author | wenzelm |
Sun, 12 Aug 2018 14:28:28 +0200 | |
changeset 68743 | 91162dd89571 |
parent 68527 | 2f4e2aab190a |
child 69597 | ff784d5a5bfb |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/NSA.thy |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32155
diff
changeset
|
2 |
Author: Jacques D. Fleuriot, University of Cambridge |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32155
diff
changeset
|
3 |
Author: Lawrence C Paulson, University of Cambridge |
27468 | 4 |
*) |
5 |
||
64435 | 6 |
section \<open>Infinite Numbers, Infinitesimals, Infinitely Close Relation\<close> |
27468 | 7 |
|
8 |
theory NSA |
|
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
64438
diff
changeset
|
9 |
imports HyperDef "HOL-Library.Lub_Glb" |
27468 | 10 |
begin |
11 |
||
64435 | 12 |
definition hnorm :: "'a::real_normed_vector star \<Rightarrow> real star" |
13 |
where [transfer_unfold]: "hnorm = *f* norm" |
|
27468 | 14 |
|
64435 | 15 |
definition Infinitesimal :: "('a::real_normed_vector) star set" |
16 |
where "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r}" |
|
27468 | 17 |
|
64435 | 18 |
definition HFinite :: "('a::real_normed_vector) star set" |
19 |
where "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}" |
|
27468 | 20 |
|
64435 | 21 |
definition HInfinite :: "('a::real_normed_vector) star set" |
22 |
where "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}" |
|
27468 | 23 |
|
64435 | 24 |
definition approx :: "'a::real_normed_vector star \<Rightarrow> 'a star \<Rightarrow> bool" (infixl "\<approx>" 50) |
25 |
where "x \<approx> y \<longleftrightarrow> x - y \<in> Infinitesimal" |
|
26 |
\<comment> \<open>the ``infinitely close'' relation\<close> |
|
27468 | 27 |
|
64435 | 28 |
definition st :: "hypreal \<Rightarrow> hypreal" |
29 |
where "st = (\<lambda>x. SOME r. x \<in> HFinite \<and> r \<in> \<real> \<and> r \<approx> x)" |
|
30 |
\<comment> \<open>the standard part of a hyperreal\<close> |
|
27468 | 31 |
|
64435 | 32 |
definition monad :: "'a::real_normed_vector star \<Rightarrow> 'a star set" |
33 |
where "monad x = {y. x \<approx> y}" |
|
27468 | 34 |
|
64435 | 35 |
definition galaxy :: "'a::real_normed_vector star \<Rightarrow> 'a star set" |
36 |
where "galaxy x = {y. (x + -y) \<in> HFinite}" |
|
27468 | 37 |
|
64435 | 38 |
lemma SReal_def: "\<real> \<equiv> {x. \<exists>r. x = hypreal_of_real r}" |
39 |
by (simp add: Reals_def image_def) |
|
40 |
||
27468 | 41 |
|
61975 | 42 |
subsection \<open>Nonstandard Extension of the Norm Function\<close> |
27468 | 43 |
|
64435 | 44 |
definition scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" |
45 |
where [transfer_unfold]: "scaleHR = starfun2 scaleR" |
|
27468 | 46 |
|
47 |
lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard" |
|
64435 | 48 |
by (simp add: hnorm_def) |
27468 | 49 |
|
50 |
lemma star_of_norm [simp]: "star_of (norm x) = hnorm (star_of x)" |
|
64435 | 51 |
by transfer (rule refl) |
27468 | 52 |
|
64435 | 53 |
lemma hnorm_ge_zero [simp]: "\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x" |
54 |
by transfer (rule norm_ge_zero) |
|
27468 | 55 |
|
64435 | 56 |
lemma hnorm_eq_zero [simp]: "\<And>x::'a::real_normed_vector star. hnorm x = 0 \<longleftrightarrow> x = 0" |
57 |
by transfer (rule norm_eq_zero) |
|
27468 | 58 |
|
64435 | 59 |
lemma hnorm_triangle_ineq: "\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y" |
60 |
by transfer (rule norm_triangle_ineq) |
|
27468 | 61 |
|
64435 | 62 |
lemma hnorm_triangle_ineq3: "\<And>x y::'a::real_normed_vector star. \<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" |
63 |
by transfer (rule norm_triangle_ineq3) |
|
64 |
||
65 |
lemma hnorm_scaleR: "\<And>x::'a::real_normed_vector star. hnorm (a *\<^sub>R x) = \<bar>star_of a\<bar> * hnorm x" |
|
66 |
by transfer (rule norm_scaleR) |
|
27468 | 67 |
|
64435 | 68 |
lemma hnorm_scaleHR: "\<And>a (x::'a::real_normed_vector star). hnorm (scaleHR a x) = \<bar>a\<bar> * hnorm x" |
69 |
by transfer (rule norm_scaleR) |
|
27468 | 70 |
|
64435 | 71 |
lemma hnorm_mult_ineq: "\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y" |
72 |
by transfer (rule norm_mult_ineq) |
|
27468 | 73 |
|
64435 | 74 |
lemma hnorm_mult: "\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y" |
75 |
by transfer (rule norm_mult) |
|
27468 | 76 |
|
64435 | 77 |
lemma hnorm_hyperpow: "\<And>(x::'a::{real_normed_div_algebra} star) n. hnorm (x pow n) = hnorm x pow n" |
78 |
by transfer (rule norm_power) |
|
79 |
||
80 |
lemma hnorm_one [simp]: "hnorm (1::'a::real_normed_div_algebra star) = 1" |
|
81 |
by transfer (rule norm_one) |
|
27468 | 82 |
|
64435 | 83 |
lemma hnorm_zero [simp]: "hnorm (0::'a::real_normed_vector star) = 0" |
84 |
by transfer (rule norm_zero) |
|
27468 | 85 |
|
64435 | 86 |
lemma zero_less_hnorm_iff [simp]: "\<And>x::'a::real_normed_vector star. 0 < hnorm x \<longleftrightarrow> x \<noteq> 0" |
87 |
by transfer (rule zero_less_norm_iff) |
|
27468 | 88 |
|
64435 | 89 |
lemma hnorm_minus_cancel [simp]: "\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x" |
90 |
by transfer (rule norm_minus_cancel) |
|
27468 | 91 |
|
64435 | 92 |
lemma hnorm_minus_commute: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)" |
93 |
by transfer (rule norm_minus_commute) |
|
27468 | 94 |
|
64435 | 95 |
lemma hnorm_triangle_ineq2: "\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)" |
96 |
by transfer (rule norm_triangle_ineq2) |
|
27468 | 97 |
|
64435 | 98 |
lemma hnorm_triangle_ineq4: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b" |
99 |
by transfer (rule norm_triangle_ineq4) |
|
27468 | 100 |
|
64435 | 101 |
lemma abs_hnorm_cancel [simp]: "\<And>a::'a::real_normed_vector star. \<bar>hnorm a\<bar> = hnorm a" |
102 |
by transfer (rule abs_norm_cancel) |
|
27468 | 103 |
|
64435 | 104 |
lemma hnorm_of_hypreal [simp]: "\<And>r. hnorm (of_hypreal r::'a::real_normed_algebra_1 star) = \<bar>r\<bar>" |
105 |
by transfer (rule norm_of_real) |
|
27468 | 106 |
|
107 |
lemma nonzero_hnorm_inverse: |
|
64435 | 108 |
"\<And>a::'a::real_normed_div_algebra star. a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)" |
109 |
by transfer (rule nonzero_norm_inverse) |
|
27468 | 110 |
|
111 |
lemma hnorm_inverse: |
|
64435 | 112 |
"\<And>a::'a::{real_normed_div_algebra, division_ring} star. hnorm (inverse a) = inverse (hnorm a)" |
113 |
by transfer (rule norm_inverse) |
|
27468 | 114 |
|
64435 | 115 |
lemma hnorm_divide: "\<And>a b::'a::{real_normed_field, field} star. hnorm (a / b) = hnorm a / hnorm b" |
116 |
by transfer (rule norm_divide) |
|
27468 | 117 |
|
64435 | 118 |
lemma hypreal_hnorm_def [simp]: "\<And>r::hypreal. hnorm r = \<bar>r\<bar>" |
119 |
by transfer (rule real_norm_def) |
|
27468 | 120 |
|
121 |
lemma hnorm_add_less: |
|
64435 | 122 |
"\<And>(x::'a::real_normed_vector star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x + y) < r + s" |
123 |
by transfer (rule norm_add_less) |
|
27468 | 124 |
|
125 |
lemma hnorm_mult_less: |
|
64435 | 126 |
"\<And>(x::'a::real_normed_algebra star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x * y) < r * s" |
127 |
by transfer (rule norm_mult_less) |
|
27468 | 128 |
|
64435 | 129 |
lemma hnorm_scaleHR_less: "\<bar>x\<bar> < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (scaleHR x y) < r * s" |
130 |
by (simp only: hnorm_scaleHR) (simp add: mult_strict_mono') |
|
131 |
||
132 |
||
133 |
subsection \<open>Closure Laws for the Standard Reals\<close> |
|
27468 | 134 |
|
64435 | 135 |
lemma Reals_add_cancel: "x + y \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<in> \<real>" |
136 |
by (drule (1) Reals_diff) simp |
|
27468 | 137 |
|
64435 | 138 |
lemma SReal_hrabs: "x \<in> \<real> \<Longrightarrow> \<bar>x\<bar> \<in> \<real>" |
139 |
for x :: hypreal |
|
140 |
by (simp add: Reals_eq_Standard) |
|
27468 | 141 |
|
61070 | 142 |
lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> \<real>" |
64435 | 143 |
by (simp add: Reals_eq_Standard) |
27468 | 144 |
|
64435 | 145 |
lemma SReal_divide_numeral: "r \<in> \<real> \<Longrightarrow> r / (numeral w::hypreal) \<in> \<real>" |
146 |
by simp |
|
27468 | 147 |
|
61981 | 148 |
text \<open>\<open>\<epsilon>\<close> is not in Reals because it is an infinitesimal\<close> |
149 |
lemma SReal_epsilon_not_mem: "\<epsilon> \<notin> \<real>" |
|
64435 | 150 |
by (auto simp: SReal_def hypreal_of_real_not_eq_epsilon [symmetric]) |
27468 | 151 |
|
61981 | 152 |
lemma SReal_omega_not_mem: "\<omega> \<notin> \<real>" |
64435 | 153 |
by (auto simp: SReal_def hypreal_of_real_not_eq_omega [symmetric]) |
27468 | 154 |
|
61070 | 155 |
lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> \<real>} = (UNIV::real set)" |
64435 | 156 |
by simp |
27468 | 157 |
|
64435 | 158 |
lemma SReal_iff: "x \<in> \<real> \<longleftrightarrow> (\<exists>y. x = hypreal_of_real y)" |
159 |
by (simp add: SReal_def) |
|
27468 | 160 |
|
61070 | 161 |
lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = \<real>" |
64435 | 162 |
by (simp add: Reals_eq_Standard Standard_def) |
27468 | 163 |
|
61070 | 164 |
lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` \<real> = UNIV" |
64435 | 165 |
apply (auto simp add: SReal_def) |
166 |
apply (rule inj_star_of [THEN inv_f_f, THEN subst], blast) |
|
167 |
done |
|
27468 | 168 |
|
64435 | 169 |
lemma SReal_hypreal_of_real_image: "\<exists>x. x \<in> P \<Longrightarrow> P \<subseteq> \<real> \<Longrightarrow> \<exists>Q. P = hypreal_of_real ` Q" |
170 |
unfolding SReal_def image_def by blast |
|
27468 | 171 |
|
64435 | 172 |
lemma SReal_dense: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x < y \<Longrightarrow> \<exists>r \<in> Reals. x < r \<and> r < y" |
173 |
for x y :: hypreal |
|
174 |
apply (auto simp: SReal_def) |
|
175 |
apply (drule dense) |
|
176 |
apply auto |
|
177 |
done |
|
27468 | 178 |
|
64435 | 179 |
|
180 |
text \<open>Completeness of Reals, but both lemmas are unused.\<close> |
|
27468 | 181 |
|
182 |
lemma SReal_sup_lemma: |
|
64435 | 183 |
"P \<subseteq> \<real> \<Longrightarrow> (\<exists>x \<in> P. y < x) = (\<exists>X. hypreal_of_real X \<in> P \<and> y < hypreal_of_real X)" |
184 |
by (blast dest!: SReal_iff [THEN iffD1]) |
|
27468 | 185 |
|
186 |
lemma SReal_sup_lemma2: |
|
64435 | 187 |
"P \<subseteq> \<real> \<Longrightarrow> \<exists>x. x \<in> P \<Longrightarrow> \<exists>y \<in> Reals. \<forall>x \<in> P. x < y \<Longrightarrow> |
188 |
(\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) \<and> |
|
189 |
(\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)" |
|
190 |
apply (rule conjI) |
|
191 |
apply (fast dest!: SReal_iff [THEN iffD1]) |
|
192 |
apply (auto, frule subsetD, assumption) |
|
193 |
apply (drule SReal_iff [THEN iffD1]) |
|
194 |
apply (auto, rule_tac x = ya in exI, auto) |
|
195 |
done |
|
27468 | 196 |
|
197 |
||
64435 | 198 |
subsection \<open>Set of Finite Elements is a Subring of the Extended Reals\<close> |
27468 | 199 |
|
64435 | 200 |
lemma HFinite_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HFinite" |
201 |
unfolding HFinite_def by (blast intro!: Reals_add hnorm_add_less) |
|
27468 | 202 |
|
64435 | 203 |
lemma HFinite_mult: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x * y \<in> HFinite" |
204 |
for x y :: "'a::real_normed_algebra star" |
|
205 |
unfolding HFinite_def by (blast intro!: Reals_mult hnorm_mult_less) |
|
27468 | 206 |
|
64435 | 207 |
lemma HFinite_scaleHR: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> scaleHR x y \<in> HFinite" |
208 |
by (auto simp: HFinite_def intro!: Reals_mult hnorm_scaleHR_less) |
|
27468 | 209 |
|
64435 | 210 |
lemma HFinite_minus_iff: "- x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
211 |
by (simp add: HFinite_def) |
|
27468 | 212 |
|
213 |
lemma HFinite_star_of [simp]: "star_of x \<in> HFinite" |
|
64435 | 214 |
apply (simp add: HFinite_def) |
215 |
apply (rule_tac x="star_of (norm x) + 1" in bexI) |
|
216 |
apply (transfer, simp) |
|
217 |
apply (blast intro: Reals_add SReal_hypreal_of_real Reals_1) |
|
218 |
done |
|
27468 | 219 |
|
61070 | 220 |
lemma SReal_subset_HFinite: "(\<real>::hypreal set) \<subseteq> HFinite" |
64435 | 221 |
by (auto simp add: SReal_def) |
27468 | 222 |
|
64435 | 223 |
lemma HFiniteD: "x \<in> HFinite \<Longrightarrow> \<exists>t \<in> Reals. hnorm x < t" |
224 |
by (simp add: HFinite_def) |
|
27468 | 225 |
|
64435 | 226 |
lemma HFinite_hrabs_iff [iff]: "\<bar>x\<bar> \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
227 |
for x :: hypreal |
|
228 |
by (simp add: HFinite_def) |
|
27468 | 229 |
|
64435 | 230 |
lemma HFinite_hnorm_iff [iff]: "hnorm x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
231 |
for x :: hypreal |
|
232 |
by (simp add: HFinite_def) |
|
27468 | 233 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
234 |
lemma HFinite_numeral [simp]: "numeral w \<in> HFinite" |
64435 | 235 |
unfolding star_numeral_def by (rule HFinite_star_of) |
27468 | 236 |
|
64435 | 237 |
text \<open>As always with numerals, \<open>0\<close> and \<open>1\<close> are special cases.\<close> |
27468 | 238 |
|
239 |
lemma HFinite_0 [simp]: "0 \<in> HFinite" |
|
64435 | 240 |
unfolding star_zero_def by (rule HFinite_star_of) |
27468 | 241 |
|
242 |
lemma HFinite_1 [simp]: "1 \<in> HFinite" |
|
64435 | 243 |
unfolding star_one_def by (rule HFinite_star_of) |
27468 | 244 |
|
64435 | 245 |
lemma hrealpow_HFinite: "x \<in> HFinite \<Longrightarrow> x ^ n \<in> HFinite" |
246 |
for x :: "'a::{real_normed_algebra,monoid_mult} star" |
|
247 |
by (induct n) (auto simp add: power_Suc intro: HFinite_mult) |
|
27468 | 248 |
|
64435 | 249 |
lemma HFinite_bounded: "x \<in> HFinite \<Longrightarrow> y \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<in> HFinite" |
250 |
for x y :: hypreal |
