma ub_add_nat: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2012 | assumes "(m::nat) \<le> n + 1" | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2013 |   shows "F g {m..n + p} = F g {m..n} \<^bold>* F g {n + 1..n + p}"
 | 
| 31501 | 2014 | proof- | 
| 60758 | 2015 |   have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using \<open>m \<le> n+1\<close> by auto
 | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2016 | thus ?thesis by (auto simp: ivl_disj_int union_disjoint atLeastSucAtMost_greaterThanAtMost) | 
| 31501 | 2017 | qed | 
| 28068 | 2018 | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2019 | lemma nat_group: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2020 |   fixes k::nat shows "F (\<lambda>m. F g {m * k ..< m*k + k}) {..<n} = F g {..< n * k}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2021 | proof (cases k) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2022 | case (Suc l) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2023 | then have "k > 0" | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2024 | by auto | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2025 | then show ?thesis | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2026 | by (induct n) (simp_all add: atLeastLessThan_concat add.commute atLeast0LessThan[symmetric]) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2027 | qed auto | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2028 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2029 | lemma triangle_reindex: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2030 | fixes n :: nat | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2031 |   shows "F (\<lambda>(i,j). g i j) {(i,j). i+j < n} = F (\<lambda>k. F (\<lambda>i. g i (k - i)) {..k}) {..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2032 | apply (simp add: Sigma) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2033 | apply (rule reindex_bij_witness[where j="\<lambda>(i, j). (i+j, i)" and i="\<lambda>(k, i). (i, k - i)"]) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2034 | apply auto | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2035 | done | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2036 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2037 | lemma triangle_reindex_eq: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2038 | fixes n :: nat | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2039 |   shows "F (\<lambda>(i,j). g i j) {(i,j). i+j \<le> n} = F (\<lambda>k. F (\<lambda>i. g i (k - i)) {..k}) {..n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2040 | using triangle_reindex [of g "Suc n"] | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2041 | by (simp only: Nat.less_Suc_eq_le lessThan_Suc_atMost) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2042 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2043 | lemma nat_diff_reindex: "F (\<lambda>i. g (n - Suc i)) {..<n} = F g {..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2044 | by (rule reindex_bij_witness[where i="\<lambda>i. n - Suc i" and j="\<lambda>i. n - Suc i"]) auto | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2045 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2046 | lemma shift_bounds_nat_ivl: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2047 |   "F g {m+k..<n+k} = F (\<lambda>i. g(i + k)){m..<n::nat}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2048 | by (induct "n", auto simp: atLeastLessThanSuc) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2049 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2050 | lemma shift_bounds_cl_nat_ivl: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2051 |   "F g {m+k..n+k} = F (\<lambda>i. g(i + k)){m..n::nat}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2052 | by (rule reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2053 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2054 | corollary shift_bounds_cl_Suc_ivl: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2055 |   "F g {Suc m..Suc n} = F (\<lambda>i. g(Suc i)){m..n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2056 | by (simp add: shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2057 | |
| 71167 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
71094diff
changeset | 2058 | corollary Suc_reindex_ivl: "m \<le> n \<Longrightarrow> F g {m..n} \<^bold>* g (Suc n) = g m \<^bold>* F (\<lambda>i. g (Suc i)) {m..n}"
 | 
| 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
71094diff
changeset | 2059 | by (simp add: assoc atLeast_Suc_atMost flip: shift_bounds_cl_Suc_ivl) | 
| 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
71094diff
changeset | 2060 | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2061 | corollary shift_bounds_Suc_ivl: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2062 |   "F g {Suc m..<Suc n} = F (\<lambda>i. g(Suc i)){m..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2063 | by (simp add: shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2064 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2065 | lemma atMost_Suc_shift: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2066 |   shows "F g {..Suc n} = g 0 \<^bold>* F (\<lambda>i. g (Suc i)) {..n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2067 | proof (induct n) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2068 | case 0 show ?case by simp | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2069 | next | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2070 | case (Suc n) note IH = this | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2071 |   have "F g {..Suc (Suc n)} = F g {..Suc n} \<^bold>* g (Suc (Suc n))"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2072 | by (rule atMost_Suc) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2073 |   also have "F g {..Suc n}  = g 0 \<^bold>* F (\<lambda>i. g (Suc i)) {..n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2074 | by (rule IH) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2075 |   also have "g 0 \<^bold>* F (\<lambda>i. g (Suc i)) {..n} \<^bold>* g (Suc (Suc n)) =
