58419
|
1 |
(* Title: HOL/ex/SOS.thy
|
58418
|
2 |
Author: Amine Chaieb, University of Cambridge
|
|
3 |
Author: Philipp Meyer, TU Muenchen
|
|
4 |
|
58419
|
5 |
Examples for Sum_of_Squares.
|
58418
|
6 |
*)
|
|
7 |
|
58419
|
8 |
theory SOS
|
58418
|
9 |
imports "~~/src/HOL/Library/Sum_of_Squares"
|
|
10 |
begin
|
|
11 |
|
|
12 |
lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0"
|
58630
|
13 |
by sos
|
58418
|
14 |
|
|
15 |
lemma "a1 >= 0 & a2 >= 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)"
|
58630
|
16 |
by sos
|
58418
|
17 |
|
|
18 |
lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0"
|
58630
|
19 |
by sos
|
58418
|
20 |
|
|
21 |
lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1 --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1"
|
58630
|
22 |
by sos
|
58418
|
23 |
|
|
24 |
lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z"
|
58630
|
25 |
by sos
|
58418
|
26 |
|
|
27 |
lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3"
|
58630
|
28 |
by sos
|
58418
|
29 |
|
|
30 |
lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)"
|
58630
|
31 |
by sos
|
58418
|
32 |
|
|
33 |
lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1"
|
58630
|
34 |
by sos
|
58418
|
35 |
|
|
36 |
lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1"
|
58630
|
37 |
by sos
|
58418
|
38 |
|
|
39 |
lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)"
|
58630
|
40 |
by sos
|
58418
|
41 |
|
|
42 |
|
|
43 |
text \<open>One component of denominator in dodecahedral example.\<close>
|
|
44 |
|
|
45 |
lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)"
|
58630
|
46 |
by sos
|
58418
|
47 |
|
|
48 |
|
|
49 |
text \<open>Over a larger but simpler interval.\<close>
|
|
50 |
|
|
51 |
lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
|
58630
|
52 |
by sos
|
58418
|
53 |
|
|
54 |
|
|
55 |
text \<open>We can do 12. I think 12 is a sharp bound; see PP's certificate.\<close>
|
|
56 |
|
|
57 |
lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
|
58630
|
58 |
by sos
|
58418
|
59 |
|
|
60 |
|
|
61 |
text \<open>Inequality from sci.math (see "Leon-Sotelo, por favor").\<close>
|
|
62 |
|
|
63 |
lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2"
|
58630
|
64 |
by sos
|
58418
|
65 |
|
|
66 |
lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2"
|
58630
|
67 |
by sos
|
58418
|
68 |
|
|
69 |
lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2"
|
58630
|
70 |
by sos
|
58418
|
71 |
|
|
72 |
lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \<longrightarrow> c * a^2 * b <= x"
|
58630
|
73 |
by sos
|
58418
|
74 |
|
|
75 |
lemma "(0::real) < x --> 0 < 1 + x + x^2"
|
58630
|
76 |
by sos
|
58418
|
77 |
|
|
78 |
lemma "(0::real) <= x --> 0 < 1 + x + x^2"
|
58630
|
79 |
by sos
|
58418
|
80 |
|
|
81 |
lemma "(0::real) < 1 + x^2"
|
58630
|
82 |
by sos
|
58418
|
83 |
|
|
84 |
lemma "(0::real) <= 1 + 2 * x + x^2"
|
58630
|
85 |
by sos
|
58418
|
86 |
|
|
87 |
lemma "(0::real) < 1 + abs x"
|
58630
|
88 |
by sos
|
58418
|
89 |
|
|
90 |
lemma "(0::real) < 1 + (1 + x)^2 * (abs x)"
|
58630
|
91 |
by sos
|
58418
|
92 |
|
|
93 |
|
|
94 |
lemma "abs ((1::real) + x^2) = (1::real) + x^2"
|
58630
|
95 |
by sos
|
58418
|
96 |
lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0"
|
58630
|
97 |
by sos
|
58418
|
98 |
|
|
99 |
lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z"
|
58630
|
100 |
by sos
|
58418
|
101 |
lemma "(1::real) < x --> x^2 < y --> 1 < y"
|
58630
|
102 |
by sos
|
58418
|
103 |
lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
|
58630
|
104 |
by sos
|
58418
|
105 |
lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
|
58630
|
106 |
by sos
|
58418
|
107 |
lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c"
|
58630
|
108 |
by sos
|
58418
|
109 |
lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x"
|
58630
|
110 |
by sos
|
58418
|
111 |
lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)"
|
58630
|
112 |
by sos
|
58418
|
113 |
|
|
114 |
|
|
115 |
(* lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*)
|
|
116 |
|
|
117 |
lemma "(0::real) <= x --> (1 + x + x^2)/(1 + x^2) <= 1 + x"
|
58630
|
118 |
by sos
|
58418
|
119 |
|
|
120 |
lemma "(0::real) <= x --> 1 - x <= 1 / (1 + x + x^2)"
|
58630
|
121 |
by sos
|
58418
|
122 |
|
|
123 |
lemma "(x::real) <= 1 / 2 --> - x - 2 * x^2 <= - x / (1 - x)"
|
58630
|
124 |
by sos
|
58418
|
125 |
|
|
126 |
lemma "4*r^2 = p^2 - 4*q & r >= (0::real) & x^2 + p*x + q = 0 --> 2*(x::real) = - p + 2*r | 2*x = -p - 2*r"
|
58630
|
127 |
by sos
|
58418
|
128 |
|
|
129 |
end
|
|
130 |
|