|
251 |
apply (cases "x \<le> 0") |
|
252 |
apply (drule_tac y = x in order_trans) |
|
253 |
apply (drule_tac [2] order_antisym) |
|
254 |
apply (auto simp add: linorder_not_le) |
|
255 |
apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def) |
|
256 |
done |
|
27468 | 257 |
|
258 |
||
64435 | 259 |
subsection \<open>Set of Infinitesimals is a Subring of the Hyperreals\<close> |
27468 | 260 |
|
64435 | 261 |
lemma InfinitesimalI: "(\<And>r. r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal" |
262 |
by (simp add: Infinitesimal_def) |
|
27468 | 263 |
|
64435 | 264 |
lemma InfinitesimalD: "x \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r" |
265 |
by (simp add: Infinitesimal_def) |
|
27468 | 266 |
|
64435 | 267 |
lemma InfinitesimalI2: "(\<And>r. 0 < r \<Longrightarrow> hnorm x < star_of r) \<Longrightarrow> x \<in> Infinitesimal" |
268 |
by (auto simp add: Infinitesimal_def SReal_def) |
|
27468 | 269 |
|
64435 | 270 |
lemma InfinitesimalD2: "x \<in> Infinitesimal \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < star_of r" |
271 |
by (auto simp add: Infinitesimal_def SReal_def) |
|
27468 | 272 |
|
273 |
lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal" |
|
64435 | 274 |
by (simp add: Infinitesimal_def) |
27468 | 275 |
|
64435 | 276 |
lemma Infinitesimal_add: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x + y \<in> Infinitesimal" |
277 |
apply (rule InfinitesimalI) |
|
68527
2f4e2aab190a
Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents:
68501
diff
changeset
|
278 |
apply (rule field_sum_of_halves [THEN subst]) |
64435 | 279 |
apply (drule half_gt_zero) |
280 |
apply (blast intro: hnorm_add_less SReal_divide_numeral dest: InfinitesimalD) |
|
281 |
done |
|
27468 | 282 |
|
64435 | 283 |
lemma Infinitesimal_minus_iff [simp]: "- x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
284 |
by (simp add: Infinitesimal_def) |
|
27468 | 285 |
|
64435 | 286 |
lemma Infinitesimal_hnorm_iff: "hnorm x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
287 |
by (simp add: Infinitesimal_def) |
|
27468 | 288 |
|
64435 | 289 |
lemma Infinitesimal_hrabs_iff [iff]: "\<bar>x\<bar> \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
290 |
for x :: hypreal |
|
291 |
by (simp add: abs_if) |
|
27468 | 292 |
|
293 |
lemma Infinitesimal_of_hypreal_iff [simp]: |
|
64435 | 294 |
"(of_hypreal x::'a::real_normed_algebra_1 star) \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
295 |
by (subst Infinitesimal_hnorm_iff [symmetric]) simp |
|
27468 | 296 |
|
64435 | 297 |
lemma Infinitesimal_diff: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x - y \<in> Infinitesimal" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
51521
diff
changeset
|
298 |
using Infinitesimal_add [of x "- y"] by simp |
27468 | 299 |
|
64435 | 300 |
lemma Infinitesimal_mult: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x * y \<in> Infinitesimal" |
301 |
for x y :: "'a::real_normed_algebra star" |
|
302 |
apply (rule InfinitesimalI) |
|
303 |
apply (subgoal_tac "hnorm (x * y) < 1 * r") |
|
304 |
apply (simp only: mult_1) |
|
305 |
apply (rule hnorm_mult_less) |
|
306 |
apply (simp_all add: InfinitesimalD) |
|
307 |
done |
|
27468 | 308 |
|
64435 | 309 |
lemma Infinitesimal_HFinite_mult: "x \<in> Infinitesimal \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x * y \<in> Infinitesimal" |
310 |
for x y :: "'a::real_normed_algebra star" |
|
311 |
apply (rule InfinitesimalI) |
|
312 |
apply (drule HFiniteD, clarify) |
|
313 |
apply (subgoal_tac "0 < t") |
|
314 |
apply (subgoal_tac "hnorm (x * y) < (r / t) * t", simp) |
|
315 |
apply (subgoal_tac "0 < r / t") |
|
316 |
apply (rule hnorm_mult_less) |
|
317 |
apply (simp add: InfinitesimalD) |
|
318 |
apply assumption |
|
319 |
apply simp |
|
320 |
apply (erule order_le_less_trans [OF hnorm_ge_zero]) |
|
321 |
done |
|
27468 | 322 |
|
323 |
lemma Infinitesimal_HFinite_scaleHR: |
|
64435 | 324 |
"x \<in> Infinitesimal \<Longrightarrow> y \<in> HFinite \<Longrightarrow> scaleHR x y \<in> Infinitesimal" |
325 |
apply (rule InfinitesimalI) |
|
326 |
apply (drule HFiniteD, clarify) |
|
327 |
apply (drule InfinitesimalD) |
|
328 |
apply (simp add: hnorm_scaleHR) |
|
329 |
apply (subgoal_tac "0 < t") |
|
330 |
apply (subgoal_tac "\<bar>x\<bar> * hnorm y < (r / t) * t", simp) |
|
331 |
apply (subgoal_tac "0 < r / t") |
|
332 |
apply (rule mult_strict_mono', simp_all) |
|
333 |
apply (erule order_le_less_trans [OF hnorm_ge_zero]) |
|
334 |
done |
|
27468 | 335 |
|
336 |
lemma Infinitesimal_HFinite_mult2: |
|
64435 | 337 |
"x \<in> Infinitesimal \<Longrightarrow> y \<in> HFinite \<Longrightarrow> y * x \<in> Infinitesimal" |
338 |
for x y :: "'a::real_normed_algebra star" |
|
339 |
apply (rule InfinitesimalI) |
|
340 |
apply (drule HFiniteD, clarify) |
|
341 |
apply (subgoal_tac "0 < t") |
|
342 |
apply (subgoal_tac "hnorm (y * x) < t * (r / t)", simp) |
|
343 |
apply (subgoal_tac "0 < r / t") |
|
344 |
apply (rule hnorm_mult_less) |
|
345 |
apply assumption |
|
346 |
apply (simp add: InfinitesimalD) |
|
347 |
apply simp |
|
348 |
apply (erule order_le_less_trans [OF hnorm_ge_zero]) |
|
349 |
done |
|
27468 | 350 |
|
64435 | 351 |
lemma Infinitesimal_scaleR2: "x \<in> Infinitesimal \<Longrightarrow> a *\<^sub>R x \<in> Infinitesimal" |
352 |
apply (case_tac "a = 0", simp) |
|
353 |
apply (rule InfinitesimalI) |
|
354 |
apply (drule InfinitesimalD) |
|
355 |
apply (drule_tac x="r / \<bar>star_of a\<bar>" in bspec) |
|
356 |
apply (simp add: Reals_eq_Standard) |
|
357 |
apply simp |
|
358 |
apply (simp add: hnorm_scaleR pos_less_divide_eq mult.commute) |
|
359 |
done |
|
27468 | 360 |
|
361 |
lemma Compl_HFinite: "- HFinite = HInfinite" |
|
64435 | 362 |
apply (auto simp add: HInfinite_def HFinite_def linorder_not_less) |
363 |
apply (rule_tac y="r + 1" in order_less_le_trans, simp) |
|
364 |
apply simp |
|
365 |
done |
|
27468 | 366 |
|
64435 | 367 |
lemma HInfinite_inverse_Infinitesimal: "x \<in> HInfinite \<Longrightarrow> inverse x \<in> Infinitesimal" |
368 |
for x :: "'a::real_normed_div_algebra star" |
|
369 |
apply (rule InfinitesimalI) |
|
370 |
apply (subgoal_tac "x \<noteq> 0") |
|
371 |
apply (rule inverse_less_imp_less) |
|
372 |
apply (simp add: nonzero_hnorm_inverse) |
|
373 |
apply (simp add: HInfinite_def Reals_inverse) |
|
374 |
apply assumption |
|
375 |
apply (clarify, simp add: Compl_HFinite [symmetric]) |
|
376 |
done |
|
27468 | 377 |
|
378 |
lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite" |
|
64435 | 379 |
by (simp add: HInfinite_def) |
27468 | 380 |
|
64435 | 381 |
lemma HInfiniteD: "x \<in> HInfinite \<Longrightarrow> r \<in> \<real> \<Longrightarrow> r < hnorm x" |
382 |
by (simp add: HInfinite_def) |
|
27468 | 383 |
|
64435 | 384 |
lemma HInfinite_mult: "x \<in> HInfinite \<Longrightarrow> y \<in> HInfinite \<Longrightarrow> x * y \<in> HInfinite" |
385 |
for x y :: "'a::real_normed_div_algebra star" |
|
386 |
apply (rule HInfiniteI, simp only: hnorm_mult) |
|
387 |
apply (subgoal_tac "r * 1 < hnorm x * hnorm y", simp only: mult_1) |
|
388 |
apply (case_tac "x = 0", simp add: HInfinite_def) |
|
389 |
apply (rule mult_strict_mono) |
|
390 |
apply (simp_all add: HInfiniteD) |
|
391 |
done |
|
27468 | 392 |
|
64435 | 393 |
lemma hypreal_add_zero_less_le_mono: "r < x \<Longrightarrow> 0 \<le> y \<Longrightarrow> r < x + y" |
394 |
for r x y :: hypreal |
|
395 |
by (auto dest: add_less_le_mono) |
|
27468 | 396 |
|
64435 | 397 |
lemma HInfinite_add_ge_zero: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> x + y \<in> HInfinite" |
398 |
for x y :: hypreal |
|
399 |
by (auto simp: abs_if add.commute HInfinite_def) |
|
27468 | 400 |
|
64435 | 401 |
lemma HInfinite_add_ge_zero2: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y + x \<in> HInfinite" |
402 |
for x y :: hypreal |
|
403 |
by (auto intro!: HInfinite_add_ge_zero simp add: add.commute) |
|
27468 | 404 |
|
64435 | 405 |
lemma HInfinite_add_gt_zero: "x \<in> HInfinite \<Longrightarrow> 0 < y \<Longrightarrow> 0 < x \<Longrightarrow> x + y \<in> HInfinite" |
406 |
for x y :: hypreal |
|
407 |
by (blast intro: HInfinite_add_ge_zero order_less_imp_le) |
|
27468 | 408 |
|
64435 | 409 |
lemma HInfinite_minus_iff: "- x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" |
410 |
by (simp add: HInfinite_def) |
|
27468 | 411 |
|
64435 | 412 |
lemma HInfinite_add_le_zero: "x \<in> HInfinite \<Longrightarrow> y \<le> 0 \<Longrightarrow> x \<le> 0 \<Longrightarrow> x + y \<in> HInfinite" |
413 |
for x y :: hypreal |
|
414 |
apply (drule HInfinite_minus_iff [THEN iffD2]) |
|
415 |
apply (rule HInfinite_minus_iff [THEN iffD1]) |
|
416 |
apply (simp only: minus_add add.commute) |
|
417 |
apply (rule HInfinite_add_ge_zero) |
|
418 |
apply simp_all |
|
419 |
done |
|
27468 | 420 |
|
64435 | 421 |
lemma HInfinite_add_lt_zero: "x \<in> HInfinite \<Longrightarrow> y < 0 \<Longrightarrow> x < 0 \<Longrightarrow> x + y \<in> HInfinite" |
422 |
for x y :: hypreal |
|
423 |
by (blast intro: HInfinite_add_le_zero order_less_imp_le) |
|
27468 | 424 |
|
425 |
lemma HFinite_sum_squares: |
|
64435 | 426 |
"a \<in> HFinite \<Longrightarrow> b \<in> HFinite \<Longrightarrow> c \<in> HFinite \<Longrightarrow> a * a + b * b + c * c \<in> HFinite" |
427 |
for a b c :: "'a::real_normed_algebra star" |
|
428 |
by (auto intro: HFinite_mult HFinite_add) |
|
27468 | 429 |
|
64435 | 430 |
lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal \<Longrightarrow> x \<noteq> 0" |
431 |
by auto |
|
27468 | 432 |
|
64435 | 433 |
lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal \<Longrightarrow> x \<noteq> 0" |
434 |
by auto |
|
27468 | 435 |
|
436 |
lemma HFinite_diff_Infinitesimal_hrabs: |
|
64435 | 437 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<in> HFinite - Infinitesimal" |
438 |
for x :: hypreal |
|
439 |
by blast |
|
27468 | 440 |
|
64435 | 441 |
lemma hnorm_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x \<le> e \<Longrightarrow> x \<in> Infinitesimal" |
442 |
by (auto simp: Infinitesimal_def abs_less_iff) |
|
27468 | 443 |
|
64435 | 444 |
lemma hnorm_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x < e \<Longrightarrow> x \<in> Infinitesimal" |
445 |
by (erule hnorm_le_Infinitesimal, erule order_less_imp_le) |
|
27468 | 446 |
|
64435 | 447 |
lemma hrabs_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<le> e \<Longrightarrow> x \<in> Infinitesimal" |
448 |
for x :: hypreal |
|
449 |
by (erule hnorm_le_Infinitesimal) simp |
|
27468 | 450 |
|
64435 | 451 |
lemma hrabs_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> < e \<Longrightarrow> x \<in> Infinitesimal" |
452 |
for x :: hypreal |
|
453 |
by (erule hnorm_less_Infinitesimal) simp |
|
27468 | 454 |
|
455 |
lemma Infinitesimal_interval: |
|
64435 | 456 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' < x \<Longrightarrow> x < e \<Longrightarrow> x \<in> Infinitesimal" |
457 |
for x :: hypreal |
|
458 |
by (auto simp add: Infinitesimal_def abs_less_iff) |
|
27468 | 459 |
|
460 |
lemma Infinitesimal_interval2: |
|
64435 | 461 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' \<le> x \<Longrightarrow> x \<le> e \<Longrightarrow> x \<in> Infinitesimal" |
462 |
for x :: hypreal |
|
463 |
by (auto intro: Infinitesimal_interval simp add: order_le_less) |
|
27468 | 464 |
|
465 |
||
64435 | 466 |
lemma lemma_Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> \<bar>x pow N\<bar> \<le> \<bar>x\<bar>" |
467 |
for x :: hypreal |
|
468 |
apply (unfold Infinitesimal_def) |
|
469 |
apply (auto intro!: hyperpow_Suc_le_self2 |
|
470 |
simp: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero) |
|
471 |
done |
|
27468 | 472 |
|
64435 | 473 |
lemma Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> x pow N \<in> Infinitesimal" |
474 |
for x :: hypreal |
|
475 |
apply (rule hrabs_le_Infinitesimal) |
|
476 |
apply (rule_tac [2] lemma_Infinitesimal_hyperpow) |
|
477 |
apply auto |
|
478 |
done |
|
27468 | 479 |
|
480 |
lemma hrealpow_hyperpow_Infinitesimal_iff: |
|
64435 | 481 |
"(x ^ n \<in> Infinitesimal) \<longleftrightarrow> x pow (hypnat_of_nat n) \<in> Infinitesimal" |
482 |
by (simp only: hyperpow_hypnat_of_nat) |
|
27468 | 483 |
|
64435 | 484 |
lemma Infinitesimal_hrealpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < n \<Longrightarrow> x ^ n \<in> Infinitesimal" |
485 |
for x :: hypreal |
|
486 |
by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow) |
|
27468 | 487 |
|
488 |
lemma not_Infinitesimal_mult: |
|
64435 | 489 |
"x \<notin> Infinitesimal \<Longrightarrow> y \<notin> Infinitesimal \<Longrightarrow> x * y \<notin> Infinitesimal" |
490 |
for x y :: "'a::real_normed_div_algebra star" |
|
491 |
apply (unfold Infinitesimal_def, clarify, rename_tac r s) |
|
492 |
apply (simp only: linorder_not_less hnorm_mult) |
|
493 |
apply (drule_tac x = "r * s" in bspec) |
|
494 |
apply (fast intro: Reals_mult) |
|
495 |
apply simp |
|
496 |
apply (drule_tac c = s and d = "hnorm y" and a = r and b = "hnorm x" in mult_mono) |
|
497 |
apply simp_all |
|
498 |
done |
|
27468 | 499 |
|
64435 | 500 |
lemma Infinitesimal_mult_disj: "x * y \<in> Infinitesimal \<Longrightarrow> x \<in> Infinitesimal \<or> y \<in> Infinitesimal" |
501 |
for x y :: "'a::real_normed_div_algebra star" |
|
502 |
apply (rule ccontr) |
|
503 |
apply (drule de_Morgan_disj [THEN iffD1]) |
|
504 |
apply (fast dest: not_Infinitesimal_mult) |
|
505 |
done |
|
27468 | 506 |
|
64435 | 507 |
lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal \<Longrightarrow> x \<noteq> 0" |
508 |
by blast |
|
27468 | 509 |
|
510 |
lemma HFinite_Infinitesimal_diff_mult: |
|
64435 | 511 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HFinite - Infinitesimal" |
512 |