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2076 |              g 0 \<^bold>* (F (\<lambda>i. g (Suc i)) {..n} \<^bold>* g (Suc (Suc n)))"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2077 | by (rule assoc) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2078 |   also have "F (\<lambda>i. g (Suc i)) {..n} \<^bold>* g (Suc (Suc n)) = F (\<lambda>i. g (Suc i)) {..Suc n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2079 | by (rule atMost_Suc [symmetric]) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2080 | finally show ?case . | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2081 | qed | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2082 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2083 | lemma lessThan_Suc_shift: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2084 |   "F g {..<Suc n} = g 0 \<^bold>* F (\<lambda>i. g (Suc i)) {..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2085 | by (induction n) (simp_all add: ac_simps) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2086 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2087 | lemma atMost_shift: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2088 |   "F g {..n} = g 0 \<^bold>* F (\<lambda>i. g (Suc i)) {..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2089 | by (metis atLeast0AtMost atLeast0LessThan atLeastLessThanSuc_atLeastAtMost | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2090 | atLeastSucAtMost_greaterThanAtMost le0 head shift_bounds_Suc_ivl) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2091 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2092 | lemma nested_swap: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2093 |      "F (\<lambda>i. F (\<lambda>j. a i j) {0..<i}) {0..n} = F (\<lambda>j. F (\<lambda>i. a i j) {Suc j..n}) {0..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2094 | by (induction n) (auto simp: distrib) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2095 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2096 | lemma nested_swap': | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2097 |      "F (\<lambda>i. F (\<lambda>j. a i j) {..<i}) {..n} = F (\<lambda>j. F (\<lambda>i. a i j) {Suc j..n}) {..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2098 | by (induction n) (auto simp: distrib) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2099 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2100 | lemma atLeast1_atMost_eq: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2101 |   "F g {Suc 0..n} = F (\<lambda>k. g (Suc k)) {..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2102 | proof - | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2103 |   have "F g {Suc 0..n} = F g (Suc ` {..<n})"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2104 | by (simp add: image_Suc_lessThan) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2105 |   also have "\<dots> = F (\<lambda>k. g (Suc k)) {..<n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2106 | by (simp add: reindex) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2107 | finally show ?thesis . | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2108 | qed | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2109 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2110 | lemma atLeastLessThan_Suc: "a \<le> b \<Longrightarrow> F g {a..<Suc b} = F g {a..<b} \<^bold>* g b"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2111 | by (simp add: atLeastLessThanSuc commute) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2112 | |
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2113 | lemma nat_ivl_Suc': | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2114 | assumes "m \<le> Suc n" | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2115 |   shows   "F g {m..Suc n} = g (Suc n) \<^bold>* F g {m..n}"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2116 | proof - | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2117 |   from assms have "{m..Suc n} = insert (Suc n) {m..n}" by auto
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2118 |   also have "F g \<dots> = g (Suc n) \<^bold>* F g {m..n}" by simp
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2119 | finally show ?thesis . | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2120 | qed | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2121 | |
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2122 | lemma in_pairs: "F g {2*m..Suc(2*n)} = F (\<lambda>i. g(2*i) \<^bold>* g(Suc(2*i))) {m..n}"
 | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2123 | proof (induction n) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2124 | case 0 | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2125 | show ?case | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2126 | by (cases "m=0") auto | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2127 | next | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2128 | case (Suc n) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2129 | then show ?case | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2130 | by (auto simp: assoc split: if_split_asm) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2131 | qed | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2132 | |
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2133 | lemma in_pairs_0: "F g {..Suc(2*n)} = F (\<lambda>i. g(2*i) \<^bold>* g(Suc(2*i))) {..n}"
 | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2134 | using in_pairs [of _ 0 n] by (simp add: atLeast0AtMost) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70340diff
changeset | 2135 | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2136 | end | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2137 | |
| 73139 | 2138 | lemma card_sum_le_nat_sum: "\<Sum> {0..<card S} \<le> \<Sum> S"
 | 
| 2139 | proof (cases "finite S") | |
| 2140 | case True | |
| 2141 | then show ?thesis | |
| 2142 | proof (induction "card S" arbitrary: S) | |
| 2143 | case (Suc x) | |
| 2144 | then have "Max S \<ge> x" using card_le_Suc_Max by fastforce | |
| 2145 |     let ?S' = "S - {Max S}"
 | |
| 2146 | from Suc have "Max S \<in> S" by (auto intro: Max_in) | |
| 2147 | hence cards: "card S = Suc (card ?S')" | |
| 74885 | 2148 | using \<open>finite S\<close> by (intro card.remove; auto) | 
| 73139 | 2149 |     hence "\<Sum> {0..<card ?S'} \<le> \<Sum> ?S'"
 | 
| 2150 | using Suc by (intro Suc; auto) | |
| 2151 | ||
| 2152 |     hence "\<Sum> {0..<card ?S'} + x \<le> \<Sum> ?S' + Max S"
