author | wenzelm |
Sat, 01 Jun 2019 11:29:59 +0200 | |
changeset 70299 | 83774d669b51 |
parent 69546 | 27dae626822b |
child 70793 | 8ea9b7dec799 |
permissions | -rw-r--r-- |
69133 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
section \<open>Braun Trees\<close> |
|
4 |
||
5 |
theory Braun_Tree |
|
6 |
imports "HOL-Library.Tree_Real" |
|
7 |
begin |
|
8 |
||
9 |
text \<open>Braun Trees were studied by Braun and Rem~\cite{BraunRem} |
|
69192 | 10 |
and later Hoogerwoord~\cite{Hoogerwoord}.\<close> |
69133 | 11 |
|
12 |
fun braun :: "'a tree \<Rightarrow> bool" where |
|
13 |
"braun Leaf = True" | |
|
69143 | 14 |
"braun (Node l x r) = ((size l = size r \<or> size l = size r + 1) \<and> braun l \<and> braun r)" |
15 |
||
16 |
lemma braun_Node': |
|
17 |
"braun (Node l x r) = (size r \<le> size l \<and> size l \<le> size r + 1 \<and> braun l \<and> braun r)" |
|
18 |
by auto |
|
69133 | 19 |
|
20 |
text \<open>The shape of a Braun-tree is uniquely determined by its size:\<close> |
|
21 |
||
22 |
lemma braun_unique: "\<lbrakk> braun (t1::unit tree); braun t2; size t1 = size t2 \<rbrakk> \<Longrightarrow> t1 = t2" |
|
23 |
proof (induction t1 arbitrary: t2) |
|
24 |
case Leaf thus ?case by simp |
|
25 |
next |
|
26 |
case (Node l1 _ r1) |
|
27 |
from Node.prems(3) have "t2 \<noteq> Leaf" by auto |
|
28 |
then obtain l2 x2 r2 where [simp]: "t2 = Node l2 x2 r2" by (meson neq_Leaf_iff) |
|
69143 | 29 |
with Node.prems have "size l1 = size l2 \<and> size r1 = size r2" by auto |
69133 | 30 |
thus ?case using Node.prems(1,2) Node.IH by auto |
31 |
qed |
|
32 |
||
33 |
text \<open>Braun trees are balanced:\<close> |
|
34 |
||
35 |
lemma balanced_if_braun: "braun t \<Longrightarrow> balanced t" |
|
36 |
proof(induction t) |
|
37 |
case Leaf show ?case by (simp add: balanced_def) |
|
38 |
next |
|
39 |
case (Node l x r) |
|
40 |
have "size l = size r \<or> size l = size r + 1" (is "?A \<or> ?B") |
|
69143 | 41 |
using Node.prems by simp |
69133 | 42 |
thus ?case |
43 |
proof |
|
44 |
assume "?A" |
|
45 |
thus ?thesis using Node |
|
46 |
apply(simp add: balanced_def min_def max_def) |
|
47 |
by (metis Node.IH balanced_optimal le_antisym le_refl) |
|
48 |
next |
|
49 |
assume "?B" |
|
50 |
thus ?thesis using Node by(intro balanced_Node_if_wbal1) auto |
|
51 |
qed |
|
52 |
qed |
|
53 |
||
69192 | 54 |
subsection \<open>Numbering Nodes\<close> |
55 |
||
56 |
text \<open>We show that a tree is a Braun tree iff a parity-based |
|
57 |
numbering (\<open>braun_indices\<close>) of nodes yields an interval of numbers.\<close> |
|
58 |
||
59 |
fun braun_indices :: "'a tree \<Rightarrow> nat set" where |
|
60 |
"braun_indices Leaf = {}" | |
|
69195 | 61 |
"braun_indices (Node l _ r) = {1} \<union> (*) 2 ` braun_indices l \<union> Suc ` (*) 2 ` braun_indices r" |
69192 | 62 |
|
69196 | 63 |
lemma braun_indices1: "0 \<notin> braun_indices t" |
64 |
by (induction t) auto |
|
65 |
||
66 |
lemma finite_braun_indices: "finite(braun_indices t)" |
|
67 |
by (induction t) auto |
|
68 |
||
69192 | 69 |
lemma braun_indices_if_braun: "braun t \<Longrightarrow> braun_indices t = {1..size t}" |
70 |
proof(induction t) |
|
71 |
case Leaf thus ?case by simp |
|
72 |