for x y :: "'a::real_normed_div_algebra star" |
|
513 |
apply clarify |
|
514 |
apply (blast dest: HFinite_mult not_Infinitesimal_mult) |
|
515 |
done |
|
27468 | 516 |
|
64435 | 517 |
lemma Infinitesimal_subset_HFinite: "Infinitesimal \<subseteq> HFinite" |
518 |
apply (simp add: Infinitesimal_def HFinite_def) |
|
519 |
apply auto |
|
520 |
apply (rule_tac x = 1 in bexI) |
|
521 |
apply auto |
|
522 |
done |
|
27468 | 523 |
|
64435 | 524 |
lemma Infinitesimal_star_of_mult: "x \<in> Infinitesimal \<Longrightarrow> x * star_of r \<in> Infinitesimal" |
525 |
for x :: "'a::real_normed_algebra star" |
|
526 |
by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult]) |
|
27468 | 527 |
|
64435 | 528 |
lemma Infinitesimal_star_of_mult2: "x \<in> Infinitesimal \<Longrightarrow> star_of r * x \<in> Infinitesimal" |
529 |
for x :: "'a::real_normed_algebra star" |
|
530 |
by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult2]) |
|
27468 | 531 |
|
532 |
||
64435 | 533 |
subsection \<open>The Infinitely Close Relation\<close> |
27468 | 534 |
|
64435 | 535 |
lemma mem_infmal_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<approx> 0" |
536 |
by (simp add: Infinitesimal_def approx_def) |
|
27468 | 537 |
|
64435 | 538 |
lemma approx_minus_iff: "x \<approx> y \<longleftrightarrow> x - y \<approx> 0" |
539 |
by (simp add: approx_def) |
|
27468 | 540 |
|
64435 | 541 |
lemma approx_minus_iff2: "x \<approx> y \<longleftrightarrow> - y + x \<approx> 0" |
542 |
by (simp add: approx_def add.commute) |
|
27468 | 543 |
|
61982 | 544 |
lemma approx_refl [iff]: "x \<approx> x" |
64435 | 545 |
by (simp add: approx_def Infinitesimal_def) |
27468 | 546 |
|
64435 | 547 |
lemma hypreal_minus_distrib1: "- (y + - x) = x + -y" |
548 |
for x y :: "'a::ab_group_add" |
|
549 |
by (simp add: add.commute) |
|
27468 | 550 |
|
64435 | 551 |
lemma approx_sym: "x \<approx> y \<Longrightarrow> y \<approx> x" |
552 |
apply (simp add: approx_def) |
|
553 |
apply (drule Infinitesimal_minus_iff [THEN iffD2]) |
|
554 |
apply simp |
|
555 |
done |
|
27468 | 556 |
|
64435 | 557 |
lemma approx_trans: "x \<approx> y \<Longrightarrow> y \<approx> z \<Longrightarrow> x \<approx> z" |
558 |
apply (simp add: approx_def) |
|
559 |
apply (drule (1) Infinitesimal_add) |
|
560 |
apply simp |
|
561 |
done |
|
27468 | 562 |
|
64435 | 563 |
lemma approx_trans2: "r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r \<approx> s" |
564 |
by (blast intro: approx_sym approx_trans) |
|
27468 | 565 |
|
64435 | 566 |
lemma approx_trans3: "x \<approx> r \<Longrightarrow> x \<approx> s \<Longrightarrow> r \<approx> s" |
567 |
by (blast intro: approx_sym approx_trans) |
|
27468 | 568 |
|
64435 | 569 |
lemma approx_reorient: "x \<approx> y \<longleftrightarrow> y \<approx> x" |
570 |
by (blast intro: approx_sym) |
|
27468 | 571 |
|
64435 | 572 |
text \<open>Reorientation simplification procedure: reorients (polymorphic) |
573 |
\<open>0 = x\<close>, \<open>1 = x\<close>, \<open>nnn = x\<close> provided \<open>x\<close> isn't \<open>0\<close>, \<open>1\<close> or a numeral.\<close> |
|
45541
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
574 |
simproc_setup approx_reorient_simproc |
61982 | 575 |
("0 \<approx> x" | "1 \<approx> y" | "numeral w \<approx> z" | "- 1 \<approx> y" | "- numeral w \<approx> r") = |
61975 | 576 |
\<open> |
45541
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
577 |
let val rule = @{thm approx_reorient} RS eq_reflection |
59582 | 578 |
fun proc phi ss ct = |
579 |
case Thm.term_of ct of |
|
45541
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
580 |
_ $ t $ u => if can HOLogic.dest_number u then NONE |
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
581 |
else if can HOLogic.dest_number t then SOME rule else NONE |
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
582 |
| _ => NONE |
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
583 |
in proc end |
61975 | 584 |
\<close> |
27468 | 585 |
|
64435 | 586 |
lemma Infinitesimal_approx_minus: "x - y \<in> Infinitesimal \<longleftrightarrow> x \<approx> y" |
587 |
by (simp add: approx_minus_iff [symmetric] mem_infmal_iff) |
|
27468 | 588 |
|
64435 | 589 |
lemma approx_monad_iff: "x \<approx> y \<longleftrightarrow> monad x = monad y" |
590 |
by (auto simp add: monad_def dest: approx_sym elim!: approx_trans equalityCE) |
|
27468 | 591 |
|
64435 | 592 |
lemma Infinitesimal_approx: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x \<approx> y" |
593 |
apply (simp add: mem_infmal_iff) |
|
594 |
apply (blast intro: approx_trans approx_sym) |
|
595 |
done |
|
27468 | 596 |
|
64435 | 597 |
lemma approx_add: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + c \<approx> b + d" |
27468 | 598 |
proof (unfold approx_def) |
599 |
assume inf: "a - b \<in> Infinitesimal" "c - d \<in> Infinitesimal" |
|
600 |
have "a + c - (b + d) = (a - b) + (c - d)" by simp |
|
64435 | 601 |
also have "... \<in> Infinitesimal" |
602 |
using inf by (rule Infinitesimal_add) |
|
27468 | 603 |
finally show "a + c - (b + d) \<in> Infinitesimal" . |
604 |
qed |
|
605 |
||
64435 | 606 |
lemma approx_minus: "a \<approx> b \<Longrightarrow> - a \<approx> - b" |
607 |
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) |
|
608 |
apply (drule approx_minus_iff [THEN iffD1]) |
|
609 |
apply (simp add: add.commute) |
|
610 |
done |
|
27468 | 611 |
|
64435 | 612 |
lemma approx_minus2: "- a \<approx> - b \<Longrightarrow> a \<approx> b" |
613 |
by (auto dest: approx_minus) |
|
27468 | 614 |
|
64435 | 615 |
lemma approx_minus_cancel [simp]: "- a \<approx> - b \<longleftrightarrow> a \<approx> b" |
616 |
by (blast intro: approx_minus approx_minus2) |
|
27468 | 617 |
|
64435 | 618 |
lemma approx_add_minus: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + - c \<approx> b + - d" |
619 |
by (blast intro!: approx_add approx_minus) |
|
27468 | 620 |
|
64435 | 621 |
lemma approx_diff: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a - c \<approx> b - d" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
51521
diff
changeset
|
622 |
using approx_add [of a b "- c" "- d"] by simp |
27468 | 623 |
|
64435 | 624 |
lemma approx_mult1: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> a * c \<approx> b * c" |
625 |
for a b c :: "'a::real_normed_algebra star" |
|
626 |
by (simp add: approx_def Infinitesimal_HFinite_mult left_diff_distrib [symmetric]) |
|
627 |
||
628 |
lemma approx_mult2: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> c * a \<approx> c * b" |
|
629 |
for a b c :: "'a::real_normed_algebra star" |
|
630 |
by (simp add: approx_def Infinitesimal_HFinite_mult2 right_diff_distrib [symmetric]) |
|
27468 | 631 |
|
64435 | 632 |
lemma approx_mult_subst: "u \<approx> v * x \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> v * y" |
633 |
for u v x y :: "'a::real_normed_algebra star" |
|
634 |
by (blast intro: approx_mult2 approx_trans) |
|
27468 | 635 |
|
64435 | 636 |
lemma approx_mult_subst2: "u \<approx> x * v \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> y * v" |
637 |
for u v x y :: "'a::real_normed_algebra star" |
|
638 |
by (blast intro: approx_mult1 approx_trans) |
|
27468 | 639 |
|
64435 | 640 |
lemma approx_mult_subst_star_of: "u \<approx> x * star_of v \<Longrightarrow> x \<approx> y \<Longrightarrow> u \<approx> y * star_of v" |
641 |
for u x y :: "'a::real_normed_algebra star" |
|
642 |
by (auto intro: approx_mult_subst2) |
|
27468 | 643 |
|
64435 | 644 |
lemma approx_eq_imp: "a = b \<Longrightarrow> a \<approx> b" |
645 |
by (simp add: approx_def) |
|
27468 | 646 |
|
64435 | 647 |
lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal \<Longrightarrow> - x \<approx> x" |
648 |
by (blast intro: Infinitesimal_minus_iff [THEN iffD2] mem_infmal_iff [THEN iffD1] approx_trans2) |
|
27468 | 649 |
|
64435 | 650 |
lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x - z = y) \<longleftrightarrow> x \<approx> z" |
651 |
by (simp add: approx_def) |
|
27468 | 652 |
|
64435 | 653 |
lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) \<longleftrightarrow> x \<approx> z" |
654 |
by (force simp add: bex_Infinitesimal_iff [symmetric]) |
|
27468 | 655 |
|
64435 | 656 |
lemma Infinitesimal_add_approx: "y \<in> Infinitesimal \<Longrightarrow> x + y = z \<Longrightarrow> x \<approx> z" |
657 |
apply (rule bex_Infinitesimal_iff [THEN iffD1]) |
|
658 |
apply (drule Infinitesimal_minus_iff [THEN iffD2]) |
|
659 |
apply (auto simp add: add.assoc [symmetric]) |
|
660 |
done |
|
27468 | 661 |
|
64435 | 662 |
lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + y" |
663 |
apply (rule bex_Infinitesimal_iff [THEN iffD1]) |
|
664 |
apply (drule Infinitesimal_minus_iff [THEN iffD2]) |
|
665 |
apply (auto simp add: add.assoc [symmetric]) |
|
666 |
done |
|
27468 | 667 |
|
64435 | 668 |
lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> y + x" |
669 |
by (auto dest: Infinitesimal_add_approx_self simp add: add.commute) |
|
27468 | 670 |
|
64435 | 671 |
lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + - y" |
672 |
by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) |
|
27468 | 673 |
|
64435 | 674 |
lemma Infinitesimal_add_cancel: "y \<in> Infinitesimal \<Longrightarrow> x + y \<approx> z \<Longrightarrow> x \<approx> z" |
675 |
apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym]) |
|
676 |
apply (erule approx_trans3 [THEN approx_sym], assumption) |
|
677 |
done |
|
27468 | 678 |
|
64435 | 679 |
lemma Infinitesimal_add_right_cancel: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> z + y \<Longrightarrow> x \<approx> z" |
680 |
apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym]) |
|
681 |
apply (erule approx_trans3 [THEN approx_sym]) |
|
682 |
apply (simp add: add.commute) |
|
683 |
apply (erule approx_sym) |
|
684 |
done |
|
27468 | 685 |
|
64435 | 686 |
lemma approx_add_left_cancel: "d + b \<approx> d + c \<Longrightarrow> b \<approx> c" |
687 |
apply (drule approx_minus_iff [THEN iffD1]) |
|
688 |
apply (simp add: approx_minus_iff [symmetric] ac_simps) |
|
689 |
done |
|
27468 | 690 |
|
64435 | 691 |
lemma approx_add_right_cancel: "b + d \<approx> c + d \<Longrightarrow> b \<approx> c" |
692 |
apply (rule approx_add_left_cancel) |
|
693 |
apply (simp add: add.commute) |
|
694 |
done |
|
27468 | 695 |
|
64435 | 696 |
lemma approx_add_mono1: "b \<approx> c \<Longrightarrow> d + b \<approx> d + c" |
697 |
apply (rule approx_minus_iff [THEN iffD2]) |
|
698 |
apply (simp add: approx_minus_iff [symmetric] ac_simps) |
|
699 |
done |
|
27468 | 700 |
|
64435 | 701 |
lemma approx_add_mono2: "b \<approx> c \<Longrightarrow> b + a \<approx> c + a" |
702 |
by (simp add: add.commute approx_add_mono1) |
|
27468 | 703 |
|
64435 | 704 |
lemma approx_add_left_iff [simp]: "a + b \<approx> a + c \<longleftrightarrow> b \<approx> c" |
705 |
by (fast elim: approx_add_left_cancel approx_add_mono1) |
|
27468 | 706 |
|
64435 | 707 |
lemma approx_add_right_iff [simp]: "b + a \<approx> c + a \<longleftrightarrow> b \<approx> c" |
708 |
by (simp add: add.commute) |
|
27468 | 709 |
|
64435 | 710 |
lemma approx_HFinite: "x \<in> HFinite \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<in> HFinite" |
711 |
apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe) |
|
712 |
apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]]) |
|
713 |
apply (drule HFinite_add) |
|
714 |
apply (auto simp add: add.assoc) |
|
715 |
done |
|
27468 | 716 |
|
64435 | 717 |
lemma approx_star_of_HFinite: "x \<approx> star_of D \<Longrightarrow> x \<in> HFinite" |
718 |
by (rule approx_sym [THEN [2] approx_HFinite], auto) |
|
27468 | 719 |
|
64435 | 720 |
lemma approx_mult_HFinite: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> b \<in> HFinite \<Longrightarrow> d \<in> HFinite \<Longrightarrow> a * c \<approx> b * d" |
721 |
for a b c d :: "'a::real_normed_algebra star" |
|
722 |
apply (rule approx_trans) |
|
723 |
apply (rule_tac [2] approx_mult2) |
|
724 |
apply (rule approx_mult1) |
|
725 |
prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) |
|
726 |
done |
|
27468 | 727 |
|
64435 | 728 |
lemma scaleHR_left_diff_distrib: "\<And>a b x. scaleHR (a - b) x = scaleHR a x - scaleHR b x" |
729 |
by transfer (rule scaleR_left_diff_distrib) |
|
27468 | 730 |
|
64435 | 731 |
lemma approx_scaleR1: "a \<approx> star_of b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R c" |
732 |
apply (unfold approx_def) |
|
733 |
apply (drule (1) Infinitesimal_HFinite_scaleHR) |
|
734 |
apply (simp only: scaleHR_left_diff_distrib) |
|
735 |
apply (simp add: scaleHR_def star_scaleR_def [symmetric]) |
|
736 |
done |
|
27468 | 737 |
|
64435 | 738 |
lemma approx_scaleR2: "a \<approx> b \<Longrightarrow> c *\<^sub>R a \<approx> c *\<^sub>R b" |
739 |
by (simp add: approx_def Infinitesimal_scaleR2 scaleR_right_diff_distrib [symmetric]) |
|
740 |
||
741 |
lemma approx_scaleR_HFinite: "a \<approx> star_of b \<Longrightarrow> c \<approx> d \<Longrightarrow> d \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R d" |
|
742 |
apply (rule approx_trans) |
|
743 |
apply (rule_tac [2] approx_scaleR2) |
|
744 |
apply (rule approx_scaleR1) |
|
745 |
prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) |
|
746 |
done |
|
27468 | 747 |
|
64435 | 748 |
lemma approx_mult_star_of: "a \<approx> star_of b \<Longrightarrow> c \<approx> star_of d \<Longrightarrow> a * c \<approx> star_of b * star_of d" |
749 |
for a c :: "'a::real_normed_algebra star" |
|
750 |
by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of) |
|
751 |
||
752 |
lemma approx_SReal_mult_cancel_zero: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * x \<approx> 0 \<Longrightarrow> x \<approx> 0" |
|
753 |
for a x :: hypreal |
|
754 |
apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) |