 | |
| 74885 | 2153 | using \<open>Max S \<ge> x\<close> by simp | 
| 73139 | 2154 | also have "... = \<Sum> S" | 
| 74885 | 2155 | using sum.remove[OF \<open>finite S\<close> \<open>Max S \<in> S\<close>, where g="\<lambda>x. x"] | 
| 73139 | 2156 | by simp | 
| 2157 | finally show ?case | |
| 2158 | using cards Suc by auto | |
| 2159 | qed simp | |
| 2160 | qed simp | |
| 2161 | ||
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2162 | lemma sum_natinterval_diff: | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2163 |   fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2164 |   shows  "sum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
 | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2165 | (if m \<le> n then f m - f(n + 1) else 0)" | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2166 | by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2167 | |
| 64267 | 2168 | lemma sum_diff_nat_ivl: | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2169 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2170 |   shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> sum f {m..<p} - sum f {m..<n} = sum f {n..<p}"
 | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 2171 | using sum.atLeastLessThan_concat [of m n p f,symmetric] | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2172 | by (simp add: ac_simps) | 
| 15539 | 2173 | |
| 66936 | 2174 | lemma sum_diff_distrib: "\<forall>x. Q x \<le> P x \<Longrightarrow> (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x :: nat)" | 
| 2175 | by (subst sum_subtractf_nat) auto | |
| 2176 | ||
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2177 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2178 | subsubsection \<open>Shifting bounds\<close> | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 2179 | |
| 66936 | 2180 | context comm_monoid_add | 
| 2181 | begin | |
| 2182 | ||
| 2183 | context | |
| 2184 | fixes f :: "nat \<Rightarrow> 'a" | |
| 2185 | assumes "f 0 = 0" | |
| 2186 | begin | |
| 64267 | 2187 | |
| 2188 | lemma sum_shift_lb_Suc0_0_upt: | |
| 66936 | 2189 |   "sum f {Suc 0..<k} = sum f {0..<k}"
 | 
| 2190 | proof (cases k) | |
| 2191 | case 0 | |
| 2192 | then show ?thesis | |
| 2193 | by simp | |
| 2194 | next | |
| 2195 | case (Suc k) | |
| 2196 |   moreover have "{0..<Suc k} = insert 0 {Suc 0..<Suc k}"
 | |
| 2197 | by auto | |
| 2198 | ultimately show ?thesis | |
| 2199 | using \<open>f 0 = 0\<close> by simp | |
| 2200 | qed | |
| 2201 | ||
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68361diff
changeset | 2202 | lemma sum_shift_lb_Suc0_0: "sum f {Suc 0..k} = sum f {0..k}"
 | 
| 66936 | 2203 | proof (cases k) | 
| 2204 | case 0 | |
| 2205 | with \<open>f 0 = 0\<close> show ?thesis | |
| 2206 | by simp | |
| 2207 | next | |
| 2208 | case (Suc k) | |
| 2209 |   moreover have "{0..Suc k} = insert 0 {Suc 0..Suc k}"
 | |
| 2210 | by auto | |
| 2211 | ultimately show ?thesis | |
| 2212 | using \<open>f 0 = 0\<close> by simp | |
| 2213 | qed | |
| 2214 | ||
| 2215 | end | |
| 2216 | ||
| 2217 | end | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 2218 | |
| 64267 | 2219 | lemma sum_Suc_diff: | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2220 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2221 | assumes "m \<le> Suc n" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2222 | shows "(\<Sum>i = m..n. f(Suc i) - f i) = f (Suc n) - f m" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 2223 | using assms by (induct n) (auto simp: le_Suc_eq) | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 2224 | |
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2225 | lemma sum_Suc_diff': | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2226 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2227 | assumes "m \<le> n" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2228 | shows "(\<Sum>i = m..<n. f (Suc i) - f i) = f n - f m" | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2229 | using assms by (induct n) (auto simp: le_Suc_eq) | 
| 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 2230 | |
| 78663 | 2231 | lemma sum_diff_split: | 
| 2232 | fixes f:: "nat \<Rightarrow> 'a::ab_group_add" | |
| 2233 | assumes "m \<le> n" | |
| 79566 | 2234 | shows "(\<Sum>i\<le>n. f i) - (\<Sum>i<m. f i) = (\<Sum>i\<le>n - m. f(n - i))" | 
| 78663 | 2235 | proof - | 
| 79566 | 2236 | have "\<And>i. i \<le> n-m \<Longrightarrow> \<exists>k\<ge>m. k \<le> n \<and> i = n-k" | 
| 2237 | by (metis Nat.le_diff_conv2 add.commute \<open>m\<le>n\<close> diff_diff_cancel diff_le_self order.trans) | |
| 2238 |   then have eq: "{..n-m} = (-)n ` {m..n}"
 | |
| 2239 | by force | |
| 2240 |   have inj: "inj_on ((-)n) {m..n}"
 | |
| 78663 | 2241 | by (auto simp: inj_on_def) | 
| 79566 | 2242 | have "(\<Sum>i\<le>n - m. f(n - i)) = (\<Sum>i=m..n. f i)" | 
| 2243 | by (simp add: eq sum.reindex_cong [OF inj]) | |
| 78663 | 2244 | also have "\<dots> = (\<Sum>i\<le>n. f i) - (\<Sum>i<m. f i)" | 
| 79566 | 2245 | using sum_diff_nat_ivl[of 0 "m" "Suc n" f] assms | 
| 78663 | 2246 | by (simp only: atLeast0AtMost atLeast0LessThan atLeastLessThanSuc_atLeastAtMost) | 
| 79566 | 2247 | finally show ?thesis by metis | 
| 78663 | 2248 | qed | 
| 2249 | ||
| 52380 | 2250 | |
| 79566 | 2251 | subsubsection \<open>Telescoping sums\<close> | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2252 | |
| 64267 | 2253 | lemma sum_telescope: | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2254 | fixes f::"nat \<Rightarrow> 'a::ab_group_add" | 
| 64267 | 2255 |   shows "sum (\<lambda>i. f i - f (Suc i)) {.. i} = f 0 - f (Suc i)"
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2256 | by (induct i) simp_all | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2257 | |
| 64267 | 2258 | lemma sum_telescope'': | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2259 | assumes "m \<le> n" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2260 |   shows   "(\<Sum>k\<in>{Suc m..n}. f k - f (k - 1)) = f n - (f m :: 'a :: ab_group_add)"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2261 | by (rule dec_induct[OF assms]) (simp_all add: algebra_simps) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61378diff
changeset | 2262 | |
| 64267 | 2263 | lemma sum_lessThan_telescope: | 