next |
|
69195 | 73 |
have *: "(*) 2 ` {a..b} \<union> Suc ` (*) 2 ` {a..b} = {2*a..2*b+1}" (is "?l = ?r") for a b |
69192 | 74 |
proof |
75 |
show "?l \<subseteq> ?r" by auto |
|
76 |
next |
|
77 |
have "\<exists>x2\<in>{a..b}. x \<in> {Suc (2*x2), 2*x2}" if *: "x \<in> {2*a .. 2*b+1}" for x |
|
78 |
proof - |
|
79 |
have "x div 2 \<in> {a..b}" using * by auto |
|
80 |
moreover have "x \<in> {2 * (x div 2), Suc(2 * (x div 2))}" by auto |
|
81 |
ultimately show ?thesis by blast |
|
82 |
qed |
|
83 |
thus "?r \<subseteq> ?l" by fastforce |
|
84 |
qed |
|
85 |
case (Node l x r) |
|
86 |
hence "size l = size r \<or> size l = size r + 1" (is "?A \<or> ?B") by auto |
|
87 |
thus ?case |
|
88 |
proof |
|
89 |
assume ?A |
|
90 |
with Node show ?thesis by (auto simp: *) |
|
91 |
next |
|
92 |
assume ?B |
|
93 |
with Node show ?thesis by (auto simp: * atLeastAtMostSuc_conv) |
|
94 |
qed |
|
95 |
qed |
|
96 |
||
69196 | 97 |
lemma disj_evens_odds: "(*) 2 ` A \<inter> Suc ` (*) 2 ` B = {}" |
98 |
using double_not_eq_Suc_double by auto |
|
99 |
||
100 |
lemma Suc0_notin_double: "Suc 0 \<notin> (*) 2 ` A" |
|
101 |
by(auto) |
|
102 |
||
103 |
lemma zero_in_double_iff: "(0::nat) \<in> (*) 2 ` A \<longleftrightarrow> 0 \<in> A" |
|
104 |
by(auto) |
|
105 |
||
106 |
lemma Suc_in_Suc_image_iff: "Suc n \<in> Suc ` A \<longleftrightarrow> n \<in> A" |
|
107 |
by(auto) |
|
108 |
||
109 |
lemmas nat_in_image = Suc0_notin_double zero_in_double_iff Suc_in_Suc_image_iff |
|
110 |
||
111 |
lemma card_braun_indices: "card (braun_indices t) = size t" |
|
112 |
proof (induction t) |
|
113 |
case Leaf thus ?case by simp |
|
114 |
next |
|
115 |
case Node |
|
116 |
thus ?case |
|
117 |
by(auto simp: UNION_singleton_eq_range finite_braun_indices card_Un_disjoint |
|
118 |
card_insert_if disj_evens_odds card_image inj_on_def braun_indices1) |
|
119 |
qed |
|
120 |
||
69197 | 121 |
lemma disj_union_eq_iff: |
122 |
"\<lbrakk> L1 \<inter> R2 = {}; L2 \<inter> R1 = {} \<rbrakk> \<Longrightarrow> L1 \<union> R1 = L2 \<union> R2 \<longleftrightarrow> L1 = L2 \<and> R1 = R2" |
|
123 |
by blast |
|
124 |
||
125 |
lemma inj_braun_indices: "braun_indices t1 = braun_indices t2 \<Longrightarrow> t1 = (t2::unit tree)" |
|
126 |
proof(induction t1 arbitrary: t2) |
|
127 |
case Leaf thus ?case using braun_indices.elims by blast |
|
128 |
next |
|
129 |
case (Node l1 x1 r1) |
|
130 |
have "t2 \<noteq> Leaf" |
|
131 |
proof |
|
132 |
assume "t2 = Leaf" |
|
133 |
with Node.prems show False by simp |
|
134 |
qed |
|
135 |
thus ?case using Node |
|
136 |
by (auto simp: neq_Leaf_iff insert_ident nat_in_image braun_indices1 |
|
137 |
disj_union_eq_iff disj_evens_odds inj_image_eq_iff inj_def) |
|
138 |
qed |
|
139 |
||
69192 | 140 |
text \<open>How many even/odd natural numbers are there between m and n?\<close> |
141 |
||
69200 | 142 |
lemma card_Icc_even_nat: |
69192 | 143 |
"card {i \<in> {m..n::nat}. even i} = (n+1-m + (m+1) mod 2) div 2" (is "?l m n = ?r m n") |
144 |
proof(induction "n+1 - m" arbitrary: n m) |
|
145 |
case 0 thus ?case by simp |
|
146 |
next |
|
147 |
case Suc |
|
148 |
have "m \<le> n" using Suc(2) by arith |
|
149 |
hence "{m..n} = insert m {m+1..n}" by auto |