|
755 |
apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) |
|
756 |
done |
|
27468 | 757 |
|
64435 | 758 |
lemma approx_mult_SReal1: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> x * a \<approx> 0" |
759 |
for a x :: hypreal |
|
760 |
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) |
|
27468 | 761 |
|
64435 | 762 |
lemma approx_mult_SReal2: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> a * x \<approx> 0" |
763 |
for a x :: hypreal |
|
764 |
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) |
|
27468 | 765 |
|
64435 | 766 |
lemma approx_mult_SReal_zero_cancel_iff [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * x \<approx> 0 \<longleftrightarrow> x \<approx> 0" |
767 |
for a x :: hypreal |
|
768 |
by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) |
|
27468 | 769 |
|
64435 | 770 |
lemma approx_SReal_mult_cancel: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * w \<approx> a * z \<Longrightarrow> w \<approx> z" |
771 |
for a w z :: hypreal |
|
772 |
apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) |
|
773 |
apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) |
|
774 |
done |
|
27468 | 775 |
|
64435 | 776 |
lemma approx_SReal_mult_cancel_iff1 [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" |
777 |
for a w z :: hypreal |
|
778 |
by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD] |
|
779 |
intro: approx_SReal_mult_cancel) |
|
27468 | 780 |
|
64435 | 781 |
lemma approx_le_bound: "z \<le> f \<Longrightarrow> f \<approx> g \<Longrightarrow> g \<le> z ==> f \<approx> z" |
782 |
for z :: hypreal |
|
783 |
apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto) |
|
784 |
apply (rule_tac x = "g + y - z" in bexI) |
|
785 |
apply simp |
|
786 |
apply (rule Infinitesimal_interval2) |
|
787 |
apply (rule_tac [2] Infinitesimal_zero, auto) |
|
788 |
done |
|
27468 | 789 |
|
64435 | 790 |
lemma approx_hnorm: "x \<approx> y \<Longrightarrow> hnorm x \<approx> hnorm y" |
791 |
for x y :: "'a::real_normed_vector star" |
|
27468 | 792 |
proof (unfold approx_def) |
793 |
assume "x - y \<in> Infinitesimal" |
|
64435 | 794 |
then have "hnorm (x - y) \<in> Infinitesimal" |
27468 | 795 |
by (simp only: Infinitesimal_hnorm_iff) |
64435 | 796 |
moreover have "(0::real star) \<in> Infinitesimal" |
27468 | 797 |
by (rule Infinitesimal_zero) |
64435 | 798 |
moreover have "0 \<le> \<bar>hnorm x - hnorm y\<bar>" |
27468 | 799 |
by (rule abs_ge_zero) |
64435 | 800 |
moreover have "\<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" |
27468 | 801 |
by (rule hnorm_triangle_ineq3) |
802 |
ultimately have "\<bar>hnorm x - hnorm y\<bar> \<in> Infinitesimal" |
|
803 |
by (rule Infinitesimal_interval2) |
|
64435 | 804 |
then show "hnorm x - hnorm y \<in> Infinitesimal" |
27468 | 805 |
by (simp only: Infinitesimal_hrabs_iff) |
806 |
qed |
|
807 |
||
808 |
||
64435 | 809 |
subsection \<open>Zero is the Only Infinitesimal that is also a Real\<close> |
27468 | 810 |
|
64435 | 811 |
lemma Infinitesimal_less_SReal: "x \<in> \<real> \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> 0 < x \<Longrightarrow> y < x" |
812 |
for x y :: hypreal |
|
813 |
apply (simp add: Infinitesimal_def) |
|
814 |
apply (rule abs_ge_self [THEN order_le_less_trans], auto) |
|
815 |
done |
|
27468 | 816 |
|
64435 | 817 |
lemma Infinitesimal_less_SReal2: "y \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> y < r" |
818 |
for y :: hypreal |
|
819 |
by (blast intro: Infinitesimal_less_SReal) |
|
27468 | 820 |
|
64435 | 821 |
lemma SReal_not_Infinitesimal: "0 < y \<Longrightarrow> y \<in> \<real> ==> y \<notin> Infinitesimal" |
822 |
for y :: hypreal |
|
823 |
apply (simp add: Infinitesimal_def) |
|
824 |
apply (auto simp add: abs_if) |
|
825 |
done |
|
27468 | 826 |
|
64435 | 827 |
lemma SReal_minus_not_Infinitesimal: "y < 0 \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y \<notin> Infinitesimal" |
828 |
for y :: hypreal |
|
829 |
apply (subst Infinitesimal_minus_iff [symmetric]) |
|
830 |
apply (rule SReal_not_Infinitesimal, auto) |
|
831 |
done |
|
27468 | 832 |
|
61070 | 833 |
lemma SReal_Int_Infinitesimal_zero: "\<real> Int Infinitesimal = {0::hypreal}" |
64435 | 834 |
apply auto |
835 |
apply (cut_tac x = x and y = 0 in linorder_less_linear) |
|
836 |
apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) |
|
837 |
done |
|
27468 | 838 |
|
64435 | 839 |
lemma SReal_Infinitesimal_zero: "x \<in> \<real> \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> x = 0" |
840 |
for x :: hypreal |
|
841 |
using SReal_Int_Infinitesimal_zero by blast |
|
27468 | 842 |
|
64435 | 843 |
lemma SReal_HFinite_diff_Infinitesimal: "x \<in> \<real> \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> x \<in> HFinite - Infinitesimal" |
844 |
for x :: hypreal |
|
845 |
by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) |
|
27468 | 846 |
|
847 |
lemma hypreal_of_real_HFinite_diff_Infinitesimal: |
|
64435 | 848 |
"hypreal_of_real x \<noteq> 0 \<Longrightarrow> hypreal_of_real x \<in> HFinite - Infinitesimal" |
849 |
by (rule SReal_HFinite_diff_Infinitesimal) auto |
|
27468 | 850 |
|
64435 | 851 |
lemma star_of_Infinitesimal_iff_0 [iff]: "star_of x \<in> Infinitesimal \<longleftrightarrow> x = 0" |
852 |
apply (auto simp add: Infinitesimal_def) |
|
853 |
apply (drule_tac x="hnorm (star_of x)" in bspec) |
|
854 |
apply (simp add: SReal_def) |
|
855 |
apply (rule_tac x="norm x" in exI, simp) |
|
856 |
apply simp |
|
857 |
done |
|
27468 | 858 |
|
64435 | 859 |
lemma star_of_HFinite_diff_Infinitesimal: "x \<noteq> 0 \<Longrightarrow> star_of x \<in> HFinite - Infinitesimal" |
860 |
by simp |
|
27468 | 861 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
862 |
lemma numeral_not_Infinitesimal [simp]: |
64435 | 863 |
"numeral w \<noteq> (0::hypreal) \<Longrightarrow> (numeral w :: hypreal) \<notin> Infinitesimal" |
864 |
by (fast dest: Reals_numeral [THEN SReal_Infinitesimal_zero]) |
|
27468 | 865 |
|
64435 | 866 |
text \<open>Again: \<open>1\<close> is a special case, but not \<open>0\<close> this time.\<close> |
27468 | 867 |
lemma one_not_Infinitesimal [simp]: |
868 |
"(1::'a::{real_normed_vector,zero_neq_one} star) \<notin> Infinitesimal" |
|
64435 | 869 |
apply (simp only: star_one_def star_of_Infinitesimal_iff_0) |
870 |
apply simp |
|
871 |
done |
|
27468 | 872 |
|
64435 | 873 |
lemma approx_SReal_not_zero: "y \<in> \<real> \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> x \<noteq> 0" |
874 |
for x y :: hypreal |
|
875 |
apply (cut_tac x = 0 and y = y in linorder_less_linear, simp) |
|
876 |
apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] |
|
877 |
SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) |
|
878 |
done |
|
27468 | 879 |
|
880 |
lemma HFinite_diff_Infinitesimal_approx: |
|
64435 | 881 |
"x \<approx> y \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x \<in> HFinite - Infinitesimal" |
882 |
apply (auto intro: approx_sym [THEN [2] approx_HFinite] simp: mem_infmal_iff) |
|
883 |
apply (drule approx_trans3, assumption) |
|
884 |
apply (blast dest: approx_sym) |
|
885 |
done |
|
27468 | 886 |
|
64435 | 887 |
text \<open>The premise \<open>y \<noteq> 0\<close> is essential; otherwise \<open>x / y = 0\<close> and we lose the |
888 |
\<open>HFinite\<close> premise.\<close> |
|
27468 | 889 |
lemma Infinitesimal_ratio: |
64435 | 890 |
"y \<noteq> 0 \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x / y \<in> HFinite \<Longrightarrow> x \<in> Infinitesimal" |
891 |
for x y :: "'a::{real_normed_div_algebra,field} star" |
|
892 |
apply (drule Infinitesimal_HFinite_mult2, assumption) |
|
893 |
apply (simp add: divide_inverse mult.assoc) |
|
894 |
done |
|
895 |
||
896 |
lemma Infinitesimal_SReal_divide: "x \<in> Infinitesimal \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x / y \<in> Infinitesimal" |
|
897 |
for x y :: hypreal |
|
898 |
apply (simp add: divide_inverse) |
|
899 |
apply (auto intro!: Infinitesimal_HFinite_mult |
|
900 |
dest!: Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) |
|
901 |
done |
|
902 |
||
903 |
||
904 |
section \<open>Standard Part Theorem\<close> |
|
27468 | 905 |
|
64435 | 906 |
text \<open> |
907 |
Every finite \<open>x \<in> R*\<close> is infinitely close to a unique real number |
|
908 |
(i.e. a member of \<open>Reals\<close>). |
|
909 |
\<close> |
|
27468 | 910 |
|
911 |
||
64435 | 912 |
subsection \<open>Uniqueness: Two Infinitely Close Reals are Equal\<close> |
27468 | 913 |
|
64435 | 914 |
lemma star_of_approx_iff [simp]: "star_of x \<approx> star_of y \<longleftrightarrow> x = y" |
915 |
apply safe |
|
916 |
apply (simp add: approx_def) |
|
917 |
apply (simp only: star_of_diff [symmetric]) |
|
918 |
apply (simp only: star_of_Infinitesimal_iff_0) |
|
919 |
apply simp |
|
920 |
done |
|
27468 | 921 |
|
64435 | 922 |
lemma SReal_approx_iff: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<approx> y \<longleftrightarrow> x = y" |
923 |
for x y :: hypreal |
|
924 |
apply auto |
|
925 |
apply (simp add: approx_def) |
|
926 |
apply (drule (1) Reals_diff) |
|
927 |
apply (drule (1) SReal_Infinitesimal_zero) |
|
928 |
apply simp |
|
929 |
done |
|
27468 | 930 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
931 |
lemma numeral_approx_iff [simp]: |
64435 | 932 |
"(numeral v \<approx> (numeral w :: 'a::{numeral,real_normed_vector} star)) = |
933 |
(numeral v = (numeral w :: 'a))" |
|
934 |
apply (unfold star_numeral_def) |
|
935 |
apply (rule star_of_approx_iff) |
|
936 |
done |
|
27468 | 937 |
|
64435 | 938 |
text \<open>And also for \<open>0 \<approx> #nn\<close> and \<open>1 \<approx> #nn\<close>, \<open>#nn \<approx> 0\<close> and \<open>#nn \<approx> 1\<close>.\<close> |
27468 | 939 |
lemma [simp]: |
64435 | 940 |
"(numeral w \<approx> (0::'a::{numeral,real_normed_vector} star)) = (numeral w = (0::'a))" |
941 |
"((0::'a::{numeral,real_normed_vector} star) \<approx> numeral w) = (numeral w = (0::'a))" |
|
942 |
"(numeral w \<approx> (1::'b::{numeral,one,real_normed_vector} star)) = (numeral w = (1::'b))" |
|
943 |
"((1::'b::{numeral,one,real_normed_vector} star) \<approx> numeral w) = (numeral w = (1::'b))" |
|
944 |
"\<not> (0 \<approx> (1::'c::{zero_neq_one,real_normed_vector} star))" |
|
945 |
"\<not> (1 \<approx> (0::'c::{zero_neq_one,real_normed_vector} star))" |
|
946 |
apply (unfold star_numeral_def star_zero_def star_one_def) |
|
947 |
apply (unfold star_of_approx_iff) |
|
948 |
apply (auto intro: sym) |
|
949 |
done |
|
27468 | 950 |
|
64435 | 951 |
lemma star_of_approx_numeral_iff [simp]: "star_of k \<approx> numeral w \<longleftrightarrow> k = numeral w" |
952 |
by (subst star_of_approx_iff [symmetric]) auto |
|
27468 | 953 |
|
64435 | 954 |
lemma star_of_approx_zero_iff [simp]: "star_of k \<approx> 0 \<longleftrightarrow> k = 0" |
955 |
by (simp_all add: star_of_approx_iff [symmetric]) |
|
27468 | 956 |
|
64435 | 957 |
lemma star_of_approx_one_iff [simp]: "star_of k \<approx> 1 \<longleftrightarrow> k = 1" |
958 |
by (simp_all add: star_of_approx_iff [symmetric]) |
|
27468 | 959 |
|
64435 | 960 |
lemma approx_unique_real: "r \<in> \<real> \<Longrightarrow> s \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r = s" |
961 |
for r s :: hypreal |
|
962 |
by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) |
|
27468 | 963 |
|
964 |
||
64435 | 965 |
subsection \<open>Existence of Unique Real Infinitely Close\<close> |
27468 | 966 |
|
64435 | 967 |
subsubsection \<open>Lifting of the Ub and Lub Properties\<close> |
27468 | 968 |
|
64435 | 969 |
lemma hypreal_of_real_isUb_iff: "isUb \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isUb UNIV Q Y" |
970 |
for Q :: "real set" and Y :: real |
|
971 |
by (simp add: isUb_def setle_def) |
|
27468 | 972 |
|
64435 | 973 |
lemma hypreal_of_real_isLub1: "isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) \<Longrightarrow> isLub UNIV Q Y" |
974 |
for Q :: "real set" and Y :: real |
|
975 |
apply (simp add: isLub_def leastP_def) |
|
976 |
apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2] |
|
977 |
simp add: hypreal_of_real_isUb_iff setge_def) |
|
978 |
done |
|
27468 | 979 |
|
64435 | 980 |
lemma hypreal_of_real_isLub2: "isLub UNIV Q Y \<Longrightarrow> isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)" |
981 |
for Q :: "real set" and Y :: real |
|
982 |
apply (auto simp add: isLub_def leastP_def hypreal_of_real_isUb_iff setge_def) |
|
983 |
apply (metis SReal_iff hypreal_of_real_isUb_iff isUbD2a star_of_le) |
|
984 |
done |
|
27468 | 985 |
|
986 |
lemma hypreal_of_real_isLub_iff: |
|
64435 | 987 |
"isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isLub (UNIV :: real set) Q Y" |
988 |
for Q :: "real set" and Y :: real |
|
989 |
by (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2) |
|
27468 | 990 |
|
64435 | 991 |
lemma lemma_isUb_hypreal_of_real: "isUb \<real> P Y \<Longrightarrow> \<exists>Yo. isUb \<real> P (hypreal_of_real Yo)" |
992 |
by (auto simp add: SReal_iff isUb_def) |
|
993 |
||
994 |
lemma lemma_isLub_hypreal_of_real: "isLub \<real> P Y \<Longrightarrow> \<exists>Yo. isLub \<real> P (hypreal_of_real Yo)" |
|
995 |
by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) |
|
27468 | 996 |
|
64435 | 997 |
lemma lemma_isLub_hypreal_of_real2: "\<exists>Yo. isLub \<real> P (hypreal_of_real Yo) \<Longrightarrow> \<exists>Y. isLub \<real> P Y" |
998 |
by (auto simp add: isLub_def leastP_def isUb_def) |
|
27468 | 999 |
|
64435 | 1000 |
lemma SReal_complete: "P \<subseteq> \<real> \<Longrightarrow> \<exists>x. x \<in> P \<Longrightarrow> \<exists>Y. isUb \<real> P Y \<Longrightarrow> \<exists>t::hypreal. isLub \<real> P t" |
1001 |
apply (frule SReal_hypreal_of_real_image) |
|
1002 |
apply (auto, drule lemma_isUb_hypreal_of_real) |