| 63721 | 2264 | "(\<Sum>n<m. f (Suc n) - f n :: 'a :: ab_group_add) = f m - f 0" | 
| 2265 | by (induction m) (simp_all add: algebra_simps) | |
| 2266 | ||
| 64267 | 2267 | lemma sum_lessThan_telescope': | 
| 63721 | 2268 | "(\<Sum>n<m. f n - f (Suc n) :: 'a :: ab_group_add) = f 0 - f m" | 
| 2269 | by (induction m) (simp_all add: algebra_simps) | |
| 2270 | ||
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2271 | |
| 66936 | 2272 | subsubsection \<open>The formula for geometric sums\<close> | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 2273 | |
| 66490 | 2274 | lemma sum_power2: "(\<Sum>i=0..<k. (2::nat)^i) = 2^k-1" | 
| 72268 | 2275 | by (induction k) (auto simp: mult_2) | 
| 66490 | 2276 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 2277 | lemma geometric_sum: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2278 | assumes "x \<noteq> 1" | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 2279 | shows "(\<Sum>i<n. x ^ i) = (x ^ n - 1) / (x - 1::'a::field)" | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2280 | proof - | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2281 | from assms obtain y where "y = x - 1" and "y \<noteq> 0" by simp_all | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 2282 | moreover have "(\<Sum>i<n. (y + 1) ^ i) = ((y + 1) ^ n - 1) / y" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2283 | by (induct n) (simp_all add: field_simps \<open>y \<noteq> 0\<close>) | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2284 | ultimately show ?thesis by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2285 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 2286 | |
| 78256 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2287 | lemma geometric_sum_less: | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2288 | assumes "0 < x" "x < 1" "finite S" | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2289 | shows "(\<Sum>i\<in>S. x ^ i) < 1 / (1 - x::'a::linordered_field)" | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2290 | proof - | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2291 | define n where "n \<equiv> Suc (Max S)" | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2292 | have "(\<Sum>i\<in>S. x ^ i) \<le> (\<Sum>i<n. x ^ i)" | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2293 | unfolding n_def using assms by (fastforce intro!: sum_mono2 le_imp_less_Suc) | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2294 | also have "\<dots> = (1 - x ^ n) / (1 - x)" | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2295 | using assms by (simp add: geometric_sum field_simps) | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2296 | also have "\<dots> < 1 / (1-x)" | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2297 | using assms by (simp add: field_simps power_Suc_less) | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2298 | finally show ?thesis . | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2299 | qed | 
| 
71e1aa0d9421
A couple of new lemmas involving cardinality
 paulson <lp15@cam.ac.uk> parents: 
77935diff
changeset | 2300 | |
| 64267 | 2301 | lemma diff_power_eq_sum: | 
| 60162 | 2302 |   fixes y :: "'a::{comm_ring,monoid_mult}"
 | 
| 2303 | shows | |
| 2304 | "x ^ (Suc n) - y ^ (Suc n) = | |
| 2305 | (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))" | |
| 2306 | proof (induct n) | |
| 2307 | case (Suc n) | |
| 2308 | have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x^n) - y * (y * y ^ n)" | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2309 | by simp | 
| 60162 | 2310 | also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x^n)" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2311 | by (simp add: algebra_simps) | 
| 60162 | 2312 | also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | 
| 2313 | by (simp only: Suc) | |
| 2314 | also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | |
| 2315 | by (simp only: mult.left_commute) | |
| 2316 | also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))" | |
| 64267 | 2317 | by (simp add: field_simps Suc_diff_le sum_distrib_right sum_distrib_left) | 
| 60162 | 2318 | finally show ?case . | 
| 2319 | qed simp | |
| 2320 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 2321 | corollary power_diff_sumr2: \<comment> \<open>\<open>COMPLEX_POLYFUN\<close> in HOL Light\<close> | 
| 60162 | 2322 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 72268 | 2323 | shows "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)" | 
| 64267 | 2324 | using diff_power_eq_sum[of x "n - 1" y] | 
| 60162 | 2325 | by (cases "n = 0") (simp_all add: field_simps) | 
| 2326 | ||
| 2327 | lemma power_diff_1_eq: | |
| 2328 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 72268 | 2329 | shows "x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))" | 
| 64267 | 2330 | using diff_power_eq_sum [of x _ 1] | 
| 60162 | 2331 | by (cases n) auto | 
| 2332 | ||
| 2333 | lemma one_diff_power_eq': | |
| 2334 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 72268 | 2335 | shows "1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))" | 
| 64267 | 2336 | using diff_power_eq_sum [of 1 _ x] | 
| 60162 | 2337 | by (cases n) auto | 
| 2338 | ||
| 2339 | lemma one_diff_power_eq: | |
| 2340 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 72268 | 2341 | shows "1 - x^n = (1 - x) * (\<Sum>i<n. x^i)" | 
| 2342 | by (metis one_diff_power_eq' sum.nat_diff_reindex) | |
| 60162 | 2343 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2344 | lemma sum_gp_basic: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2345 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2346 | shows "(1 - x) * (\<Sum>i\<le>n. x^i) = 1 - x^Suc n" | 
| 72268 | 2347 | by (simp only: one_diff_power_eq lessThan_Suc_atMost) | 