|
150 |
hence "?l m n = card {i \<in> insert m {m+1..n}. even i}" by simp |
|
151 |
also have "\<dots> = ?r m n" (is "?l = ?r") |
|
152 |
proof (cases) |
|
153 |
assume "even m" |
|
154 |
hence "{i \<in> insert m {m+1..n}. even i} = insert m {i \<in> {m+1..n}. even i}" by auto |
|
155 |
hence "?l = card {i \<in> {m+1..n}. even i} + 1" by simp |
|
156 |
also have "\<dots> = (n-m + (m+2) mod 2) div 2 + 1" using Suc(1)[of n "m+1"] Suc(2) by simp |
|
157 |
also have "\<dots> = ?r" using \<open>even m\<close> \<open>m \<le> n\<close> by auto |
|
158 |
finally show ?thesis . |
|
159 |
next |
|
160 |
assume "odd m" |
|
161 |
hence "{i \<in> insert m {m+1..n}. even i} = {i \<in> {m+1..n}. even i}" by auto |
|
162 |
hence "?l = card ..." by simp |
|
163 |
also have "\<dots> = (n-m + (m+2) mod 2) div 2" using Suc(1)[of n "m+1"] Suc(2) by simp |
|
164 |
also have "\<dots> = ?r" using \<open>odd m\<close> \<open>m \<le> n\<close> even_iff_mod_2_eq_zero[of m] by simp |
|
165 |
finally show ?thesis . |
|
166 |
qed |
|
167 |
finally show ?case . |
|
168 |
qed |
|
169 |
||
69200 | 170 |
lemma card_Icc_odd_nat: "card {i \<in> {m..n::nat}. odd i} = (n+1-m + m mod 2) div 2" |
69192 | 171 |
proof - |
172 |
let ?A = "{i \<in> {m..n}. odd i}" |
|
173 |
let ?B = "{i \<in> {m+1..n+1}. even i}" |
|
174 |
have "card ?A = card (Suc ` ?A)" by (simp add: card_image) |
|
175 |
also have "Suc ` ?A = ?B" using Suc_le_D by(force simp: image_iff) |
|
176 |
also have "card ?B = (n+1-m + (m) mod 2) div 2" |
|
69200 | 177 |
using card_Icc_even_nat[of "m+1" "n+1"] by simp |
69192 | 178 |
finally show ?thesis . |
179 |
qed |
|
180 |
||
69200 | 181 |
lemma compact_Icc_even: assumes "A = {i \<in> {m..n}. even i}" |
69192 | 182 |
shows "A = (\<lambda>j. 2*(j-1) + m + m mod 2) ` {1..card A}" (is "_ = ?A") |
183 |
proof |
|
184 |
let ?a = "(n+1-m + (m+1) mod 2) div 2" |
|
185 |
have "\<exists>j \<in> {1..?a}. i = 2*(j-1) + m + m mod 2" if *: "i \<in> {m..n}" "even i" for i |
|
186 |
proof - |
|
187 |
let ?j = "(i - (m + m mod 2)) div 2 + 1" |
|
69198 | 188 |
have "?j \<in> {1..?a} \<and> i = 2*(?j-1) + m + m mod 2" using * by(auto simp: mod2_eq_if) presburger+ |
69192 | 189 |
thus ?thesis by blast |
190 |
qed |
|
191 |
thus "A \<subseteq> ?A" using assms |
|
69200 | 192 |
by(auto simp: image_iff card_Icc_even_nat simp del: atLeastAtMost_iff) |
69192 | 193 |
next |
194 |
let ?a = "(n+1-m + (m+1) mod 2) div 2" |
|
195 |
have 1: "2 * (j - 1) + m + m mod 2 \<in> {m..n}" if *: "j \<in> {1..?a}" for j |
|
69198 | 196 |
using * by(auto simp: mod2_eq_if) |
69192 | 197 |
have 2: "even (2 * (j - 1) + m + m mod 2)" for j by presburger |
198 |
show "?A \<subseteq> A" |
|
69200 | 199 |
apply(simp add: assms card_Icc_even_nat del: atLeastAtMost_iff One_nat_def) |
69192 | 200 |
using 1 2 by blast |
201 |
qed |
|
202 |
||
69200 | 203 |
lemma compact_Icc_odd: |
69192 | 204 |
assumes "B = {i \<in> {m..n}. odd i}" shows "B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..card B}" |
205 |
proof - |
|
206 |
define A :: " nat set" where "A = Suc ` B" |
|
207 |
have "A = {i \<in> {m+1..n+1}. even i}" |
|
208 |
using Suc_le_D by(force simp add: A_def assms image_iff) |
|
69200 | 209 |