|
1003 |
apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2 |
|
1004 |
simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff) |
|
1005 |
done |
|
1006 |
||
27468 | 1007 |
|
64435 | 1008 |
text \<open>Lemmas about lubs.\<close> |
27468 | 1009 |
|
64435 | 1010 |
lemma lemma_st_part_ub: "x \<in> HFinite \<Longrightarrow> \<exists>u. isUb \<real> {s. s \<in> \<real> \<and> s < x} u" |
1011 |
for x :: hypreal |
|
1012 |
apply (drule HFiniteD, safe) |
|
1013 |
apply (rule exI, rule isUbI) |
|
1014 |
apply (auto intro: setleI isUbI simp add: abs_less_iff) |
|
1015 |
done |
|
27468 | 1016 |
|
64435 | 1017 |
lemma lemma_st_part_nonempty: "x \<in> HFinite \<Longrightarrow> \<exists>y. y \<in> {s. s \<in> \<real> \<and> s < x}" |
1018 |
for x :: hypreal |
|
1019 |
apply (drule HFiniteD, safe) |
|
1020 |
apply (drule Reals_minus) |
|
1021 |
apply (rule_tac x = "-t" in exI) |
|
1022 |
apply (auto simp add: abs_less_iff) |
|
1023 |
done |
|
27468 | 1024 |
|
64435 | 1025 |
lemma lemma_st_part_lub: "x \<in> HFinite \<Longrightarrow> \<exists>t. isLub \<real> {s. s \<in> \<real> \<and> s < x} t" |
1026 |
for x :: hypreal |
|
1027 |
by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty Collect_restrict) |
|
27468 | 1028 |
|
1029 |
lemma lemma_st_part_le1: |
|
64435 | 1030 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x \<le> t + r" |
1031 |
for x r t :: hypreal |
|
1032 |
apply (frule isLubD1a) |
|
1033 |
apply (rule ccontr, drule linorder_not_le [THEN iffD2]) |
|
1034 |
apply (drule (1) Reals_add) |
|
1035 |
apply (drule_tac y = "r + t" in isLubD1 [THEN setleD], auto) |
|
1036 |
done |
|
27468 | 1037 |
|
64435 | 1038 |
lemma hypreal_setle_less_trans: "S *<= x \<Longrightarrow> x < y \<Longrightarrow> S *<= y" |
1039 |
for x y :: hypreal |
|
1040 |
apply (simp add: setle_def) |
|
1041 |
apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le) |
|
1042 |
done |
|
27468 | 1043 |
|
64435 | 1044 |
lemma hypreal_gt_isUb: "isUb R S x \<Longrightarrow> x < y \<Longrightarrow> y \<in> R \<Longrightarrow> isUb R S y" |
1045 |
for x y :: hypreal |
|
1046 |
apply (simp add: isUb_def) |
|
1047 |
apply (blast intro: hypreal_setle_less_trans) |
|
1048 |
done |
|
27468 | 1049 |
|
64435 | 1050 |
lemma lemma_st_part_gt_ub: "x \<in> HFinite \<Longrightarrow> x < y \<Longrightarrow> y \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} y" |
1051 |
for x y :: hypreal |
|
1052 |
by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) |
|
27468 | 1053 |
|
64435 | 1054 |
lemma lemma_minus_le_zero: "t \<le> t + -r \<Longrightarrow> r \<le> 0" |
1055 |
for r t :: hypreal |
|
1056 |
apply (drule_tac c = "-t" in add_left_mono) |
|
1057 |
apply (auto simp add: add.assoc [symmetric]) |
|
1058 |
done |
|
27468 | 1059 |
|
1060 |
lemma lemma_st_part_le2: |
|
64435 | 1061 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> t + -r \<le> x" |
1062 |
for x r t :: hypreal |
|
1063 |
apply (frule isLubD1a) |
|
1064 |
apply (rule ccontr, drule linorder_not_le [THEN iffD1]) |
|
1065 |
apply (drule Reals_minus, drule_tac a = t in Reals_add, assumption) |
|
1066 |
apply (drule lemma_st_part_gt_ub, assumption+) |
|
1067 |
apply (drule isLub_le_isUb, assumption) |
|
1068 |
apply (drule lemma_minus_le_zero) |
|
1069 |
apply (auto dest: order_less_le_trans) |
|
1070 |
done |
|
27468 | 1071 |
|
1072 |
lemma lemma_st_part1a: |
|
64435 | 1073 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x + -t \<le> r" |
1074 |
for x r t :: hypreal |
|
1075 |
apply (subgoal_tac "x \<le> t + r") |
|
1076 |
apply (auto intro: lemma_st_part_le1) |
|
1077 |
done |
|
27468 | 1078 |
|
1079 |
lemma lemma_st_part2a: |
|
64435 | 1080 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> - (x + -t) \<le> r" |
1081 |
for x r t :: hypreal |
|
1082 |
apply (subgoal_tac "(t + -r \<le> x)") |
|
1083 |
apply simp |
|
1084 |
apply (rule lemma_st_part_le2) |
|
1085 |
apply auto |
|
1086 |
done |
|
27468 | 1087 |
|
64435 | 1088 |
lemma lemma_SReal_ub: "x \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} x" |
1089 |
for x :: hypreal |
|
1090 |
by (auto intro: isUbI setleI order_less_imp_le) |
|
27468 | 1091 |
|
64435 | 1092 |
lemma lemma_SReal_lub: "x \<in> \<real> \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} x" |
1093 |
for x :: hypreal |
|
1094 |
apply (auto intro!: isLubI2 lemma_SReal_ub setgeI) |
|
1095 |
apply (frule isUbD2a) |
|
1096 |
apply (rule_tac x = x and y = y in linorder_cases) |
|
1097 |
apply (auto intro!: order_less_imp_le) |
|
1098 |
apply (drule SReal_dense, assumption, assumption, safe) |
|
1099 |
apply (drule_tac y = r in isUbD) |
|
1100 |
apply (auto dest: order_less_le_trans) |
|
1101 |
done |
|
27468 | 1102 |
|
1103 |
lemma lemma_st_part_not_eq1: |
|
64435 | 1104 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x + - t \<noteq> r" |
1105 |
for x r t :: hypreal |
|
1106 |
apply auto |
|
1107 |
apply (frule isLubD1a [THEN Reals_minus]) |
|
1108 |
using Reals_add_cancel [of x "- t"] apply simp |
|
1109 |
apply (drule_tac x = x in lemma_SReal_lub) |
|
1110 |
apply (drule isLub_unique, assumption, auto) |
|
1111 |
done |
|
27468 | 1112 |
|
1113 |
lemma lemma_st_part_not_eq2: |
|
64435 | 1114 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> - (x + -t) \<noteq> r" |
1115 |
for x r t :: hypreal |
|
1116 |
apply (auto) |
|
1117 |
apply (frule isLubD1a) |
|
1118 |
using Reals_add_cancel [of "- x" t] apply simp |
|
1119 |
apply (drule_tac x = x in lemma_SReal_lub) |
|
1120 |
apply (drule isLub_unique, assumption, auto) |
|
1121 |
done |
|
27468 | 1122 |
|
1123 |
lemma lemma_st_part_major: |
|
64435 | 1124 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> \<bar>x - t\<bar> < r" |
1125 |
for x r t :: hypreal |
|
1126 |
apply (frule lemma_st_part1a) |
|
1127 |
apply (frule_tac [4] lemma_st_part2a, auto) |
|
1128 |
apply (drule order_le_imp_less_or_eq)+ |
|
1129 |
apply auto |
|
1130 |
using lemma_st_part_not_eq2 apply fastforce |
|
1131 |
using lemma_st_part_not_eq1 apply fastforce |
|
1132 |
done |
|
27468 | 1133 |
|
1134 |
lemma lemma_st_part_major2: |
|
64435 | 1135 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r" |
1136 |
for x t :: hypreal |
|
1137 |
by (blast dest!: lemma_st_part_major) |
|
27468 | 1138 |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1139 |
|
64435 | 1140 |
text\<open>Existence of real and Standard Part Theorem.\<close> |
1141 |
||
1142 |
lemma lemma_st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r" |
|
1143 |
for x :: hypreal |
|
1144 |
apply (frule lemma_st_part_lub, safe) |
|
1145 |
apply (frule isLubD1a) |
|
1146 |
apply (blast dest: lemma_st_part_major2) |
|
1147 |
done |
|
27468 | 1148 |
|
64435 | 1149 |
lemma st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. x \<approx> t" |
1150 |
for x :: hypreal |
|
1151 |
apply (simp add: approx_def Infinitesimal_def) |
|
1152 |
apply (drule lemma_st_part_Ex, auto) |
|
1153 |
done |
|
27468 | 1154 |
|
64435 | 1155 |
text \<open>There is a unique real infinitely close.\<close> |
1156 |
lemma st_part_Ex1: "x \<in> HFinite \<Longrightarrow> \<exists>!t::hypreal. t \<in> \<real> \<and> x \<approx> t" |
|
1157 |
apply (drule st_part_Ex, safe) |
|
1158 |
apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym) |
|
1159 |
apply (auto intro!: approx_unique_real) |
|
1160 |
done |
|
27468 | 1161 |
|
64435 | 1162 |
|
1163 |
subsection \<open>Finite, Infinite and Infinitesimal\<close> |
|
27468 | 1164 |
|
1165 |
lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}" |
|
64435 | 1166 |
apply (simp add: HFinite_def HInfinite_def) |
1167 |
apply (auto dest: order_less_trans) |
|
1168 |
done |
|
27468 | 1169 |
|
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1170 |
lemma HFinite_not_HInfinite: |
64435 | 1171 |
assumes x: "x \<in> HFinite" |
1172 |
shows "x \<notin> HInfinite" |
|
27468 | 1173 |
proof |
1174 |
assume x': "x \<in> HInfinite" |
|
1175 |
with x have "x \<in> HFinite \<inter> HInfinite" by blast |
|
64435 | 1176 |
then show False by auto |
27468 | 1177 |
qed |
1178 |
||
64435 | 1179 |
lemma not_HFinite_HInfinite: "x \<notin> HFinite \<Longrightarrow> x \<in> HInfinite" |
1180 |
apply (simp add: HInfinite_def HFinite_def, auto) |
|
1181 |
apply (drule_tac x = "r + 1" in bspec) |
|
1182 |
apply (auto) |
|
1183 |
done |
|
27468 | 1184 |
|
64435 | 1185 |
lemma HInfinite_HFinite_disj: "x \<in> HInfinite \<or> x \<in> HFinite" |
1186 |
by (blast intro: not_HFinite_HInfinite) |
|
27468 | 1187 |
|
64435 | 1188 |
lemma HInfinite_HFinite_iff: "x \<in> HInfinite \<longleftrightarrow> x \<notin> HFinite" |
1189 |
by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite) |
|
27468 | 1190 |
|
64435 | 1191 |
lemma HFinite_HInfinite_iff: "x \<in> HFinite \<longleftrightarrow> x \<notin> HInfinite" |
1192 |
by (simp add: HInfinite_HFinite_iff) |
|
27468 | 1193 |
|
1194 |
||
1195 |
lemma HInfinite_diff_HFinite_Infinitesimal_disj: |
|
64435 | 1196 |
"x \<notin> Infinitesimal \<Longrightarrow> x \<in> HInfinite \<or> x \<in> HFinite - Infinitesimal" |
1197 |
by (fast intro: not_HFinite_HInfinite) |
|
27468 | 1198 |
|
64435 | 1199 |
lemma HFinite_inverse: "x \<in> HFinite \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" |
1200 |
for x :: "'a::real_normed_div_algebra star" |
|
1201 |
apply (subgoal_tac "x \<noteq> 0") |
|
1202 |
apply (cut_tac x = "inverse x" in HInfinite_HFinite_disj) |
|
1203 |
apply (auto dest!: HInfinite_inverse_Infinitesimal simp: nonzero_inverse_inverse_eq) |
|
1204 |
done |
|
27468 | 1205 |
|
64435 | 1206 |
lemma HFinite_inverse2: "x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" |
1207 |
for x :: "'a::real_normed_div_algebra star" |
|
1208 |
by (blast intro: HFinite_inverse) |
|
27468 | 1209 |
|
64435 | 1210 |
text \<open>Stronger statement possible in fact.\<close> |
1211 |
lemma Infinitesimal_inverse_HFinite: "x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" |
|
1212 |
for x :: "'a::real_normed_div_algebra star" |
|
1213 |
apply (drule HInfinite_diff_HFinite_Infinitesimal_disj) |
|
1214 |
apply (blast intro: HFinite_inverse HInfinite_inverse_Infinitesimal Infinitesimal_subset_HFinite [THEN subsetD]) |
|
1215 |
done |
|
27468 | 1216 |
|
1217 |
lemma HFinite_not_Infinitesimal_inverse: |
|
64435 | 1218 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite - Infinitesimal" |
1219 |
for x :: "'a::real_normed_div_algebra star" |
|
1220 |
apply (auto intro: Infinitesimal_inverse_HFinite) |
|
1221 |
apply (drule Infinitesimal_HFinite_mult2, assumption) |
|
1222 |
apply (simp add: not_Infinitesimal_not_zero) |
|
1223 |
done |
|
27468 | 1224 |
|
64435 | 1225 |
lemma approx_inverse: "x \<approx> y \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<approx> inverse y" |
1226 |
for x y :: "'a::real_normed_div_algebra star" |
|
1227 |
apply (frule HFinite_diff_Infinitesimal_approx, assumption) |
|
1228 |
apply (frule not_Infinitesimal_not_zero2) |
|
1229 |
apply (frule_tac x = x in not_Infinitesimal_not_zero2) |
|
1230 |
apply (drule HFinite_inverse2)+ |
|
1231 |
apply (drule approx_mult2, assumption, auto) |
|
1232 |
apply (drule_tac c = "inverse x" in approx_mult1, assumption) |
|
1233 |
apply (auto intro: approx_sym simp add: mult.assoc) |
|
1234 |
done |
|
27468 | 1235 |
|
1236 |
(*Used for NSLIM_inverse, NSLIMSEQ_inverse*) |
|
1237 |
lemmas star_of_approx_inverse = star_of_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] |
|
1238 |
lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] |
|
1239 |
||
1240 |
lemma inverse_add_Infinitesimal_approx: |
|
64435 | 1241 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) \<approx> inverse x" |
1242 |
for x h :: "'a::real_normed_div_algebra star" |
|
1243 |
by (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self) |
|
27468 | 1244 |
|
1245 |
lemma inverse_add_Infinitesimal_approx2: |
|
64435 | 1246 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (h + x) \<approx> inverse x" |
1247 |
for x h :: "'a::real_normed_div_algebra star" |
|
1248 |
apply (rule add.commute [THEN subst]) |
|
1249 |
apply (blast intro: inverse_add_Infinitesimal_approx) |
|
1250 |
done |
|
27468 | 1251 |
|
1252 |
lemma inverse_add_Infinitesimal_approx_Infinitesimal: |
|
64435 | 1253 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) - inverse x \<approx> h" |
1254 |
for x h :: "'a::real_normed_div_algebra star" |
|
1255 |
apply (rule approx_trans2) |
|
1256 |
apply (auto intro: inverse_add_Infinitesimal_approx |
|
1257 |
simp add: mem_infmal_iff approx_minus_iff [symmetric]) |
|
1258 |
done |
|
27468 | 1259 |
|
64435 | 1260 |
lemma Infinitesimal_square_iff: "x \<in> Infinitesimal \<longleftrightarrow> x * x \<in> Infinitesimal" |
1261 |
for x :: "'a::real_normed_div_algebra star" |
|
1262 |
apply (auto intro: Infinitesimal_mult) |
|
1263 |
apply (rule ccontr, frule Infinitesimal_inverse_HFinite) |
|
1264 |
apply (frule not_Infinitesimal_not_zero) |
|
1265 |
apply (auto dest: Infinitesimal_HFinite_mult simp add: mult.assoc) |
|
1266 |
done |
|
27468 | 1267 |
declare Infinitesimal_square_iff [symmetric, simp] |
1268 |
||
64435 | 1269 |
lemma HFinite_square_iff [simp]: "x * x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
1270 |
for x :: "'a::real_normed_div_algebra star" |
|
1271 |
apply (auto intro: HFinite_mult) |
|
1272 |
apply (auto dest: HInfinite_mult simp add: HFinite_HInfinite_iff) |
|
1273 |
done |
|
27468 | 1274 |
|
64435 | 1275 |
lemma HInfinite_square_iff [simp]: "x * x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" |
1276 |
for x :: "'a::real_normed_div_algebra star" |
|
1277 |
by (auto simp add: HInfinite_HFinite_iff) |
|
27468 | 1278 |
|
64435 | 1279 |
lemma approx_HFinite_mult_cancel: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<Longrightarrow> w \<approx> z" |
1280 |