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2348 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2349 | lemma sum_power_shift: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2350 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2351 | assumes "m \<le> n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2352 | shows "(\<Sum>i=m..n. x^i) = x^m * (\<Sum>i\<le>n-m. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2353 | proof - | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2354 | have "(\<Sum>i=m..n. x^i) = x^m * (\<Sum>i=m..n. x^(i-m))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2355 | by (simp add: sum_distrib_left power_add [symmetric]) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2356 | also have "(\<Sum>i=m..n. x^(i-m)) = (\<Sum>i\<le>n-m. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2357 | using \<open>m \<le> n\<close> by (intro sum.reindex_bij_witness[where j="\<lambda>i. i - m" and i="\<lambda>i. i + m"]) auto | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2358 | finally show ?thesis . | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2359 | qed | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2360 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2361 | lemma sum_gp_multiplied: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2362 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2363 | assumes "m \<le> n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2364 | shows "(1 - x) * (\<Sum>i=m..n. x^i) = x^m - x^Suc n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2365 | proof - | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2366 | have "(1 - x) * (\<Sum>i=m..n. x^i) = x^m * (1 - x) * (\<Sum>i\<le>n-m. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2367 | by (metis mult.assoc mult.commute assms sum_power_shift) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2368 | also have "... =x^m * (1 - x^Suc(n-m))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2369 | by (metis mult.assoc sum_gp_basic) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2370 | also have "... = x^m - x^Suc n" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2371 | using assms | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2372 | by (simp add: algebra_simps) (metis le_add_diff_inverse power_add) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2373 | finally show ?thesis . | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2374 | qed | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2375 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2376 | lemma sum_gp: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2377 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2378 | shows "(\<Sum>i=m..n. x^i) = | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2379 | (if n < m then 0 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2380 | else if x = 1 then of_nat((n + 1) - m) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2381 | else (x^m - x^Suc n) / (1 - x))" | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2382 | proof (cases "n < m") | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2383 | case False | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2384 | assume *: "\<not> n < m" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2385 | then show ?thesis | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2386 | proof (cases "x = 1") | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2387 | case False | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2388 | assume "x \<noteq> 1" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2389 | then have not_zero: "1 - x \<noteq> 0" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2390 | by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2391 | have "(1 - x) * (\<Sum>i=m..n. x^i) = x ^ m - x * x ^ n" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2392 | using sum_gp_multiplied [of m n x] * by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2393 | then have "(\<Sum>i=m..n. x^i) = (x ^ m - x * x ^ n) / (1 - x) " | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2394 | using nonzero_divide_eq_eq mult.commute not_zero | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2395 | by metis | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2396 | then show ?thesis | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2397 | by auto | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2398 | qed (auto) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75668diff
changeset | 2399 | qed (auto) | 
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2400 | |
| 66936 | 2401 | |
| 2402 | subsubsection\<open>Geometric progressions\<close> | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2403 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2404 | lemma sum_gp0: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2405 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2406 | shows "(\<Sum>i\<le>n. x^i) = (if x = 1 then of_nat(n + 1) else (1 - x^Suc n) / (1 - x))" | 
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2407 | using sum_gp_basic[of x n] | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70749diff
changeset | 2408 | by (simp add: mult.commute field_split_simps) | 
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2409 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2410 | lemma sum_power_add: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2411 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2412 | shows "(\<Sum>i\<in>I. x^(m+i)) = x^m * (\<Sum>i\<in>I. x^i)" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2413 | by (simp add: sum_distrib_left power_add) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2414 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2415 | lemma sum_gp_offset: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2416 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2417 | shows "(\<Sum>i=m..m+n. x^i) = | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2418 | (if x = 1 then of_nat n + 1 else x^m * (1 - x^Suc n) / (1 - x))" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2419 | using sum_gp [of x m "m+n"] | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2420 | by (auto simp: power_add algebra_simps) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2421 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2422 | lemma sum_gp_strict: | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2423 |   fixes x :: "'a::{comm_ring,division_ring}"
 | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65273diff
changeset | 2424 | shows "(\<Sum>i<n. x^i) = (if x = 1 then of_nat n else (1 - x^n) / (1 - x))" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70749diff
changeset | 2425 | by (induct n) (auto simp: algebra_simps field_split_simps) | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 2426 | |