from compact_Icc_even[OF this] |
69192 | 210 |
have "A = Suc ` (\<lambda>i. 2 * (i - 1) + m + (m + 1) mod 2) ` {1..card A}" |
211 |
by (simp add: image_comp o_def) |
|
212 |
hence B: "B = (\<lambda>i. 2 * (i - 1) + m + (m + 1) mod 2) ` {1..card A}" |
|
213 |
using A_def by (simp add: inj_image_eq_iff) |
|
214 |
have "card A = card B" by (metis A_def bij_betw_Suc bij_betw_same_card) |
|
215 |
with B show ?thesis by simp |
|
216 |
qed |
|
217 |
||
218 |
lemma even_odd_decomp: assumes "\<forall>x \<in> A. even x" "\<forall>x \<in> B. odd x" "A \<union> B = {m..n}" |
|
219 |
shows "(let a = card A; b = card B in |
|
220 |
a + b = n+1-m \<and> |
|
221 |
A = (\<lambda>i. 2*(i-1) + m + m mod 2) ` {1..a} \<and> |
|
222 |
B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..b} \<and> |
|
223 |
(a = b \<or> a = b+1 \<and> even m \<or> a+1 = b \<and> odd m))" |
|
224 |
proof - |
|
225 |
let ?a = "card A" let ?b = "card B" |
|
226 |
have "finite A \<and> finite B" |
|
227 |
by (metis \<open>A \<union> B = {m..n}\<close> finite_Un finite_atLeastAtMost) |
|
228 |
hence ab: "?a + ?b = Suc n - m" |
|
229 |
by (metis Int_emptyI assms card_Un_disjoint card_atLeastAtMost) |
|
230 |
have A: "A = {i \<in> {m..n}. even i}" using assms by auto |
|
69200 | 231 |
hence A': "A = (\<lambda>i. 2*(i-1) + m + m mod 2) ` {1..?a}" by(rule compact_Icc_even) |
69192 | 232 |
have B: "B = {i \<in> {m..n}. odd i}" using assms by auto |
69200 | 233 |
hence B': "B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..?b}" by(rule compact_Icc_odd) |
69192 | 234 |
have "?a = ?b \<or> ?a = ?b+1 \<and> even m \<or> ?a+1 = ?b \<and> odd m" |
69198 | 235 |
apply(simp add: Let_def mod2_eq_if |
69200 | 236 |
card_Icc_even_nat[of m n, simplified A[symmetric]] |
237 |
card_Icc_odd_nat[of m n, simplified B[symmetric]] split!: if_splits) |
|
69192 | 238 |
by linarith |
239 |
with ab A' B' show ?thesis by simp |
|
240 |
qed |
|
241 |
||
242 |
lemma braun_if_braun_indices: "braun_indices t = {1..size t} \<Longrightarrow> braun t" |
|
243 |
proof(induction t) |
|
244 |
case Leaf |
|
245 |
then show ?case by simp |
|
246 |
next |
|
247 |
case (Node t1 x2 t2) |
|
248 |
have 1: "i > 0 \<Longrightarrow> Suc(Suc(2 * (i - Suc 0))) = 2*i" for i::nat by(simp add: algebra_simps) |
|
249 |
have 2: "i > 0 \<Longrightarrow> 2 * (i - Suc 0) + 3 = 2*i + 1" for i::nat by(simp add: algebra_simps) |
|
69195 | 250 |
have 3: "(*) 2 ` braun_indices t1 \<union> Suc ` (*) 2 ` braun_indices t2 = |
69196 | 251 |
{2..size t1 + size t2 + 1}" using Node.prems |
252 |
by (simp add: insert_ident Icc_eq_insert_lb_nat nat_in_image braun_indices1) |
|
69192 | 253 |
thus ?case using Node.IH even_odd_decomp[OF _ _ 3] |
69195 | 254 |
by(simp add: card_image inj_on_def card_braun_indices Let_def 1 2 inj_image_eq_iff image_comp |
69546
27dae626822b
prefer naming convention from datatype package for strong congruence rules
haftmann
parents:
69200
diff
changeset
|
255 |
cong: image_cong_simp) |
69192 | 256 |
qed |
257 |
||
258 |
lemma braun_iff_braun_indices: "braun t \<longleftrightarrow> braun_indices t = {1..size t}" |
|
259 |
using braun_if_braun_indices braun_indices_if_braun by blast |
|
260 |
||
69133 | 261 |
end |