for a w z :: "'a::real_normed_div_algebra star" |
|
1281 |
apply safe |
|
1282 |
apply (frule HFinite_inverse, assumption) |
|
1283 |
apply (drule not_Infinitesimal_not_zero) |
|
1284 |
apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) |
|
1285 |
done |
|
27468 | 1286 |
|
64435 | 1287 |
lemma approx_HFinite_mult_cancel_iff1: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" |
1288 |
for a w z :: "'a::real_normed_div_algebra star" |
|
1289 |
by (auto intro: approx_mult2 approx_HFinite_mult_cancel) |
|
27468 | 1290 |
|
64435 | 1291 |
lemma HInfinite_HFinite_add_cancel: "x + y \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<in> HInfinite" |
1292 |
apply (rule ccontr) |
|
1293 |
apply (drule HFinite_HInfinite_iff [THEN iffD2]) |
|
1294 |
apply (auto dest: HFinite_add simp add: HInfinite_HFinite_iff) |
|
1295 |
done |
|
27468 | 1296 |
|
64435 | 1297 |
lemma HInfinite_HFinite_add: "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HInfinite" |
1298 |
apply (rule_tac y = "-y" in HInfinite_HFinite_add_cancel) |
|
1299 |
apply (auto simp add: add.assoc HFinite_minus_iff) |
|
1300 |
done |
|
27468 | 1301 |
|
64435 | 1302 |
lemma HInfinite_ge_HInfinite: "x \<in> HInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y \<in> HInfinite" |
1303 |
for x y :: hypreal |
|
1304 |
by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff) |
|
27468 | 1305 |
|
64435 | 1306 |
lemma Infinitesimal_inverse_HInfinite: "x \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> inverse x \<in> HInfinite" |
1307 |
for x :: "'a::real_normed_div_algebra star" |
|
1308 |
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) |
|
1309 |
apply (auto dest: Infinitesimal_HFinite_mult2) |
|
1310 |
done |
|
27468 | 1311 |
|
1312 |
lemma HInfinite_HFinite_not_Infinitesimal_mult: |
|
64435 | 1313 |
"x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HInfinite" |
1314 |
for x y :: "'a::real_normed_div_algebra star" |
|
1315 |
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) |
|
1316 |
apply (frule HFinite_Infinitesimal_not_zero) |
|
1317 |
apply (drule HFinite_not_Infinitesimal_inverse) |
|
1318 |
apply (safe, drule HFinite_mult) |
|
1319 |
apply (auto simp add: mult.assoc HFinite_HInfinite_iff) |
|
1320 |
done |
|
27468 | 1321 |
|
1322 |
lemma HInfinite_HFinite_not_Infinitesimal_mult2: |
|
64435 | 1323 |
"x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> y * x \<in> HInfinite" |
1324 |
for x y :: "'a::real_normed_div_algebra star" |
|
1325 |
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) |
|
1326 |
apply (frule HFinite_Infinitesimal_not_zero) |
|
1327 |
apply (drule HFinite_not_Infinitesimal_inverse) |
|
1328 |
apply (safe, drule_tac x="inverse y" in HFinite_mult) |
|
1329 |
apply assumption |
|
1330 |
apply (auto simp add: mult.assoc [symmetric] HFinite_HInfinite_iff) |
|
1331 |
done |
|
27468 | 1332 |
|
64435 | 1333 |
lemma HInfinite_gt_SReal: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y < x" |
1334 |
for x y :: hypreal |
|
1335 |
by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le) |
|
27468 | 1336 |
|
64435 | 1337 |
lemma HInfinite_gt_zero_gt_one: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x" |
1338 |
for x :: hypreal |
|
1339 |
by (auto intro: HInfinite_gt_SReal) |
|
27468 | 1340 |
|
1341 |
||
1342 |
lemma not_HInfinite_one [simp]: "1 \<notin> HInfinite" |
|
64435 | 1343 |
by (simp add: HInfinite_HFinite_iff) |
27468 | 1344 |
|
64435 | 1345 |
lemma approx_hrabs_disj: "\<bar>x\<bar> \<approx> x \<or> \<bar>x\<bar> \<approx> -x" |
1346 |
for x :: hypreal |
|
1347 |
using hrabs_disj [of x] by auto |
|
27468 | 1348 |
|
1349 |
||
64435 | 1350 |
subsection \<open>Theorems about Monads\<close> |
27468 | 1351 |
|
64435 | 1352 |
lemma monad_hrabs_Un_subset: "monad \<bar>x\<bar> \<le> monad x \<union> monad (- x)" |
1353 |
for x :: hypreal |
|
1354 |
by (rule hrabs_disj [of x, THEN disjE]) auto |
|
27468 | 1355 |
|
64435 | 1356 |
lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal \<Longrightarrow> monad (x + e) = monad x" |
1357 |
by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1]) |
|
27468 | 1358 |
|
64435 | 1359 |
lemma mem_monad_iff: "u \<in> monad x \<longleftrightarrow> - u \<in> monad (- x)" |
1360 |
by (simp add: monad_def) |
|
1361 |
||
1362 |
lemma Infinitesimal_monad_zero_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<in> monad 0" |
|
1363 |
by (auto intro: approx_sym simp add: monad_def mem_infmal_iff) |
|
27468 | 1364 |
|
64435 | 1365 |
lemma monad_zero_minus_iff: "x \<in> monad 0 \<longleftrightarrow> - x \<in> monad 0" |
1366 |
by (simp add: Infinitesimal_monad_zero_iff [symmetric]) |
|
27468 | 1367 |
|
64435 | 1368 |
lemma monad_zero_hrabs_iff: "x \<in> monad 0 \<longleftrightarrow> \<bar>x\<bar> \<in> monad 0" |
1369 |
for x :: hypreal |
|
1370 |
by (rule hrabs_disj [of x, THEN disjE]) (auto simp: monad_zero_minus_iff [symmetric]) |
|
27468 | 1371 |
|
1372 |
lemma mem_monad_self [simp]: "x \<in> monad x" |
|
64435 | 1373 |
by (simp add: monad_def) |
27468 | 1374 |
|
1375 |
||
64435 | 1376 |
subsection \<open>Proof that @{term "x \<approx> y"} implies @{term"\<bar>x\<bar> \<approx> \<bar>y\<bar>"}\<close> |
27468 | 1377 |
|
64435 | 1378 |
lemma approx_subset_monad: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad x" |
1379 |
by (simp (no_asm)) (simp add: approx_monad_iff) |
|
27468 | 1380 |
|
64435 | 1381 |
lemma approx_subset_monad2: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad y" |
1382 |
apply (drule approx_sym) |
|
1383 |
apply (fast dest: approx_subset_monad) |
|
1384 |
done |
|
27468 | 1385 |
|
64435 | 1386 |
lemma mem_monad_approx: "u \<in> monad x \<Longrightarrow> x \<approx> u" |
1387 |
by (simp add: monad_def) |
|
1388 |
||
1389 |
lemma approx_mem_monad: "x \<approx> u \<Longrightarrow> u \<in> monad x" |
|
1390 |
by (simp add: monad_def) |
|
27468 | 1391 |
|
64435 | 1392 |
lemma approx_mem_monad2: "x \<approx> u \<Longrightarrow> x \<in> monad u" |
1393 |
apply (simp add: monad_def) |
|
1394 |
apply (blast intro!: approx_sym) |
|
1395 |
done |
|
27468 | 1396 |
|
64435 | 1397 |
lemma approx_mem_monad_zero: "x \<approx> y \<Longrightarrow> x \<in> monad 0 \<Longrightarrow> y \<in> monad 0" |
1398 |
apply (drule mem_monad_approx) |
|
1399 |
apply (fast intro: approx_mem_monad approx_trans) |
|
1400 |
done |
|
27468 | 1401 |
|
64435 | 1402 |
lemma Infinitesimal_approx_hrabs: "x \<approx> y \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1403 |
for x y :: hypreal |
|
1404 |
apply (drule Infinitesimal_monad_zero_iff [THEN iffD1]) |
|
1405 |
apply (blast intro: approx_mem_monad_zero monad_zero_hrabs_iff [THEN iffD1] |
|
1406 |
mem_monad_approx approx_trans3) |
|
1407 |
done |
|
27468 | 1408 |
|
64435 | 1409 |
lemma less_Infinitesimal_less: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> e < x" |
1410 |
for x :: hypreal |
|
1411 |
apply (rule ccontr) |
|
1412 |
apply (auto intro: Infinitesimal_zero [THEN [2] Infinitesimal_interval] |
|
1413 |
dest!: order_le_imp_less_or_eq simp add: linorder_not_less) |
|
1414 |
done |
|
27468 | 1415 |
|
64435 | 1416 |
lemma Ball_mem_monad_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> 0 < u" |
1417 |
for u x :: hypreal |
|
1418 |
apply (drule mem_monad_approx [THEN approx_sym]) |
|
1419 |
apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE]) |
|
1420 |
apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto) |
|
1421 |
done |
|
27468 | 1422 |
|
64435 | 1423 |
lemma Ball_mem_monad_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> u < 0" |
1424 |
for u x :: hypreal |
|
1425 |
apply (drule mem_monad_approx [THEN approx_sym]) |
|
1426 |
apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE]) |
|
1427 |
apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto) |
|
1428 |
done |
|
27468 | 1429 |
|
64435 | 1430 |
lemma lemma_approx_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> 0 < y" |
1431 |
for x y :: hypreal |
|
1432 |
by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad) |
|
27468 | 1433 |
|
64435 | 1434 |
lemma lemma_approx_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> y < 0" |
1435 |
for x y :: hypreal |
|
1436 |
by (blast dest: Ball_mem_monad_less_zero approx_subset_monad) |
|
27468 | 1437 |
|
64435 | 1438 |
lemma approx_hrabs: "x \<approx> y \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1439 |
for x y :: hypreal |
|
1440 |
by (drule approx_hnorm) simp |
|
27468 | 1441 |
|
64435 | 1442 |
lemma approx_hrabs_zero_cancel: "\<bar>x\<bar> \<approx> 0 \<Longrightarrow> x \<approx> 0" |
1443 |
for x :: hypreal |
|
1444 |
using hrabs_disj [of x] by (auto dest: approx_minus) |
|
27468 | 1445 |
|
64435 | 1446 |
lemma approx_hrabs_add_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>x + e\<bar>" |
1447 |
for e x :: hypreal |
|
1448 |
by (fast intro: approx_hrabs Infinitesimal_add_approx_self) |
|
27468 | 1449 |
|
64435 | 1450 |
lemma approx_hrabs_add_minus_Infinitesimal: "e \<in> Infinitesimal ==> \<bar>x\<bar> \<approx> \<bar>x + -e\<bar>" |
1451 |
for e x :: hypreal |
|
1452 |
by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self) |
|
27468 | 1453 |
|
1454 |
lemma hrabs_add_Infinitesimal_cancel: |
|
64435 | 1455 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + e\<bar> = \<bar>y + e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1456 |
for e e' x y :: hypreal |
|
1457 |
apply (drule_tac x = x in approx_hrabs_add_Infinitesimal) |
|
1458 |
apply (drule_tac x = y in approx_hrabs_add_Infinitesimal) |
|
1459 |
apply (auto intro: approx_trans2) |
|
1460 |
done |
|
27468 | 1461 |
|
1462 |
lemma hrabs_add_minus_Infinitesimal_cancel: |
|
64435 | 1463 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + -e\<bar> = \<bar>y + -e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1464 |
for e e' x y :: hypreal |
|
1465 |
apply (drule_tac x = x in approx_hrabs_add_minus_Infinitesimal) |
|
1466 |
apply (drule_tac x = y in approx_hrabs_add_minus_Infinitesimal) |
|
1467 |
apply (auto intro: approx_trans2) |
|
1468 |
done |
|
1469 |
||
27468 | 1470 |
|
61975 | 1471 |
subsection \<open>More @{term HFinite} and @{term Infinitesimal} Theorems\<close> |
27468 | 1472 |
|
64435 | 1473 |
text \<open> |
1474 |
Interesting slightly counterintuitive theorem: necessary |
|
1475 |
for proving that an open interval is an NS open set. |
|
1476 |
\<close> |
|
27468 | 1477 |
lemma Infinitesimal_add_hypreal_of_real_less: |
64435 | 1478 |
"x < y \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> hypreal_of_real x + u < hypreal_of_real y" |
1479 |
apply (simp add: Infinitesimal_def) |
|
1480 |
apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec, simp) |
|
1481 |
apply (simp add: abs_less_iff) |
|
1482 |
done |
|
27468 | 1483 |
|
1484 |
lemma Infinitesimal_add_hrabs_hypreal_of_real_less: |
|
64435 | 1485 |
"x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> |
1486 |
\<bar>hypreal_of_real r + x\<bar> < hypreal_of_real y" |
|
1487 |
apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal) |
|
1488 |
apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]]) |
|
1489 |
apply (auto intro!: Infinitesimal_add_hypreal_of_real_less |
|
1490 |
simp del: star_of_abs simp add: star_of_abs [symmetric]) |
|
1491 |
done |
|
27468 | 1492 |
|
1493 |
lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: |
|
64435 | 1494 |
"x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> |
1495 |
\<bar>x + hypreal_of_real r\<bar> < hypreal_of_real y" |
|
1496 |
apply (rule add.commute [THEN subst]) |
|
1497 |
apply (erule Infinitesimal_add_hrabs_hypreal_of_real_less, assumption) |
|
1498 |
done |
|
27468 | 1499 |
|
1500 |
lemma hypreal_of_real_le_add_Infininitesimal_cancel: |
|
64435 | 1501 |
"u \<in> Infinitesimal \<Longrightarrow> v \<in> Infinitesimal \<Longrightarrow> |
1502 |
hypreal_of_real x + u \<le> hypreal_of_real y + v \<Longrightarrow> |
|
1503 |
hypreal_of_real x \<le> hypreal_of_real y" |
|
1504 |
apply (simp add: linorder_not_less [symmetric], auto) |
|
1505 |
apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less) |
|
1506 |
apply (auto simp add: Infinitesimal_diff) |
|
1507 |
done |
|
27468 | 1508 |
|
1509 |
lemma hypreal_of_real_le_add_Infininitesimal_cancel2: |
|
64435 | 1510 |
"u \<in> Infinitesimal \<Longrightarrow> v \<in> Infinitesimal \<Longrightarrow> |
1511 |
hypreal_of_real x + u \<le> hypreal_of_real y + v \<Longrightarrow> x \<le> y" |
|
1512 |
by (blast intro: star_of_le [THEN iffD1] intro!: hypreal_of_real_le_add_Infininitesimal_cancel) |
|
27468 | 1513 |
|
1514 |
lemma hypreal_of_real_less_Infinitesimal_le_zero: |
|
64435 | 1515 |
"hypreal_of_real x < e \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> hypreal_of_real x \<le> 0" |
1516 |
apply (rule linorder_not_less [THEN iffD1], safe) |
|
1517 |
apply (drule Infinitesimal_interval) |
|
1518 |
apply (drule_tac [4] SReal_hypreal_of_real [THEN SReal_Infinitesimal_zero], auto) |
|
1519 |
done |
|
27468 | 1520 |
|
1521 |
(*used once, in Lim/NSDERIV_inverse*) |
|
64435 | 1522 |
lemma Infinitesimal_add_not_zero: "h \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> star_of x + h \<noteq> 0" |
1523 |
apply auto |
|
1524 |
apply (subgoal_tac "h = - star_of x") |
|
1525 |
apply (auto intro: minus_unique [symmetric]) |
|
1526 |
done |
|
27468 | 1527 |
|
64435 | 1528 |
lemma Infinitesimal_square_cancel [simp]: "x * x + y * y \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1529 |
for x y :: hypreal |
|
1530 |
apply (rule Infinitesimal_interval2) |
|
1531 |
apply (rule_tac [3] zero_le_square, assumption) |
|
1532 |
apply auto |
|
1533 |
done |
|
27468 | 1534 |
|
64435 | 1535 |
lemma HFinite_square_cancel [simp]: "x * x + y * y \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1536 |
for x y :: hypreal |