| 66936 | 2427 | |
| 2428 | subsubsection \<open>The formulae for arithmetic sums\<close> | |
| 2429 | ||
| 2430 | context comm_semiring_1 | |
| 2431 | begin | |
| 2432 | ||
| 2433 | lemma double_gauss_sum: | |
| 2434 | "2 * (\<Sum>i = 0..n. of_nat i) = of_nat n * (of_nat n + 1)" | |
| 2435 | by (induct n) (simp_all add: sum.atLeast0_atMost_Suc algebra_simps left_add_twice) | |
| 2436 | ||
| 2437 | lemma double_gauss_sum_from_Suc_0: | |
| 2438 | "2 * (\<Sum>i = Suc 0..n. of_nat i) = of_nat n * (of_nat n + 1)" | |
| 2439 | proof - | |
| 2440 |   have "sum of_nat {Suc 0..n} = sum of_nat (insert 0 {Suc 0..n})"
 | |
| 2441 | by simp | |
| 2442 |   also have "\<dots> = sum of_nat {0..n}"
 | |
| 2443 | by (cases n) (simp_all add: atLeast0_atMost_Suc_eq_insert_0) | |
| 2444 | finally show ?thesis | |
| 2445 | by (simp add: double_gauss_sum) | |
| 2446 | qed | |
| 2447 | ||
| 2448 | lemma double_arith_series: | |
| 2449 | "2 * (\<Sum>i = 0..n. a + of_nat i * d) = (of_nat n + 1) * (2 * a + of_nat n * d)" | |
| 2450 | proof - | |
| 2451 | have "(\<Sum>i = 0..n. a + of_nat i * d) = ((\<Sum>i = 0..n. a) + (\<Sum>i = 0..n. of_nat i * d))" | |
| 2452 | by (rule sum.distrib) | |
| 2453 | also have "\<dots> = (of_nat (Suc n) * a + d * (\<Sum>i = 0..n. of_nat i))" | |
| 2454 | by (simp add: sum_distrib_left algebra_simps) | |
| 2455 | finally show ?thesis | |
| 2456 | by (simp add: algebra_simps double_gauss_sum left_add_twice) | |
| 2457 | qed | |
| 2458 | ||
| 2459 | end | |
| 2460 | ||
| 78937 
5e6b195eee83
slightly less technical formulation of very specific type class
 haftmann parents: 
78663diff
changeset | 2461 | context linordered_euclidean_semiring | 
| 66936 | 2462 | begin | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2463 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 2464 | lemma gauss_sum: | 
| 66936 | 2465 | "(\<Sum>i = 0..n. of_nat i) = of_nat n * (of_nat n + 1) div 2" | 
| 2466 | using double_gauss_sum [of n, symmetric] by simp | |
| 2467 | ||
| 2468 | lemma gauss_sum_from_Suc_0: | |
| 2469 | "(\<Sum>i = Suc 0..n. of_nat i) = of_nat n * (of_nat n + 1) div 2" | |
| 2470 | using double_gauss_sum_from_Suc_0 [of n, symmetric] by simp | |
| 2471 | ||
| 2472 | lemma arith_series: | |
| 2473 | "(\<Sum>i = 0..n. a + of_nat i * d) = (of_nat n + 1) * (2 * a + of_nat n * d) div 2" | |
| 2474 | using double_arith_series [of a d n, symmetric] by simp | |
| 2475 | ||
| 2476 | end | |
| 2477 | ||
| 2478 | lemma gauss_sum_nat: | |
| 2479 |   "\<Sum>{0..n} = (n * Suc n) div 2"
 | |
| 2480 | using gauss_sum [of n, where ?'a = nat] by simp | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2481 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2482 | lemma arith_series_nat: | 
| 66936 | 2483 | "(\<Sum>i = 0..n. a + i * d) = Suc n * (2 * a + n * d) div 2" | 
| 2484 | using arith_series [of a d n] by simp | |
| 2485 | ||
| 2486 | lemma Sum_Icc_int: | |
| 2487 |   "\<Sum>{m..n} = (n * (n + 1) - m * (m - 1)) div 2"
 | |
| 2488 | if "m \<le> n" for m n :: int | |
| 2489 | using that proof (induct i \<equiv> "nat (n - m)" arbitrary: m n) | |
| 2490 | case 0 | |
| 2491 | then have "m = n" | |
| 2492 | by arith | |
| 2493 | then show ?case | |
| 2494 | by (simp add: algebra_simps mult_2 [symmetric]) | |
| 2495 | next | |
| 2496 | case (Suc i) | |
| 2497 | have 0: "i = nat((n-1) - m)" "m \<le> n-1" using Suc(2,3) by arith+ | |
| 2498 |   have "\<Sum> {m..n} = \<Sum> {m..1+(n-1)}" by simp
 | |
| 2499 |   also have "\<dots> = \<Sum> {m..n-1} + n" using \<open>m \<le> n\<close>
 | |
| 2500 | by(subst atLeastAtMostPlus1_int_conv) simp_all | |
| 2501 | also have "\<dots> = ((n-1)*(n-1+1) - m*(m-1)) div 2 + n" | |
| 2502 | by(simp add: Suc(1)[OF 0]) | |
| 2503 | also have "\<dots> = ((n-1)*(n-1+1) - m*(m-1) + 2*n) div 2" by simp | |
| 2504 | also have "\<dots> = (n*(n+1) - m*(m-1)) div 2" | |
| 2505 | by (simp add: algebra_simps mult_2_right) | |
| 2506 | finally show ?case . | |
| 2507 | qed | |
| 2508 | ||
| 2509 | lemma Sum_Icc_nat: | |
| 69182 | 2510 |   "\<Sum>{m..n} = (n * (n + 1) - m * (m - 1)) div 2" for m n :: nat
 | 
| 2511 | proof (cases "m \<le> n") | |
| 2512 | case True | |
| 2513 | then have *: "m * (m - 1) \<le> n * (n + 1)" | |
| 2514 | by (meson diff_le_self order_trans le_add1 mult_le_mono) | |
| 66936 | 2515 |   have "int (\<Sum>{m..n}) = (\<Sum>{int m..int n})"
 | 
| 2516 | by (simp add: sum.atLeast_int_atMost_int_shift) | |
| 2517 | also have "\<dots> = (int n * (int n + 1) - int m * (int m - 1)) div 2" | |
| 69182 | 2518 | using \<open>m \<le> n\<close> by (simp add: Sum_Icc_int) | 
| 66936 | 2519 | also have "\<dots> = int ((n * (n + 1) - m * (m - 1)) div 2)" | 
| 2520 | using le_square * by (simp add: algebra_simps of_nat_div of_nat_diff) | |
| 2521 | finally show ?thesis | |
| 2522 | by (simp only: of_nat_eq_iff) | |
| 69182 | 2523 | next | 
| 2524 | case False | |
| 2525 | then show ?thesis | |
| 2526 | by (auto dest: less_imp_Suc_add simp add: not_le algebra_simps) | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2527 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 2528 | |
| 66936 | 2529 | lemma Sum_Ico_nat: | 
| 69182 | 2530 |   "\<Sum>{m..<n} = (n * (n - 1) - m * (m - 1)) div 2" for m n :: nat
 | 
| 2531 | by (cases n) (simp_all add: atLeastLessThanSuc_atLeastAtMost Sum_Icc_nat) | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 2532 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2533 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2534 | subsubsection \<open>Division remainder\<close> | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2535 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2536 | lemma range_mod: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2537 | fixes n :: nat | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2538 | assumes "n > 0" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2539 |   shows "range (\<lambda>m. m mod n) = {0..<n}" (is "?A = ?B")
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2540 | proof (rule set_eqI) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2541 | fix m | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2542 | show "m \<in> ?A \<longleftrightarrow> m \<in> ?B" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2543 | proof | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2544 | assume "m \<in> ?A" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2545 | with assms show "m \<in> ?B" | 
