author | wenzelm |
Thu, 22 Nov 2007 14:51:34 +0100 | |
changeset 25456 | 6f79698f294d |
parent 19739 | c58ef2aa5430 |
child 35174 | e15040ae75d7 |
permissions | -rw-r--r-- |
3073
88366253a09a
Old NTP files now running under the IOA meta theory based on HOLCF;
mueller
parents:
diff
changeset
|
1 |
(* Title: HOL/IOA/NTP/Lemmas.thy |
88366253a09a
Old NTP files now running under the IOA meta theory based on HOLCF;
mueller
parents:
diff
changeset
|
2 |
ID: $Id$ |
88366253a09a
Old NTP files now running under the IOA meta theory based on HOLCF;
mueller
parents:
diff
changeset
|
3 |
Author: Tobias Nipkow & Konrad Slind |
88366253a09a
Old NTP files now running under the IOA meta theory based on HOLCF;
mueller
parents:
diff
changeset
|
4 |
*) |
88366253a09a
Old NTP files now running under the IOA meta theory based on HOLCF;
mueller
parents:
diff
changeset
|
5 |
|
17244 | 6 |
theory Lemmas |
7 |
imports Main |
|
8 |
begin |
|
9 |
||
19739 | 10 |
subsubsection {* Logic *} |
11 |
||
12 |
lemma neg_flip: "(X = (~ Y)) = ((~X) = Y)" |
|
13 |
by blast |
|
14 |
||
15 |
||
16 |
subsection {* Sets *} |
|
17 |
||
18 |
lemma set_lemmas: |
|
19 |
"f(x) : (UN x. {f(x)})" |
|
20 |
"f x y : (UN x y. {f x y})" |
|
21 |
"!!a. (!x. a ~= f(x)) ==> a ~: (UN x. {f(x)})" |
|
22 |
"!!a. (!x y. a ~= f x y) ==> a ~: (UN x y. {f x y})" |
|
23 |
by auto |
|
24 |
||
25 |
||
26 |
subsection {* Arithmetic *} |
|
27 |
||
28 |
lemma pred_suc: "0<x ==> (x - 1 = y) = (x = Suc(y))" |
|
29 |
by (simp add: diff_Suc split add: nat.split) |
|
30 |
||
31 |
lemmas [simp] = hd_append set_lemmas |
|
32 |
||
17244 | 33 |
end |