|
1537 |
apply (rule HFinite_bounded, assumption) |
|
1538 |
apply auto |
|
1539 |
done |
|
27468 | 1540 |
|
64435 | 1541 |
lemma Infinitesimal_square_cancel2 [simp]: "x * x + y * y \<in> Infinitesimal \<Longrightarrow> y * y \<in> Infinitesimal" |
1542 |
for x y :: hypreal |
|
1543 |
apply (rule Infinitesimal_square_cancel) |
|
1544 |
apply (rule add.commute [THEN subst]) |
|
1545 |
apply simp |
|
1546 |
done |
|
27468 | 1547 |
|
64435 | 1548 |
lemma HFinite_square_cancel2 [simp]: "x * x + y * y \<in> HFinite \<Longrightarrow> y * y \<in> HFinite" |
1549 |
for x y :: hypreal |
|
1550 |
apply (rule HFinite_square_cancel) |
|
1551 |
apply (rule add.commute [THEN subst]) |
|
1552 |
apply simp |
|
1553 |
done |
|
27468 | 1554 |
|
1555 |
lemma Infinitesimal_sum_square_cancel [simp]: |
|
64435 | 1556 |
"x * x + y * y + z * z \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1557 |
for x y z :: hypreal |
|
1558 |
apply (rule Infinitesimal_interval2, assumption) |
|
1559 |
apply (rule_tac [2] zero_le_square, simp) |
|
1560 |
apply (insert zero_le_square [of y]) |
|
1561 |
apply (insert zero_le_square [of z], simp del:zero_le_square) |
|
1562 |
done |
|
27468 | 1563 |
|
64435 | 1564 |
lemma HFinite_sum_square_cancel [simp]: "x * x + y * y + z * z \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1565 |
for x y z :: hypreal |
|
1566 |
apply (rule HFinite_bounded, assumption) |
|
1567 |
apply (rule_tac [2] zero_le_square) |
|
1568 |
apply (insert zero_le_square [of y]) |
|
1569 |
apply (insert zero_le_square [of z], simp del:zero_le_square) |
|
1570 |
done |
|
27468 | 1571 |
|
1572 |
lemma Infinitesimal_sum_square_cancel2 [simp]: |
|
64435 | 1573 |
"y * y + x * x + z * z \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1574 |
for x y z :: hypreal |
|
1575 |
apply (rule Infinitesimal_sum_square_cancel) |
|
1576 |
apply (simp add: ac_simps) |
|
1577 |
done |
|
27468 | 1578 |
|
64435 | 1579 |
lemma HFinite_sum_square_cancel2 [simp]: "y * y + x * x + z * z \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1580 |
for x y z :: hypreal |
|
1581 |
apply (rule HFinite_sum_square_cancel) |
|
1582 |
apply (simp add: ac_simps) |
|
1583 |
done |
|
27468 | 1584 |
|
1585 |
lemma Infinitesimal_sum_square_cancel3 [simp]: |
|
64435 | 1586 |
"z * z + y * y + x * x \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1587 |
for x y z :: hypreal |
|
1588 |
apply (rule Infinitesimal_sum_square_cancel) |
|
1589 |
apply (simp add: ac_simps) |
|
1590 |
done |
|
27468 | 1591 |
|
64435 | 1592 |
lemma HFinite_sum_square_cancel3 [simp]: "z * z + y * y + x * x \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1593 |
for x y z :: hypreal |
|
1594 |
apply (rule HFinite_sum_square_cancel) |
|
1595 |
apply (simp add: ac_simps) |
|
1596 |
done |
|
27468 | 1597 |
|
64435 | 1598 |
lemma monad_hrabs_less: "y \<in> monad x \<Longrightarrow> 0 < hypreal_of_real e \<Longrightarrow> \<bar>y - x\<bar> < hypreal_of_real e" |
1599 |
apply (drule mem_monad_approx [THEN approx_sym]) |
|
1600 |
apply (drule bex_Infinitesimal_iff [THEN iffD2]) |
|
1601 |
apply (auto dest!: InfinitesimalD) |
|
1602 |
done |
|
27468 | 1603 |
|
64435 | 1604 |
lemma mem_monad_SReal_HFinite: "x \<in> monad (hypreal_of_real a) \<Longrightarrow> x \<in> HFinite" |
1605 |
apply (drule mem_monad_approx [THEN approx_sym]) |
|
1606 |
apply (drule bex_Infinitesimal_iff2 [THEN iffD2]) |
|
1607 |
apply (safe dest!: Infinitesimal_subset_HFinite [THEN subsetD]) |
|
1608 |
apply (erule SReal_hypreal_of_real [THEN SReal_subset_HFinite [THEN subsetD], THEN HFinite_add]) |
|
1609 |
done |
|
27468 | 1610 |
|
1611 |
||
64435 | 1612 |
subsection \<open>Theorems about Standard Part\<close> |
27468 | 1613 |
|
64435 | 1614 |
lemma st_approx_self: "x \<in> HFinite \<Longrightarrow> st x \<approx> x" |
1615 |
apply (simp add: st_def) |
|
1616 |
apply (frule st_part_Ex, safe) |
|
1617 |
apply (rule someI2) |
|
1618 |
apply (auto intro: approx_sym) |
|
1619 |
done |
|
27468 | 1620 |
|
64435 | 1621 |
lemma st_SReal: "x \<in> HFinite \<Longrightarrow> st x \<in> \<real>" |
1622 |
apply (simp add: st_def) |
|
1623 |
apply (frule st_part_Ex, safe) |
|
1624 |
apply (rule someI2) |
|
1625 |
apply (auto intro: approx_sym) |
|
1626 |
done |
|
27468 | 1627 |
|
64435 | 1628 |
lemma st_HFinite: "x \<in> HFinite \<Longrightarrow> st x \<in> HFinite" |
1629 |
by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]]) |
|
27468 | 1630 |
|
64435 | 1631 |
lemma st_unique: "r \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> st x = r" |
1632 |
apply (frule SReal_subset_HFinite [THEN subsetD]) |
|
1633 |
apply (drule (1) approx_HFinite) |
|
1634 |
apply (unfold st_def) |
|
1635 |
apply (rule some_equality) |
|
1636 |
apply (auto intro: approx_unique_real) |
|
1637 |
done |
|
27468 | 1638 |
|
64435 | 1639 |
lemma st_SReal_eq: "x \<in> \<real> \<Longrightarrow> st x = x" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1640 |
by (metis approx_refl st_unique) |
27468 | 1641 |
|
1642 |
lemma st_hypreal_of_real [simp]: "st (hypreal_of_real x) = hypreal_of_real x" |
|
64435 | 1643 |
by (rule SReal_hypreal_of_real [THEN st_SReal_eq]) |
27468 | 1644 |
|
64435 | 1645 |
lemma st_eq_approx: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st x = st y \<Longrightarrow> x \<approx> y" |
1646 |
by (auto dest!: st_approx_self elim!: approx_trans3) |
|
27468 | 1647 |
|
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1648 |
lemma approx_st_eq: |
61982 | 1649 |
assumes x: "x \<in> HFinite" and y: "y \<in> HFinite" and xy: "x \<approx> y" |
27468 | 1650 |
shows "st x = st y" |
1651 |
proof - |
|
61982 | 1652 |
have "st x \<approx> x" "st y \<approx> y" "st x \<in> \<real>" "st y \<in> \<real>" |
41541 | 1653 |
by (simp_all add: st_approx_self st_SReal x y) |
1654 |
with xy show ?thesis |
|
27468 | 1655 |
by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1]) |
1656 |
qed |
|
1657 |
||
64435 | 1658 |
lemma st_eq_approx_iff: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<approx> y \<longleftrightarrow> st x = st y" |
1659 |
by (blast intro: approx_st_eq st_eq_approx) |
|
27468 | 1660 |
|
64435 | 1661 |
lemma st_Infinitesimal_add_SReal: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (x + e) = x" |
1662 |
apply (erule st_unique) |
|
1663 |
apply (erule Infinitesimal_add_approx_self) |
|
1664 |
done |
|
27468 | 1665 |
|
64435 | 1666 |
lemma st_Infinitesimal_add_SReal2: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (e + x) = x" |
1667 |
apply (erule st_unique) |
|
1668 |
apply (erule Infinitesimal_add_approx_self2) |
|
1669 |
done |
|
27468 | 1670 |
|
64435 | 1671 |
lemma HFinite_st_Infinitesimal_add: "x \<in> HFinite \<Longrightarrow> \<exists>e \<in> Infinitesimal. x = st(x) + e" |
1672 |
by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) |
|
27468 | 1673 |
|
64435 | 1674 |
lemma st_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st (x + y) = st x + st y" |
1675 |
by (simp add: st_unique st_SReal st_approx_self approx_add) |
|
27468 | 1676 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
1677 |
lemma st_numeral [simp]: "st (numeral w) = numeral w" |
64435 | 1678 |
by (rule Reals_numeral [THEN st_SReal_eq]) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
1679 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1680 |
lemma st_neg_numeral [simp]: "st (- numeral w) = - numeral w" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1681 |
proof - |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1682 |
from Reals_numeral have "numeral w \<in> \<real>" . |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1683 |
then have "- numeral w \<in> \<real>" by simp |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1684 |
with st_SReal_eq show ?thesis . |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1685 |
qed |
27468 | 1686 |
|
45540 | 1687 |
lemma st_0 [simp]: "st 0 = 0" |
64435 | 1688 |
by (simp add: st_SReal_eq) |
45540 | 1689 |
|
1690 |
lemma st_1 [simp]: "st 1 = 1" |
|
64435 | 1691 |
by (simp add: st_SReal_eq) |
27468 | 1692 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1693 |
lemma st_neg_1 [simp]: "st (- 1) = - 1" |
64435 | 1694 |
by (simp add: st_SReal_eq) |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1695 |
|
27468 | 1696 |
lemma st_minus: "x \<in> HFinite \<Longrightarrow> st (- x) = - st x" |
64435 | 1697 |
by (simp add: st_unique st_SReal st_approx_self approx_minus) |
27468 | 1698 |
|
1699 |
lemma st_diff: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x - y) = st x - st y" |
|
64435 | 1700 |
by (simp add: st_unique st_SReal st_approx_self approx_diff) |
27468 | 1701 |
|
1702 |
lemma st_mult: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x * y) = st x * st y" |
|
64435 | 1703 |
by (simp add: st_unique st_SReal st_approx_self approx_mult_HFinite) |
27468 | 1704 |
|
64435 | 1705 |
lemma st_Infinitesimal: "x \<in> Infinitesimal \<Longrightarrow> st x = 0" |
1706 |
by (simp add: st_unique mem_infmal_iff) |
|
27468 | 1707 |
|
64435 | 1708 |
lemma st_not_Infinitesimal: "st(x) \<noteq> 0 \<Longrightarrow> x \<notin> Infinitesimal" |
27468 | 1709 |
by (fast intro: st_Infinitesimal) |
1710 |
||
64435 | 1711 |
lemma st_inverse: "x \<in> HFinite \<Longrightarrow> st x \<noteq> 0 \<Longrightarrow> st (inverse x) = inverse (st x)" |
1712 |
apply (rule_tac c1 = "st x" in mult_left_cancel [THEN iffD1]) |
|
1713 |
apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse) |
|
1714 |
apply (subst right_inverse, auto) |
|
1715 |
done |
|
27468 | 1716 |
|
64435 | 1717 |
lemma st_divide [simp]: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st y \<noteq> 0 \<Longrightarrow> st (x / y) = st x / st y" |
1718 |
by (simp add: divide_inverse st_mult st_not_Infinitesimal HFinite_inverse st_inverse) |
|
27468 | 1719 |
|
64435 | 1720 |
lemma st_idempotent [simp]: "x \<in> HFinite \<Longrightarrow> st (st x) = st x" |
1721 |
by (blast intro: st_HFinite st_approx_self approx_st_eq) |
|
27468 | 1722 |
|
1723 |
lemma Infinitesimal_add_st_less: |
|
64435 | 1724 |
"x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> st x < st y \<Longrightarrow> st x + u < st y" |
1725 |
apply (drule st_SReal)+ |
|
1726 |
apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff) |
|
1727 |
done |
|
27468 | 1728 |
|
1729 |
lemma Infinitesimal_add_st_le_cancel: |
|
64435 | 1730 |
"x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> |
1731 |
st x \<le> st y + u \<Longrightarrow> st x \<le> st y" |
|
1732 |
apply (simp add: linorder_not_less [symmetric]) |
|
1733 |
apply (auto dest: Infinitesimal_add_st_less) |
|
1734 |
done |
|
27468 | 1735 |
|
64435 | 1736 |
lemma st_le: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<le> y \<Longrightarrow> st x \<le> st y" |
1737 |
by (metis approx_le_bound approx_sym linear st_SReal st_approx_self st_part_Ex1) |
|
27468 | 1738 |
|
64435 | 1739 |
lemma st_zero_le: "0 \<le> x \<Longrightarrow> x \<in> HFinite \<Longrightarrow> 0 \<le> st x" |
1740 |
apply (subst st_0 [symmetric]) |
|
1741 |
apply (rule st_le, auto) |
|
1742 |
done |
|
27468 | 1743 |
|
64435 | 1744 |
lemma st_zero_ge: "x \<le> 0 \<Longrightarrow> x \<in> HFinite \<Longrightarrow> st x \<le> 0" |
1745 |
apply (subst st_0 [symmetric]) |
|
1746 |
apply (rule st_le, auto) |
|
1747 |
done |
|
27468 | 1748 |
|
64435 | 1749 |
lemma st_hrabs: "x \<in> HFinite \<Longrightarrow> \<bar>st x\<bar> = st \<bar>x\<bar>" |
1750 |
apply (simp add: linorder_not_le st_zero_le abs_if st_minus linorder_not_less) |
|
1751 |
apply (auto dest!: st_zero_ge [OF order_less_imp_le]) |
|
1752 |
done |
|
27468 | 1753 |
|
1754 |
||
61975 | 1755 |
subsection \<open>Alternative Definitions using Free Ultrafilter\<close> |
27468 | 1756 |
|
61975 | 1757 |
subsubsection \<open>@{term HFinite}\<close> |
27468 | 1758 |
|
1759 |
lemma HFinite_FreeUltrafilterNat: |
|
64438 | 1760 |
"star_n X \<in> HFinite \<Longrightarrow> \<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>" |
64435 | 1761 |
apply (auto simp add: HFinite_def SReal_def) |
1762 |
apply (rule_tac x=r in exI) |
|
1763 |
apply (simp add: hnorm_def star_of_def starfun_star_n) |
|
1764 |
apply (simp add: star_less_def starP2_star_n) |
|
1765 |
done |
|
27468 | 1766 |
|
1767 |
lemma FreeUltrafilterNat_HFinite: |
|
64438 | 1768 |
"\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U> \<Longrightarrow> star_n X \<in> HFinite" |
64435 | 1769 |
apply (auto simp add: HFinite_def mem_Rep_star_iff) |
1770 |
apply (rule_tac x="star_of u" in bexI) |
|
1771 |
apply (simp add: hnorm_def starfun_star_n star_of_def) |
|
1772 |
apply (simp add: star_less_def starP2_star_n) |
|
1773 |
apply (simp add: SReal_def) |
|
1774 |
done |
|
27468 | 1775 |
|
1776 |
lemma HFinite_FreeUltrafilterNat_iff: |
|
64438 | 1777 |
"star_n X \<in> HFinite \<longleftrightarrow> (\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>)" |
64435 | 1778 |
by (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite) |
1779 |
||
27468 | 1780 |
|
61975 | 1781 |
subsubsection \<open>@{term HInfinite}\<close> |
27468 | 1782 |
|
56225 | 1783 |
lemma lemma_Compl_eq: "- {n. u < norm (f n)} = {n. norm (f n) \<le> u}" |
64435 | 1784 |
by auto |
27468 | 1785 |
|
56225 | 1786 |
lemma lemma_Compl_eq2: "- {n. norm (f n) < u} = {n. u \<le> norm (f n)}" |
64435 | 1787 |
by auto |
27468 | 1788 |
|
64435 | 1789 |
lemma lemma_Int_eq1: "{n. norm (f n) \<le> u} Int {n. u \<le> norm (f n)} = {n. norm(f n) = u}" |
1790 |
by auto |
|
27468 | 1791 |
|
64435 | 1792 |
lemma lemma_FreeUltrafilterNat_one: "{n. norm (f n) = u} \<le> {n. norm (f n) < u + (1::real)}" |
1793 |
by auto |
|
27468 | 1794 |
|
64435 | 1795 |
text \<open>Exclude this type of sets from free ultrafilter for Infinite numbers!\<close> |
27468 | 1796 |