| 63915 | 2546 | by auto | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2547 | next | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2548 | assume "m \<in> ?B" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2549 | moreover have "m mod n \<in> ?A" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2550 | by (rule rangeI) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2551 | ultimately show "m \<in> ?A" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2552 | by simp | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2553 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2554 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2555 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63365diff
changeset | 2556 | |
| 60758 | 2557 | subsection \<open>Products indexed over intervals\<close> | 
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2558 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2559 | syntax (ASCII) | 
| 64272 | 2560 |   "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 2561 |   "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 2562 |   "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<_./ _)" [0,0,10] 10)
 | |
| 2563 |   "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(PROD _<=_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2564 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2565 | syntax (latex_prod output) | 
| 64272 | 2566 | "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2567 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ = _\<^latex>\<open>}^{\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64272 | 2568 | "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2569 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ = _\<^latex>\<open>}^{<\<close>_\<^latex>\<open>}$\<close> _)" [0,0,0,10] 10)
 | 
| 64272 | 2570 | "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2571 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ < _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 64272 | 2572 | "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 63935 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 wenzelm parents: 
63918diff
changeset | 2573 |  ("(3\<^latex>\<open>$\\prod_{\<close>_ \<le> _\<^latex>\<open>}$\<close> _)" [0,0,10] 10)
 | 
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2574 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2575 | syntax | 
| 64272 | 2576 |   "_from_to_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 2577 |   "_from_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | |
| 2578 |   "_upt_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | |
| 2579 |   "_upto_prod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 2580 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 2581 | translations | 
| 64272 | 2582 |   "\<Prod>x=a..b. t" \<rightleftharpoons> "CONST prod (\<lambda>x. t) {a..b}"
 | 
| 2583 |   "\<Prod>x=a..<b. t" \<rightleftharpoons> "CONST prod (\<lambda>x. t) {a..<b}"
 | |
| 2584 |   "\<Prod>i\<le>n. t" \<rightleftharpoons> "CONST prod (\<lambda>i. t) {..n}"
 | |
| 2585 |   "\<Prod>i<n. t" \<rightleftharpoons> "CONST prod (\<lambda>i. t) {..<n}"
 | |
| 2586 | ||
| 2587 | lemma prod_int_plus_eq: "prod int {i..i+j} =  \<Prod>{int i..int (i+j)}"
 | |
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2588 | by (induct j) (auto simp add: atLeastAtMostSuc_conv atLeastAtMostPlus1_int_conv) | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2589 | |
| 64272 | 2590 | lemma prod_int_eq: "prod int {i..j} =  \<Prod>{int i..int j}"
 | 
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2591 | proof (cases "i \<le> j") | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2592 | case True | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2593 | then show ?thesis | 
| 64272 | 2594 | by (metis le_iff_add prod_int_plus_eq) | 
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2595 | next | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2596 | case False | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2597 | then show ?thesis | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2598 | by auto | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2599 | qed | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 2600 | |
| 79566 | 2601 | subsubsection \<open>Telescoping products\<close> | 
| 2602 | ||
| 2603 | lemma prod_telescope: | |
| 2604 | fixes f::"nat \<Rightarrow> 'a::field" | |
| 2605 | assumes "\<And>i. i\<le>n \<Longrightarrow> f (Suc i) \<noteq> 0" | |
| 2606 | shows "(\<Prod>i\<le>n. f i / f (Suc i)) = f 0 / f (Suc n)" | |
| 2607 | using assms by (induction n) auto | |
| 2608 | ||
| 2609 | lemma prod_telescope'': | |
| 2610 | fixes f::"nat \<Rightarrow> 'a::field" | |
| 2611 | assumes "m \<le> n" | |
| 2612 |   assumes "\<And>i. i \<in> {m..n} \<Longrightarrow> f i \<noteq> 0"
 | |
| 2613 | shows "(\<Prod>i = Suc m..n. f i / f (i - 1)) = f n / f m" | |
| 2614 | by (rule dec_induct[OF \<open>m \<le> n\<close>]) (auto simp add: assms) | |
| 2615 | ||
| 2616 | lemma prod_lessThan_telescope: | |
| 2617 | fixes f::"nat \<Rightarrow> 'a::field" | |
| 2618 | assumes "\<And>i. i\<le>n \<Longrightarrow> f i \<noteq> 0" | |
| 2619 | shows "(\<Prod>i<n. f (Suc i) / f i) = f n / f 0" | |
| 2620 | using assms by (induction n) auto | |
| 2621 | ||
| 2622 | lemma prod_lessThan_telescope': | |
| 2623 | fixes f::"nat \<Rightarrow> 'a::field" | |
| 2624 | assumes "\<And>i. i\<le>n \<Longrightarrow> f i \<noteq> 0" | |
| 2625 | shows "(\<Prod>i<n. f i / f (Suc i)) = f 0 / f n" | |
| 2626 | using assms by (induction n) auto | |
| 2627 | ||
| 2628 | ||