lemma FreeUltrafilterNat_const_Finite: |
64438 | 1797 |
"eventually (\<lambda>n. norm (X n) = u) \<U> \<Longrightarrow> star_n X \<in> HFinite" |
64435 | 1798 |
apply (rule FreeUltrafilterNat_HFinite) |
1799 |
apply (rule_tac x = "u + 1" in exI) |
|
1800 |
apply (auto elim: eventually_mono) |
|
1801 |
done |
|
27468 | 1802 |
|
1803 |
lemma HInfinite_FreeUltrafilterNat: |
|
64438 | 1804 |
"star_n X \<in> HInfinite \<Longrightarrow> \<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U>" |
64435 | 1805 |
apply (drule HInfinite_HFinite_iff [THEN iffD1]) |
1806 |
apply (simp add: HFinite_FreeUltrafilterNat_iff) |
|
1807 |
apply (rule allI, drule_tac x="u + 1" in spec) |
|
1808 |
apply (simp add: FreeUltrafilterNat.eventually_not_iff[symmetric]) |
|
1809 |
apply (auto elim: eventually_mono) |
|
1810 |
done |
|
27468 | 1811 |
|
64435 | 1812 |
lemma lemma_Int_HI: "{n. norm (Xa n) < u} \<inter> {n. X n = Xa n} \<subseteq> {n. norm (X n) < u}" |
1813 |
for u :: real |
|
1814 |
by auto |
|
27468 | 1815 |
|
64435 | 1816 |
lemma lemma_Int_HIa: "{n. u < norm (X n)} \<inter> {n. norm (X n) < u} = {}" |
1817 |
by (auto intro: order_less_asym) |
|
27468 | 1818 |
|
1819 |
lemma FreeUltrafilterNat_HInfinite: |
|
64438 | 1820 |
"\<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U> \<Longrightarrow> star_n X \<in> HInfinite" |
64435 | 1821 |
apply (rule HInfinite_HFinite_iff [THEN iffD2]) |
1822 |
apply (safe, drule HFinite_FreeUltrafilterNat, safe) |
|
1823 |
apply (drule_tac x = u in spec) |
|
60041 | 1824 |
proof - |
64435 | 1825 |
fix u |
1826 |
assume "\<forall>\<^sub>Fn in \<U>. norm (X n) < u" "\<forall>\<^sub>Fn in \<U>. u < norm (X n)" |
|
60041 | 1827 |
then have "\<forall>\<^sub>F x in \<U>. False" |
1828 |
by eventually_elim auto |
|
1829 |
then show False |
|
1830 |
by (simp add: eventually_False FreeUltrafilterNat.proper) |
|
1831 |
qed |
|
27468 | 1832 |
|
1833 |
lemma HInfinite_FreeUltrafilterNat_iff: |
|
64438 | 1834 |
"star_n X \<in> HInfinite \<longleftrightarrow> (\<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U>)" |
64435 | 1835 |
by (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite) |
1836 |
||
27468 | 1837 |
|
61975 | 1838 |
subsubsection \<open>@{term Infinitesimal}\<close> |
27468 | 1839 |
|
64435 | 1840 |
lemma ball_SReal_eq: "(\<forall>x::hypreal \<in> Reals. P x) \<longleftrightarrow> (\<forall>x::real. P (star_of x))" |
1841 |
by (auto simp: SReal_def) |
|
27468 | 1842 |
|
1843 |
lemma Infinitesimal_FreeUltrafilterNat: |
|
64435 | 1844 |
"star_n X \<in> Infinitesimal \<Longrightarrow> \<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>" |
1845 |
apply (simp add: Infinitesimal_def ball_SReal_eq) |
|
1846 |
apply (simp add: hnorm_def starfun_star_n star_of_def) |
|
1847 |
apply (simp add: star_less_def starP2_star_n) |
|
1848 |
done |
|
27468 | 1849 |
|
1850 |
lemma FreeUltrafilterNat_Infinitesimal: |
|
64435 | 1851 |
"\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U> \<Longrightarrow> star_n X \<in> Infinitesimal" |
1852 |
apply (simp add: Infinitesimal_def ball_SReal_eq) |
|
1853 |
apply (simp add: hnorm_def starfun_star_n star_of_def) |
|
1854 |
apply (simp add: star_less_def starP2_star_n) |
|
1855 |
done |
|
27468 | 1856 |
|
1857 |
lemma Infinitesimal_FreeUltrafilterNat_iff: |
|
64435 | 1858 |
"(star_n X \<in> Infinitesimal) = (\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>)" |
1859 |
by (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal) |
|
1860 |
||
27468 | 1861 |
|
64435 | 1862 |
text \<open>Infinitesimals as smaller than \<open>1/n\<close> for all \<open>n::nat (> 0)\<close>.\<close> |
27468 | 1863 |
|
64435 | 1864 |
lemma lemma_Infinitesimal: "(\<forall>r. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse (real (Suc n)))" |
1865 |
apply (auto simp del: of_nat_Suc) |
|
1866 |
apply (blast dest!: reals_Archimedean intro: order_less_trans) |
|
1867 |
done |
|
27468 | 1868 |
|
1869 |
lemma lemma_Infinitesimal2: |
|
64435 | 1870 |
"(\<forall>r \<in> Reals. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))" |
1871 |
apply safe |
|
1872 |
apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec) |
|
1873 |
apply simp_all |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1874 |
using less_imp_of_nat_less apply fastforce |
64435 | 1875 |
apply (auto dest!: reals_Archimedean simp add: SReal_iff simp del: of_nat_Suc) |
1876 |
apply (drule star_of_less [THEN iffD2]) |
|
1877 |
apply simp |
|
1878 |
apply (blast intro: order_less_trans) |
|
1879 |
done |
|
27468 | 1880 |
|
1881 |
||
1882 |
lemma Infinitesimal_hypreal_of_nat_iff: |
|
64435 | 1883 |
"Infinitesimal = {x. \<forall>n. hnorm x < inverse (hypreal_of_nat (Suc n))}" |
1884 |
apply (simp add: Infinitesimal_def) |
|
1885 |
apply (auto simp add: lemma_Infinitesimal2) |
|
1886 |
done |
|
27468 | 1887 |
|
1888 |
||
64435 | 1889 |
subsection \<open>Proof that \<open>\<omega>\<close> is an infinite number\<close> |
27468 | 1890 |
|
64435 | 1891 |
text \<open>It will follow that \<open>\<epsilon>\<close> is an infinitesimal number.\<close> |
27468 | 1892 |
|
1893 |
lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}" |
|
64435 | 1894 |
by (auto simp add: less_Suc_eq) |
27468 | 1895 |
|
64435 | 1896 |
|
64438 | 1897 |
text \<open>Prove that any segment is finite and hence cannot belong to \<open>\<U>\<close>.\<close> |
27468 | 1898 |
|
1899 |
lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}" |
|
64435 | 1900 |
by auto |
27468 | 1901 |
|
1902 |
lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}" |
|
64435 | 1903 |
apply (cut_tac x = u in reals_Archimedean2, safe) |
1904 |
apply (rule finite_real_of_nat_segment [THEN [2] finite_subset]) |
|
1905 |
apply (auto dest: order_less_trans) |
|
1906 |
done |
|
27468 | 1907 |
|
64435 | 1908 |
lemma lemma_real_le_Un_eq: "{n. f n \<le> u} = {n. f n < u} \<union> {n. u = (f n :: real)}" |
1909 |
by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) |
|
27468 | 1910 |
|
1911 |
lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}" |
|
64435 | 1912 |
by (auto simp add: lemma_real_le_Un_eq lemma_finite_omega_set finite_real_of_nat_less_real) |
27468 | 1913 |
|
61945 | 1914 |
lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. \<bar>real n\<bar> \<le> u}" |
64435 | 1915 |
by (simp add: finite_real_of_nat_le_real) |
27468 | 1916 |
|
1917 |
lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: |
|
64438 | 1918 |
"\<not> eventually (\<lambda>n. \<bar>real n\<bar> \<le> u) \<U>" |
64435 | 1919 |
by (blast intro!: FreeUltrafilterNat.finite finite_rabs_real_of_nat_le_real) |
27468 | 1920 |
|
64438 | 1921 |
lemma FreeUltrafilterNat_nat_gt_real: "eventually (\<lambda>n. u < real n) \<U>" |
64435 | 1922 |
apply (rule FreeUltrafilterNat.finite') |
1923 |
apply (subgoal_tac "{n::nat. \<not> u < real n} = {n. real n \<le> u}") |
|
1924 |
apply (auto simp add: finite_real_of_nat_le_real) |
|
1925 |
done |
|
27468 | 1926 |
|
64435 | 1927 |
text \<open>The complement of \<open>{n. \<bar>real n\<bar> \<le> u} = {n. u < \<bar>real n\<bar>}\<close> is in |
64438 | 1928 |
\<open>\<U>\<close> by property of (free) ultrafilters.\<close> |
27468 | 1929 |
|
1930 |
lemma Compl_real_le_eq: "- {n::nat. real n \<le> u} = {n. u < real n}" |
|
64435 | 1931 |
by (auto dest!: order_le_less_trans simp add: linorder_not_le) |
27468 | 1932 |
|
64435 | 1933 |
text \<open>@{term \<omega>} is a member of @{term HInfinite}.\<close> |
61981 | 1934 |
theorem HInfinite_omega [simp]: "\<omega> \<in> HInfinite" |
64435 | 1935 |
apply (simp add: omega_def) |
1936 |
apply (rule FreeUltrafilterNat_HInfinite) |
|
1937 |
apply clarify |
|
1938 |
apply (rule_tac u1 = "u-1" in eventually_mono [OF FreeUltrafilterNat_nat_gt_real]) |
|
1939 |
apply auto |
|
1940 |
done |
|
27468 | 1941 |
|
64435 | 1942 |
|
1943 |
text \<open>Epsilon is a member of Infinitesimal.\<close> |
|
27468 | 1944 |
|
61981 | 1945 |
lemma Infinitesimal_epsilon [simp]: "\<epsilon> \<in> Infinitesimal" |
64435 | 1946 |
by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega |
1947 |
simp add: hypreal_epsilon_inverse_omega) |
|
27468 | 1948 |
|
61981 | 1949 |
lemma HFinite_epsilon [simp]: "\<epsilon> \<in> HFinite" |
64435 | 1950 |
by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]) |
27468 | 1951 |
|
61982 | 1952 |
lemma epsilon_approx_zero [simp]: "\<epsilon> \<approx> 0" |
64435 | 1953 |
by (simp add: mem_infmal_iff [symmetric]) |
27468 | 1954 |
|
64435 | 1955 |
text \<open>Needed for proof that we define a hyperreal \<open>[<X(n)] \<approx> hypreal_of_real a\<close> given |
1956 |
that \<open>\<forall>n. |X n - a| < 1/n\<close>. Used in proof of \<open>NSLIM \<Rightarrow> LIM\<close>.\<close> |
|
1957 |
lemma real_of_nat_less_inverse_iff: "0 < u \<Longrightarrow> u < inverse (real(Suc n)) \<longleftrightarrow> real(Suc n) < inverse u" |
|
1958 |
apply (simp add: inverse_eq_divide) |
|
1959 |
apply (subst pos_less_divide_eq, assumption) |
|
1960 |
apply (subst pos_less_divide_eq) |
|
1961 |
apply simp |
|
1962 |
apply (simp add: mult.commute) |
|
1963 |
done |
|
27468 | 1964 |
|
64435 | 1965 |
lemma finite_inverse_real_of_posnat_gt_real: "0 < u \<Longrightarrow> finite {n. u < inverse (real (Suc n))}" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1966 |
proof (simp only: real_of_nat_less_inverse_iff) |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1967 |
have "{n. 1 + real n < inverse u} = {n. real n < inverse u - 1}" |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1968 |
by fastforce |
64435 | 1969 |
then show "finite {n. real (Suc n) < inverse u}" |
1970 |
using finite_real_of_nat_less_real [of "inverse u - 1"] |
|
1971 |
by auto |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1972 |
qed |
27468 | 1973 |
|
1974 |
lemma lemma_real_le_Un_eq2: |
|
64435 | 1975 |
"{n. u \<le> inverse(real(Suc n))} = |
1976 |
{n. u < inverse(real(Suc n))} \<union> {n. u = inverse(real(Suc n))}" |
|
1977 |
by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) |
|
27468 | 1978 |
|
64435 | 1979 |
lemma finite_inverse_real_of_posnat_ge_real: "0 < u \<Longrightarrow> finite {n. u \<le> inverse (real (Suc n))}" |
1980 |
by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_epsilon_set finite_inverse_real_of_posnat_gt_real |
|
1981 |
simp del: of_nat_Suc) |
|
27468 | 1982 |
|
1983 |
lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: |
|
64438 | 1984 |
"0 < u \<Longrightarrow> \<not> eventually (\<lambda>n. u \<le> inverse(real(Suc n))) \<U>" |
64435 | 1985 |
by (blast intro!: FreeUltrafilterNat.finite finite_inverse_real_of_posnat_ge_real) |
27468 | 1986 |
|
64435 | 1987 |
text \<open>The complement of \<open>{n. u \<le> inverse(real(Suc n))} = {n. inverse (real (Suc n)) < u}\<close> |
64438 | 1988 |
is in \<open>\<U>\<close> by property of (free) ultrafilters.\<close> |
64435 | 1989 |
lemma Compl_le_inverse_eq: "- {n. u \<le> inverse(real(Suc n))} = {n. inverse(real(Suc n)) < u}" |
1990 |
by (auto dest!: order_le_less_trans simp add: linorder_not_le) |
|
56225 | 1991 |
|
27468 | 1992 |
|
1993 |
lemma FreeUltrafilterNat_inverse_real_of_posnat: |
|
64438 | 1994 |
"0 < u \<Longrightarrow> eventually (\<lambda>n. inverse(real(Suc n)) < u) \<U>" |
64435 | 1995 |
by (drule inverse_real_of_posnat_ge_real_FreeUltrafilterNat) |
1996 |
(simp add: FreeUltrafilterNat.eventually_not_iff not_le[symmetric]) |
|
27468 | 1997 |
|
64435 | 1998 |
text \<open>Example of an hypersequence (i.e. an extended standard sequence) |
1999 |
whose term with an hypernatural suffix is an infinitesimal i.e. |
|
2000 |
the whn'nth term of the hypersequence is a member of Infinitesimal\<close> |
|
27468 | 2001 |
|
64435 | 2002 |
lemma SEQ_Infinitesimal: "( *f* (\<lambda>n::nat. inverse(real(Suc n)))) whn \<in> Infinitesimal" |
2003 |
by (simp add: hypnat_omega_def starfun_star_n star_n_inverse Infinitesimal_FreeUltrafilterNat_iff |
|
2004 |
FreeUltrafilterNat_inverse_real_of_posnat del: of_nat_Suc) |
|
27468 | 2005 |
|
64435 | 2006 |
text \<open>Example where we get a hyperreal from a real sequence |
2007 |
for which a particular property holds. The theorem is |
|
2008 |
used in proofs about equivalence of nonstandard and |
|
2009 |
standard neighbourhoods. Also used for equivalence of |
|
2010 |
nonstandard ans standard definitions of pointwise |
|
2011 |
limit.\<close> |
|
27468 | 2012 |
|
64435 | 2013 |
text \<open>\<open>|X(n) - x| < 1/n \<Longrightarrow> [<X n>] - hypreal_of_real x| \<in> Infinitesimal\<close>\<close> |
27468 | 2014 |
lemma real_seq_to_hypreal_Infinitesimal: |
64435 | 2015 |
"\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X - star_of x \<in> Infinitesimal" |
2016 |
unfolding star_n_diff star_of_def Infinitesimal_FreeUltrafilterNat_iff star_n_inverse |
|
2017 |
by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat |
|
2018 |
intro: order_less_trans elim!: eventually_mono) |
|
27468 | 2019 |
|
2020 |
lemma real_seq_to_hypreal_approx: |
|
64435 | 2021 |
"\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" |
2022 |
by (metis bex_Infinitesimal_iff real_seq_to_hypreal_Infinitesimal) |
|
27468 | 2023 |
|
2024 |
lemma real_seq_to_hypreal_approx2: |
|
64435 | 2025 |
"\<forall>n. norm (x - X n) < inverse(real(Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" |
2026 |
by (metis norm_minus_commute real_seq_to_hypreal_approx) |
|
27468 | 2027 |
|
2028 |
lemma real_seq_to_hypreal_Infinitesimal2: |
|
64435 | 2029 |
"\<forall>n. norm(X n - Y n) < inverse(real(Suc n)) \<Longrightarrow> star_n X - star_n Y \<in> Infinitesimal" |
2030 |
unfolding Infinitesimal_FreeUltrafilterNat_iff star_n_diff |
|
2031 |
by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat |
|
2032 |
intro: order_less_trans elim!: eventually_mono) |
|
27468 | 2033 |
|
2034 |
end |