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2629 | subsection \<open>Efficient folding over intervals\<close> | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2630 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2631 | function fold_atLeastAtMost_nat where | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2632 | [simp del]: "fold_atLeastAtMost_nat f a (b::nat) acc = | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2633 | (if a > b then acc else fold_atLeastAtMost_nat f (a+1) b (f a acc))" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2634 | by pat_completeness auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2635 | termination by (relation "measure (\<lambda>(_,a,b,_). Suc b - a)") auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2636 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2637 | lemma fold_atLeastAtMost_nat: | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2638 | assumes "comp_fun_commute f" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2639 |   shows   "fold_atLeastAtMost_nat f a b acc = Finite_Set.fold f acc {a..b}"
 | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2640 | using assms | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2641 | proof (induction f a b acc rule: fold_atLeastAtMost_nat.induct, goal_cases) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2642 | case (1 f a b acc) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2643 | interpret comp_fun_commute f by fact | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2644 | show ?case | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2645 | proof (cases "a > b") | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2646 | case True | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2647 | thus ?thesis by (subst fold_atLeastAtMost_nat.simps) auto | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2648 | next | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2649 | case False | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2650 | with 1 show ?thesis | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2651 | by (subst fold_atLeastAtMost_nat.simps) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2652 | (auto simp: atLeastAtMost_insertL[symmetric] fold_fun_left_comm) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2653 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2654 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2655 | |
| 64267 | 2656 | lemma sum_atLeastAtMost_code: | 
| 2657 |   "sum f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a + acc) a b 0"
 | |
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2658 | proof - | 
| 67399 | 2659 | have "comp_fun_commute (\<lambda>a. (+) (f a))" | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2660 | by unfold_locales (auto simp: o_def add_ac) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2661 | thus ?thesis | 
| 64267 | 2662 | by (simp add: sum.eq_fold fold_atLeastAtMost_nat o_def) | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2663 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2664 | |
| 64272 | 2665 | lemma prod_atLeastAtMost_code: | 
| 2666 |   "prod f {a..b} = fold_atLeastAtMost_nat (\<lambda>a acc. f a * acc) a b 1"
 | |
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2667 | proof - | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68618diff
changeset | 2668 | have "comp_fun_commute (\<lambda>a. (*) (f a))" | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2669 | by unfold_locales (auto simp: o_def mult_ac) | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2670 | thus ?thesis | 
| 64272 | 2671 | by (simp add: prod.eq_fold fold_atLeastAtMost_nat o_def) | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2672 | qed | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2673 | |
| 70746 
cf7b5020c207
Generalisation of many theorems to a more abstract type class (suggested by Mr Anonymous)
 paulson <lp15@cam.ac.uk> parents: 
70723diff
changeset | 2674 | (* TODO: Add support for folding over more kinds of intervals here *) | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61955diff
changeset | 2675 | |
| 78663 | 2676 | lemma pairs_le_eq_Sigma: "{(i, j). i + j \<le> m} = Sigma (atMost m) (\<lambda>r. atMost (m - r))"
 | 
| 2677 | for m :: nat | |
| 2678 | by auto | |
| 2679 | ||
| 2680 | lemma sum_up_index_split: "(\<Sum>k\<le>m + n. f k) = (\<Sum>k\<le>m. f k) + (\<Sum>k = Suc m..m + n. f k)" | |
| 2681 | by (metis atLeast0AtMost Suc_eq_plus1 le0 sum.ub_add_nat) | |
| 2682 | ||
| 2683 | lemma Sigma_interval_disjoint: "(SIGMA i:A. {..v i}) \<inter> (SIGMA i:A.{v i<..w}) = {}"
 | |
| 2684 | for w :: "'a::order" | |
| 2685 | by auto | |
| 2686 | ||
| 2687 | lemma product_atMost_eq_Un: "A \<times> {..m} = (SIGMA i:A.{..m - i}) \<union> (SIGMA i:A.{m - i<..m})"
 | |
| 2688 | for m :: nat | |
| 2689 | by auto | |
| 2690 | ||
| 2691 | lemma polynomial_product: (*with thanks to Chaitanya Mangla*) | |
| 2692 | fixes x :: "'a::idom" | |
| 2693 | assumes m: "\<And>i. i > m \<Longrightarrow> a i = 0" | |
| 2694 | and n: "\<And>j. j > n \<Longrightarrow> b j = 0" | |
| 2695 | shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) = | |
| 2696 | (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)" | |
| 2697 | proof - | |
| 2698 | have "\<And>i j. \<lbrakk>m + n - i < j; a i \<noteq> 0\<rbrakk> \<Longrightarrow> b j = 0" | |
| 2699 | by (meson le_add_diff leI le_less_trans m n) | |
| 2700 |   then have \<section>: "(\<Sum>(i,j)\<in>(SIGMA i:{..m+n}. {m+n - i<..m+n}). a i * x ^ i * (b j * x ^ j)) = 0"
 | |
| 2701 | by (clarsimp simp add: sum_Un Sigma_interval_disjoint intro!: sum.neutral) | |
| 2702 | have "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) = (\<Sum>i\<le>m. \<Sum>j\<le>n. (a i * x ^ i) * (b j * x ^ j))" | |
| 2703 | by (rule sum_product) | |
| 2704 | also have "\<dots> = (\<Sum>i\<le>m + n. \<Sum>j\<le>n + m. a i * x ^ i * (b j * x ^ j))" | |
| 2705 | using assms by (auto simp: sum_up_index_split) | |
| 2706 | also have "\<dots> = (\<Sum>r\<le>m + n. \<Sum>j\<le>m + n - r. a r * x ^ r * (b j * x ^ j))" | |
| 2707 | by (simp add: add_ac sum.Sigma product_atMost_eq_Un sum_Un Sigma_interval_disjoint \<section>) | |
| 2708 |   also have "\<dots> = (\<Sum>(i,j)\<in>{(i,j). i+j \<le> m+n}. (a i * x ^ i) * (b j * x ^ j))"
 | |
| 2709 | by (auto simp: pairs_le_eq_Sigma sum.Sigma) | |
| 2710 | also have "... = (\<Sum>k\<le>m + n. \<Sum>i\<le>k. a i * x ^ i * (b (k - i) * x ^ (k - i)))" | |
| 2711 | by (rule sum.triangle_reindex_eq) | |
| 2712 | also have "\<dots> = (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)" | |
| 2713 | by (auto simp: algebra_simps sum_distrib_left simp flip: power_add intro!: sum.cong) | |
| 2714 | finally show ?thesis . | |
| 2715 | qed | |
| 2716 | ||
| 8924 | 2717 | end |